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Abstract: Groundwater is considered as one of the most important sources for water supply 
in Iran. The Fasa Plain in Fars Province, Southern Iran is one of the major areas of wheat 
production using groundwater for irrigation. A large population also uses local groundwater 
for drinking purposes. Therefore, in this study, this plain was selected to assess the spatial 
variability of groundwater quality and also to identify main parameters affecting the water 
quality using multivariate statistical techniques such as Cluster Analysis (CA), Discriminant 
Analysis (DA), and Principal Component Analysis (PCA). Water quality data was monitored 
at 22 different wells, for five years (2009-2014) with 10 water quality parameters. By using 
cluster analysis, the sampling wells were grouped into two clusters with distinct water qualities 
at different locations. The Lasso Discriminant Analysis (LDA) technique was used to assess 
the spatial variability of water quality. Based on the results, all of the variables except sodium 
absorption ratio (SAR) are effective in the LDA model with all variables affording 92.80% 
correct assignation to discriminate between the clusters from the primary 10 variables. 
Principal component (PC) analysis and factor analysis reduced the complex data matrix into 
two main components, accounting for more than 95.93% of the total variance. The first PC 
contained the parameters of TH, Ca2+, and Mg2+. Therefore, the first dominant factor was 
hardness. In the second PC, Cl-, SAR, and Na+ were the dominant parameters, which may 
indicate salinity. The originally acquired factors illustrate natural (existence of geological 
formations) and anthropogenic (improper disposal of domestic and agricultural wastes) factors 
which affect the groundwater quality.
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Introduction

Groundwater is a basic renewable resource, 
the conservation of which has been overlooked 
in many places. Groundwater is considered one 
of the most important sources for water supply 
for agriculture, industry, drinking, laboratory, and 
recreational uses. In arid regions, groundwater 
oftentimes shows significant spatiotemporal 

variability. Groundwater is regarded as a limited 
resource in most countries including Iran. 
Groundwater pollution has been increasing 
in recent years, coupled with concerns about 
the human health and environmental effects of 
pollutants. For example, chemicals like pesticides, 
herbicides, and fertilizers which have been used in 
agriculture may transport into groundwater with 
rain or irrigation water leaching to the underground 
(El Alfy and Faraj, 2016). Groundwater quality 
depends not only on natural variables such as the 
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lithology of the aquifer, the quality of recharged 
water and the type of interaction between surface 
water and aquifer but also on anthropogenic 
activities, which can vary these groundwater 
systems either by contaminating them or by 
changing the hydrological cycle (Mahmood et al. 
2011; Matiatos, 2016). Pesticides and fertilizers 
are subsidized by the Iran government and 
therefore applied extensively in agriculture in 
Southern Iran (Zarei and Bahrami, 2016; Amiri 
et al. 2018; Bahrami et al. 2018). Irrigation water 
leaches these chemicals into groundwater aquifers 
and agricultural run-off. Agricultural wastewater 
is thus highly contaminated with chemicals that 
regularly contains heavy metals (Bahrami et al. 
2013). Unfortunately, polluted water can cause 
many diseases, particularly in regions with high 
population density.

Groundwater quality monitoring has been one 
of the highest priorities in environmental protection 
policy. It is of great importance and necessity to 
develop a representative and credible groundwater 
quality monitoring plan.

Consequently, comprehensive monitoring 
plans that contain frequent water sampling at 
abundant sites and consist of a full analysis of a 
large number of physicochemical variables are 
to be designed for proper groundwater quality 
management. Real hydrological data are mostly 
noisy, which means they are not normally 
distributed, often co-linear or auto-correlated, 
and including outliers or errors, etc. In order to 
avoid these noises, multivariate techniques have 
been applied. The use of multivariable statistical 
techniques provides a better understanding of 
water quality when interpreting the complicated 
datasets (Mahmood et al. 2011). Different multi-
variate statistical techniques have been applied 
to discover the relationship among factors and 
sampling sites, to identify the parameters and 
sources which influence groundwater quality and 
to propose practical tools for both water resources 
management and groundwater quality assessment 
(Nosrati and Van Den Eeckhaut, 2012; El Alfy et 
al. 2017). The most commonly used techniques 
are Cluster Analysis (CA), Discriminant Analysis 
(DA), and Principal Component Analysis (PCA), 
which were applied in the present study. CA was 
applied to investigate the spatial grouping of the 
sampling wells. This method is a usual technique 

to categorize variables into clusters (Hummel 
et al. 2017). CA and PCA are usually supported 
by DA as verification and commonly referred to 
as pattern reconnaissance methods (Azhar et al. 
2015). Recently, many researchers have applied 
multivariate statistical techniques to identify the 
main parameters affecting the water quality of 
groundwater. For example, Ebrahimzadeh et al. 
(2011) used PCA to evaluate the main variables 
responsible for the concentration of dissolved 
ions in the groundwater of Zarghan plain, Iran. 
The results indicated a strong and positive loading 
related to Cl, Ca, Mg, Na, Zn and EC, and strong 
and negative loading related to As Mahmood et 
al. (2011) applied multivariate statistical methods 
including factor analysis (FA), CA, and DA to 
assess the spatial variations and the interpretation 
of the water quality dataset in Punjab, Pakistan. 
FA shows five factors of salinization, alkalinity, 
temperature, domestic waste, and chloride, 
which explained 74% of the total variance in 
the water quality dataset. Hierarchical cluster 
analysis grouped nine sampling stations into 
three clusters, i.e. less polluted (LP), moderately 
polluted (MP), and highly polluted (HP). DA 
recognized 10 significant factors that discriminate 
the groundwater quality with close to 100% correct 
assignment for spatial variations. Noshadi and 
Ghafourian (2016) investigated the groundwater 
quality in Fars Province, Iran, using multivariate 
statistical methods. Cluster analysis resulted in 
three quality groups in groundwater of the research 
area. The principal component analysis reduced 
the complex and voluminous data matrix into three 
main components, accounting for more than 80% 
of the total variance. Matiatos et al. (2016) used 
the multivariate statistical methods to identify the 
main parameters and mechanisms controlling the 
hydrogeochemistry of groundwater in the deltaic 
environment of River Pinios (Thessaly). Ghassemi 
Dehnavi (2018) evaluated the groundwater quality 
in Aliguodarz, Lorestan, west of Iran using 
statistical methods. The cluster diagram classified 
the parameters into six clusters. Interpretation 
of PCA results indicated that the nitrate in 
groundwater increased in the area which was 
caused by the fertilizer leaching.

The Fasa Plain, located in the east of Fars 
Province, Southern Iran is one of the major areas 
with wheat cultivation which uses groundwater 
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resources as irrigation water supply. Hence, the 
principal goal of the present study was to assess 
the spatial variability of groundwater quality 
and to identify the main parameters affecting the 
groundwater quality using multivariate statistical 
techniques in this plain. Major parameters related 
to the water quality of the plain were measured and 
analyzed using the statistical methods.

1 Materials and methods

1.1 Study area

The study area in the present research is the 

Fasa Plain, a part of Fars Province, Iran, with a 
total area of 4 196.93 km2. It is located between 
53° 19' to 54° 15' E, and 28° 31' to 29° 24' N with 
the altitude of 1 370.2 m (Fig. 1). In the 2016 
census, the county’s population was 205 187 in 
61 509 families. According to the De Martonne 
aridity index, the climate of the Fasa Plain is 
semi-arid (Bahrami et al. 2017). The mean annual 
temperature is about 20.1 degrees Celsius and 
the mean annual rainfall is 289 mm. Since the 
rainfall regime of the Fasa Plain is Mediterranean, 
rainfall is mostly concentrated in winter months 
and occasionally in summer months (under the 
influence of monsoon rains of the Indian Ocean). 

Fig. 1 Location map of the study area showing the sampling wells of the Fasa Plain
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Table 1 The ID of sampling wells

ID Sampling site ID Sampling site

1 Jangalkari 12 Qanatno

2 Tonbakan 13 Kamal Abad

3 Toureh 14 Kheir Abad

4 Baniyan 15 Firuzemard

5 Kahnekoyeh 16 Dastjeh

6 Shomal Fasa 17 Baghe Jafari

7 Kushk Qazi 1 18 Sahraroud

8 Kushk Qazi 2 19 Saad Abad

9 Rahmat Abad 20 Ghiyas Abad

10 Harom 21 Soghad

11 Chaghad 22 Cheshme Abnarak

Geologically, Fasa Plain is located in the 
Zagros Mountains Range that consists of a series 
of sub-parallel, NW-SE trending anticlines and 
synclines (Alavi, 2004). The exposed geological 
formations, in descending order of age, are the 
Hormuz salt formation (Palaeozoic); the Sarvak 

limestone formation (Cretaceous); the Pabdeh-
Gurpi shales and gypsiferous marl formation 
(Paleocene Oligocene); the Sachun gypsum 
formation (Paleocene-Eocene); the Asmari-Jahrom 
limestone and dolomite formation (Oligocene-
Miocene);  the Razak evapori te  formation 
(Miocene); the Gachsaran gypsum and marl 
formation; the Aghajari sandstone formation (late 
Miocene to Pliocene); the Bakhtiari conglomerate 
formation (late Pliocene-Pleistocene); and recent 
alluvium (Fig. 2). The research area is located 
in the Quaternary alluvial plain. The deposits 
in the center of the area are mainly sandy loam 
and silt, while the sediments near the edges are 
gravel and sand. The aquifer system in highly 
permeable karstified carbonate rocks often 
discharges groundwater through springs. The 
alluvial aquifer in the area is recharged mainly by 
subsurface groundwater inflows from the adjacent 
carbonate rocks and by rainfall. In this region, the 
groundwater generally flows from the north to the 
south of the plain (Fig. 3). 

1.2 Data collection and treatment

The water quality data in the present research 
was gathered from 22 monitoring wells among the 

Fasa Plain between October 2009 and September 
2014, by the laboratory of water engineering, Fasa 
University. Fig. 1 represents the map of the study 
area with the corresponding sampling locations. 

Fig. 2 Geological map of the study area 
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For the assessment of groundwater quality, 
the samples were taken below the water table. 
Prior to each sampling, the water was pumped 
for about 15 minutes. Each sample was collected 
in a 1.5-liter polythene bottle. In the field, each 
bottle was filled and emptied twice with the 
water to be sampled before sampling. The sample 
bottle should be submerged and completely fill 
without air to mix with the sample until the cap 
is firmly in place. All the glassware and plastic 
containers were cleaned with 1 M HNO3 and 
rinsed with double distilled water prior to use in 
order to prevent the contamination of the sample. 
Sampling, preservation, and transportation of 
the water samples to the laboratory were as per 
standard methods (Mahmood et al. 2011). All 
samples were collected in the same fashion and 
under the specified conditions in a standardized 
operating procedure. In each of the selected 
monitoring wells, 10 groundwater parameters 
including electrical conductivity (EC), total 
hardness (TH), sodium absorption ratio (SAR), 
chlorine (Cl-), sulfate (SO4

2-), calcium (Ca2+), 
magnesium (Mg2+), sodium (Na+), potassium (K+), 
and cations were measured monthly during the 
entire sampling period. Electrical conductivity 
was measured in the field immediately after 
sampling utilizing a digital portable water analyzer 

(ZX44XL). The electrical conductivity meter was 
calibrated by immersing the probe in a standard 
KCl solution (0.1 N). The remaining parameters 
were determined in the laboratory within 24 h 
using standard methodologies. Calcium, sodium, 
and potassium were determined by flame emission 
photometry (Jenway, UK, PFP7/C), magnesium by 
atomic absorption spectrophotometer (Analytik-
Jena, Germany, Vario 6), chloride by argentometric 
titration, sulfate by turbidimetric method, and 
total hardness by EDTA titrations method. So-
dium absorption ratio (SAR), described as the 
relative concentration of sodium to calcium and 
magnesium (U.S. Salinity Laboratory Staff, 1954), 
was estimated to ascertain the sodium hazard for 
irrigation water because of the salinity content.

1.3 Analytical methods

To provide insight into the relationships 
between the factors,  we used multivariate 
statistical techniques, i.e. Cluster Analysis (CA), 
Discriminant Analysis (DA), and Principal 
Component Analysis (PCA), to analyze the data. 
All analysis was performed using Minitab 16 and 
R 3.3.1 softwares and P-value less than 0.05 was 
considered significant.

Fig. 3 Iso-Potential map of the study area
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1.3.1 Cluster analysis (CA)

The aim of cluster analysis is to classify objects 
into two or more groups based on the similarity 
between objects with respect to a set of special 
characteristics (Matiatos and Evelpidou, 2013; 
Rogerson, 2001; McKenna, 2003; Hardle and 
Simar, 2007; Lokhande et al. 2008).

In the present research, to classify the sampling 
wells based on the proximity of variables, 
hierarchical cluster analysis was carried out by 
applying Ward’s technique (Pandit and Gupta, 
2011; Singh et al. 2013). Independent T-test was 
utilized to compare the clusters and to determine 
which one is more prominent.

1.3.2 Discriminant analysis (DA)

Discriminant analysis (DA) is utilized to 
categorize instances into categorical-dependent 
values, commonly a dichotomy. If the discriminant 
analysis is effective for a set of data, the categorization 
table of correct and incorrect approximations will 
result in a high correct percentage. In this study, 
the Lasso discriminant analysis (LDA) was used 
to verify the CA results. This method manipulates 
raw data and builds up a discriminant function 
for each category (Singh et al. 2005; Witten and 
Tibshirani, 2011).

1.3.3 Principal component analysis (PCA)

Principal component analysis (PCA) is 
extensively used for data reduction in hydrochemical 

and hydrogeological researches (Matiatos, 2016). 
This method is designed to transform the original 
variables into new, uncorrelated variables (axes), 
called the principal components, which are linear 
compositions of the primary variables. In this 
study, the PCA method was used to categorize 
the wells based on the correlation of the variables 
(Sarbu and Pop, 2005). PC prepares information on 
the most significant parameters that explain a whole 
data set affording data decrease with minimum loss 
of primary information (Helena et al. 2000).

2 Results

2.1 Descriptive statistics

Basic statistics were performed to provide basic 
information on water quality data. The descriptive 
statistics on the water quality variables sampled in 
five years are shown in Table 2. Results indicated 
that mean values of EC and TH (1 441.43 µmhos/
cm and 570.79 ppm as CaCO3, respectively) in the 
study area are a little higher than the permissible 
limits (1 400 µmhos/cm and 500 ppm as CaCO3, 
respectively) suggested by the Institute of 
Standards and Industrial Research of Iran (ISIRI, 
2009). On the other hand, the mean concentrations 
of Cl-, K+, Na+, Mg2+, Ca2+, and SO4

2- (4.89, 0.07, 
3.77, 5.30, 6.11, and 5.47 ppm, respectively) are 
much lower than the permissible limits (400, 12, 
200, 30, 300, and 400 ppm, respectively). Large 
standard deviations of most of the variables 
indicated their randomly fluctuating concentration 
levels in the groundwater.

Table 2 Descriptive statistics of groundwater quality parameters ranges and their comparison with the 
Iranian standard for drinking water

Variable Iranian permissible limit N Minimum Maximum Mean Std. Deviation
EC (µmhos/cm) 1 400 110 333 52 00 1 441.43 843.99

Cl- (ppm) 400 110 0.15 22.50 4.89 3.73
TH (ppm as CaCO3) 500 110 166 2 000 570.79 367.80

SAR (-) - 110 0.11 4.17 1.56 0.92
K+ (ppm) 12 110 0.01 0.32 0.07 0.05
Na+ (ppm) 200 110 0.15 17.39 3.77 2.80

Mg2+ (ppm) 30 110 0.20 22.50 5.30 3.85
Ca2+ (ppm) 300 110 2.00 27.00 6.11 4.44

Cations (ppm) - 110 3.72 57.66 15.26 9.40
SO4

2- (ppm) 400 110 0.19 33.92 5.47 6.14
Valid N (listwise) 110
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2.2 Cluster analysis

CA was performed on the water quality dataset 
to estimate the spatial variability amongst the 
monitoring wells of the Fasa Plain. The sampling 

wells were categorized into two clusters as 
represented in Fig. 4. The dendrogram shows 
the clustering of monitoring wells according to 
groundwater quality specifications of the Fasa 
Plain.

Fig. 4 A Dendrogram representing the two groups of the cluster

Cluster 1 contains eighteen wells (Toureh, 
Kushk Qazi 1, Shomal Fasa, Kamal Abad, Kheir 
Abad, Firuzemard, Sahraroud, Harom, Soghad, 
Rahmat Abad, Jangalkari, Ghiyas Abad, Tonbakan, 
Baniyan, Kahnekoyeh, Kushk Qazi 2, Chaghad, 
and Cheshme Abnarak), classified as less polluted 
(LP) wells due to the lowest average value. Cluster 
2 contains four wells (Dastjeh, Baghe Jafari, Saad 
Abad, and Qanatno), classified as highly polluted 
(HP) wells. As indicated in the results, the wells 
of Cluster 2 (No. 12, 16, 17, and 19) are located 
in the southern part of the plain, while the wells 
of Sahraroud and Ghiyas Abad (No. 18 and 20) 
are in the same region but in Cluster 1. This is 

due to different well depths, which may cause the 
recharge water of the wells from different layers of 
geological formations.

The mean values of water quality parameters 
confirm the division of wells into two groups (Table 
3). The values of most parameters were increased 
from the first to the second group and indicated 
the degradation of groundwater quality (Table 3). 
According to Table 3, the values of all studied 
parameters are increased from Group 1 to 2. 

According to Table 4, the means of all variables 
of the HP cluster except SAR are significantly 
higher than those of the LP cluster.

Table 3 Spatial clustering of sampling wells

Groups EC Cl- TH SAR K+ Na+ Mg2+ Ca2+ Cations SO4
2- No. of wells

1 1 154.7 4.0 445.4 1.4 0.06 3.1 4.1 4.8 12.1 3.4 18

2 2 731.8 9.1 1 135 2.1 0.14 6.8 10.7 12.0 29.7 14.6 4

Table 4 Independent sample test

Levene’s test for equality of variances t-test for equality of means

Variable F sig. t df
Sig. 

(2-tailed)
Mean difference

(LP-HP)
Std. error 
difference

EC Equal variances assumed 4.215 0.053 -8.462 20 0.000 -1 577.222 186.374

Cl- Equal variances assumed 1.047 0.318 -4.777 20 0.000 -5.122 1.072

TH Equal variances assumed 0.547 0.468 -8.305 20 0.000 -689.589 83.031
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Levene’s test for equality of variances t-test for equality of means

Variable F sig. t df
Sig. 

(2-tailed)
Mean difference

(LP-HP)
Std. error 
difference

SAR Equal variances not assumed 7.445 0.013 -1.219 3.380 0.150 -0.626 0.514

K+ Equal variances assumed 0.079 0.782 -7.410 20 0.000 -0.077 -0.010

Na+ Equal variances not assumed 9.556 0.006 -2.570 3.293 0.037 -3.750 1.460

Mg2+ Equal variances assumed 0.862 0.364 -6.679 20 0.000 -6.595 0.987

Ca2+ Equal variances not assumed 19.526 0.000 -2.545 3.073 0.041 -7.193 2.826

Cations Equal variances assumed 2.731 0.114 -9.022 20 0.000 -17.613 1.952

SO4
2- Equal variances not assumed 10.417 0.004 -3.891 3.138 0.014 -11.186 2.875

The alluvial aquifer in this area is near the 
Salloo diapir (Fig. 5). The saline water of the 
salt dome, which is at a shallower level than 
the groundwater below, probably flows through 

faults in the southwest of the area to increase the 
salinity in the study area. Besides, the dominant 
groundwater flow can transport these properties 
from north to south of the Plain.

Fig. 5 Schematic hydrogeological cross section of the study area (Bagheri R et al. 2017)

To further investigate the groundwater quality 
in studied wells, the variability of all parameters 
for two wells out of each Cluster (Wells 1 and 13 
for Cluster 1 and Wells 12 and 16 for Cluster 2) 

was presented in Fig. 6. The results showed higher 
values of the quality parameters in wells of Cluster 
1 (northern and central areas of the Plain) than in 
Cluster 2 (southern areas of the Plain).   
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2.3 Discriminant analysis

One of the main assumptions of the DA method 
is the absence of a linear relationship between 
independent variables. Due to a high correlation 
between the independent variables and the linear 
relationship establishment, the DA method cannot 
be used. Therefore, another technique called Lasso 

Discriminant Analysis (LDA) was used, which has 
solved the linear problem as well as appropriate 
for the available data. In this method, the value of 
Lambda with the lowest cross validation error is 
0.237 and the coefficient values were calculated 
with the contribution of this Lambda value. The 
resulted coefficients are tabulated in Table 5. 

Table 5 Resulted coefficients of LDA method
Variable EC Cl- TH SAR K+ Na+ Mg2+ Ca2+ Cations SO4

2-

LDA coefficient -0.423 -0.215 -0.388 0.000 -0.297 -0.144 -0.351 -0.298 -0.430 -0.345

After the classification into two major clusters 
by utilizing CA, the LDA method was applied 
based on the original data of 10 parameters in 
order to assess the spatial variation of groundwater 
quality amongst studied wells. Lasso discriminant 
functions and classification matrices acquired from 

the standard mode of LDA was 92.80%. The LDA 
results were presented in Table 6. Based on these 
results, 95.6% and 90% of groundwater samples 
were classified correctly in the two predetermined 
groups of Cluster 1 and Cluster 2, respectively. 

Table 6 Classification matrix obtained from LDA of spatial variation of the groundwater in the Fasa Plain

Predicted cluster determined by LDA

Actual cluster Cluster 1 Cluster 2

Cluster 1 95.60 4.40

Cluster 2 10.00 90.00

Total accuracy 92.80

2.4 Principal component analysis 
(PCA)/ factor analysis (FA)

The major goal of factor analysis is to decrease 
the quota of less significant parameters by further 
simplifying the data structure eventuating from 

the PCA method. PCA is planned to transform 
the primary parameters into new, uncorrelated 
parameters, called the principal ingredient, 
which is derived from linear combinations of the 
primary parameters. Factor loadings are the simple 
correlations between the groundwater quality 
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Fig. 6 Box plots of groundwater quality parameters for typical wells of two clusters
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parameters and each factor.
At first, the significance of data in the matrix 

and the adequacy of the data for performing factor 
analysis were tested by using Kaiser-Meyer-
Olkin (KMO) and Bartlett’s tests, respectively. 

The KMO index more than 0.6 is indicant of the 
adequacy of data and the significance of Chi-
Square of Bartlett’s test is the minimum required 
condition for factor analysis. The results of KMO 
and Bartlett’s tests were tabulated in Table 7.

Table 7 Results of KMO and Bartlett’s tests

Kaiser-Meyer-Olkin measure of sampling adequacy 0.623

Bartlett’s Test of Sphericity
Approx. Chi-Square 919.709

df 45
Sig. 0.000

According to Table 7, the resulted KMO index 
of 0.623 (˃0.6) indicated the sampling adequacy 
for factor analysis. In addition, the significance 
of the data in a matrix is determined through 
the Bartlett Chi-Square test. The null hypothesis 
rejection implies that the correlation matrix has 
significant information and there is the minimum 
required condition for factor analysis. With respect 
to P-Value of 0.000, it can be concluded that there 
is the minimum required condition for factor 
analysis.

Table 8 represents the percentage of total 
variance explained with the components. Based 
on the Kaiser criterion, two main factors were 
extracted for varimax rotation (Srivastava and 
Ramanathan, 2008). As can be seen in Table 

8, the first and second components accounted 
for 79.60% and 16.33 % of the total variance, 
respectively, the combination of which is 95.93% 
of the total variance. But the important point is to 
realize which variables have high loadings in each 
component.

In Table 9, variables with high loadings are 
marked in bold. In the first principal component 
(PC1), Ca2+, SO4

2-, TH, K+, cations, EC, and 
Mg2+ parameters have high positive loadings, 
respectively. PC2 is originally participated by trace 
elements of SAR, Na+, and Cl-, respectively.

To evaluate the relationship between the 
variables further, the correlation matrix between 
the factors was formed (Table 10).

Table 8 Total variance explained with two principal components

Component
Initial eigenvalues

Extraction sums of squared 
loadings

Rotation sums of squared loadings

Total
Variance

(%)
Cumulative

(%)
Total

Variance
(%)

Cumulative
(%)

Total
Variance

(%)
Cumulative

(%)
1 7.960 79.600 79.600 7.960 79.600 79.600 5.839 58.393 58.393
2 1.633 16.327 95.928 1.633 16.327 95.928 3.753 37.534 95.928
3 0.284 2.837 98.765
4 0.084 0.842 99.607
5 0.010 0.253 99.860
6 0.004 0.098 99.958
7 0.017 0.035 99.993
8 0.001 0.007 100.000
9 2.774E-6 2.774E-5 100.000
10 3.456E-9 3.456E-8 100.000

Extraction method: Principal component analysis

Table 9 Rotated component matrixa

Component

Variable 1 2

EC (µmhos/cm) 0.828 0.559
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Component

Variable 1 2

Cl- (ppm) 0.516 0.799

TH (ppm as CaCO3) 0.943 0.329

SAR 0.013 0.954

K+ (ppm) 0.883 0.445

Na+ (ppm) 0.339 0.932

Mg2+ (ppm) 0.697 0.638

Ca2+ (ppm) 0.976 0.008

Cations (ppm) 0.851 0.525

SO4
2- (ppm) 0.970 0.187

Extraction method: Principal component analysis 
Rotation method: Varimax with Kaiser Normalizationa 
a. Rotation converged in 3 iterations.

3 Discussion and conclusions

Two clusters obtained from the cluster analysis 
indicate higher values of water quality parameters 
in the southern areas of the plain, while the wells 
located in the northern and center of the plain had 
lower values of these parameters. Such variation 
may be attributed to the natural hydrogeological 
environment and the multipurpose nature of 
land use in the research area. There are various 
types of water in the groundwater which is 
natural because the integration of the chemical 
composition with groundwater is due to the 
interaction of groundwater with geology (Noshadi 
and Ghafourian, 2016). Matiatos and Evelpidou 
(2013) reported that high SAR values indicate 
the saline water which promotes soil dispersion 

and hardening and reduces infiltration rates. 
Also, Freeze and Cherry (1979) indicated that 
when surface water is charged with atmospheric 
and biogenic CO2 and infiltrates into the soil, 
CO2 attacks the aluminosilicates including micas 
and feldspars, causing liberation of Ca2+ and 
Mg2+ cations into the water. Usman et al. (2014) 
proposed that the multipurpose nature of land use 
and their effects on groundwater quality prevent 
the exact spatial categorization of monitoring 
sampling wells. The result showed that for quick 
assessment of groundwater quality, only one well 
in each cluster is required to illustrate a rational 
and correct spatial evaluation of the water quality 
for the entire cluster. In other words, the CA 
separation eliminates the requirement for sampling 
from multiple areas and makes it possible to 
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Table 9 (Continued)

Table 10 Correlation matrixa of studied variables

Variable EC Cl- TH SAR K+ Na+ Mg2+ Ca2+ Cations SO4
2-

EC 1.000

Cl- 0.878 1.000

TH 0.966 0.757 1.000

SAR 0.535 0.694 0.317 1.000

K+ 0.978 0.787 0.977 0.462 1.000

Na+ 0.798 0.903 0.622 0.908 0.713 1.000

Mg2+ 0.946 0.908 0.879 0.542 0.883 0.804 1.000

Ca2+ 0.804 0.490 0.917 0.068 0.875 0.354 0.616 1.000

Cations 0.998 0.860 0.975 0.509 0.982 0.779 0.930 0.833 1.000

SO4
2- 0.904 0.609 0.972 0.226 0.944 0.514 0.771 0.961 0.923 1.000

a. Determinant = 1.87E-024
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monitor two areas for assessment of water quality 
and pollution. 

The Lasso Discriminant Analysis that tests 
the CA capability in clustering the sampling 
sites, identified EC, Cl-, TH, K+, Na+, Mg2+, Ca2+, 
cations, and SO4

2- as the most important parameters 
discriminating between two clusters. Generally, the 
total accuracy of the LDA method in the prediction 
of included wells in designated clusters was 
92.8%. A similar result was reported by Matiatos 
et al. (2014) in the multivariate statistical analysis 
of the hydrogeochemical and isotopic composition 
of the groundwater resources in northeastern 
Peloponnesus (Greece). Therefore, LDA is a 
technique, which can verify the classification into 
predetermined groups.

Identification of the root of each water quality 
variable using the principal component analysis 
method resulted in two varimax factors (VFs) 
accounting for 95.93% of the total variance in 
the data set. According to high loadings for TH, 
Ca2+, and Mg2+ in PC1, the first factor would be 
hardness. Also, based on the high loadings for Cl-, 
SAR, and Na+ in PC2, the second factor would 
be salinity. Bencer et al. (2016) suggested that 
when these parameters are accumulated in one 
factor, it reflects the impact of natural factors 
like the dissolution of carbonate and dolomitic. 
The evaluation of the correlation matrix between 
the factors revealed that: Positive correlation of 
Cl- with Na+ and Mg2+ indicates the dominance 
of these soluble salts in these samples. A strong 
correlation between Cl− and Na+ (r = 0.90) ions 
showed that the existence of Na+ ions in water 
is due to the dissolution of halite by water 
(Yidana, 2010). However, Na+ and Cl− ions in the 
groundwater can originate from several sources. 
The high positive correlation of EC with ions of 
K+, Mg2+, and SO4

2− showed the high mobility of 
ions. Moreover, the strong correlation between 
EC and TH (r = 0.97) and cations (r = 0.998) 
can be due to ions in TH and especially cations 
that conduct electricity. The strong correlation 
between Mg2+ and Cl− (r = 0.91) can be as a result 
of domestic wastewater entering groundwater in 
this area since municipal wastes of salts and soaps 
contain MgCl2. The strong correlation of SO4

2− 
and Ca2+ is indicative of the existence of gypsum 
in the groundwater that is related to the formations 
of the plain. The dominant formations in the plain 

are Bakhtiari and Aghajari, which are Zagros 
geological formations. The Bakhtiari formation 
features alluvial and foothill sediments derived 
from altitude erosion, including conglomerates 
and calcareous sandstones. Aghajari formation is 
composed of brown-grey limestone sandstones, 
gypsum veins, red marl, and siltstone. Also, a 
strong correlation of TH with K+, Ca2+, and SO4

2− 
is a demonstrator of the permanent hardness of the 
water. The strong and positive correlation between 
ions of K+ and SO4

2− (r = 0.94) may result from the 
application of chemical fertilizers in agricultural 
activities in the study area.

These results are consistent with the ones 
reported by several other studies. Mozafarizadeh  
and Sajadi (2013) studied the reasons for high 
salinity and intrusion of saltwater of Dalaki and 
Helleh rivers into Borazjan aquifer, southern 
Iran. Also, the results of Dehghani et al. (2015) 
indicated that overexploitation, dissolution of 
dolomite, and gypsum deposits are some of the 
main causes of high salinity (TDS above 1 000 
mg/L) of groundwater for the Seyed Gholi Region, 
Saveh, Iran. Noshadi and Ghafourian (2016) 
showed that three major variables influencing the 
quality of groundwater in Fars Province within a 
10-year period were salinity, weathering of silicate 
minerals, and improper disposal of domestic wastes 
or the use of chemical fertilizers in agriculture. 
Finally, the results of this research can be attributed 
to the type of geological formations in the study 
area as well as the agricultural and domestic 
wastewaters entering groundwater.
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