冀西北晚侏罗世火山-沉积盆地 的性质及构造环境

邵济安¹², 孟庆任², 魏海泉³, 张履桥⁴, 王佩瑛¹

(1. 北京大学地球与空间科学研究院,北京 100871; 2.中国科学院地质与地球物理研究所,北京 100029;3.中国地震局地质研究所,北京 100029; 4.内蒙古自治区矿产实验研究所,内蒙古 呼和浩特 010020)

摘要:冀西北晚侏罗世髫髻山组和后城组火山岩的岩石学-地球化学分析结果揭示,晚侏罗世的火山岩主要为 来自富集地幔的钾玄岩系列和部分壳源高钾酸性岩石组合。通过对髫髻山组之上的后城组的地层层序和沉积构 造研究,认为这套河-湖相沉积形成在伸展背景下的断陷盆地之中,下部由粗粒冲积扇和辫状河体系组成,上部 则为河湖相沉积物,并出现火山岩夹层,从而在总体上表现为一个向上变细的沉积层序。髫髻山组到后城组的层 序反映出从断陷盆地到坳陷盆地的发展过程。此外,后城组形成后所发生的区域性挤压作用导致了这期伸展盆 地的反转。

关键词: 冀西北;晚侏罗世;断陷盆地; 钾玄岩系列; 伸展构造 中图分类号: P53; P534.52 文献标识码: A 文章编号: 1671-2552(2003)12-0751-11

中新元古代燕辽沉降带在长达900 Ma中所形成 的沉积地层最大厚度不超过10000m,而燕山地区在 中生代100 Ma中所产生的火山-沉积却远大于 10000 m^[1],显见中生代燕山地区经历了强烈的构造 沉降。古生代地层在燕山地区变形和变质程度较 弱,巨厚的中—新元古界地层产状平缓,在部分地 区表现出大型的箱状褶皱。如此之厚的中生代火 山-沉积地层是在什么构造背景下形成的?从20世 纪20年代起,这一引人注目的现象就已经为中国地 质学家所关注,先后采用"燕山运动"²¹、"台褶带"³¹、 "断块构造 "[4]、"地台活化 "[5]等学术观点 ,从不同侧 面对燕山地区中生代构造的特殊性进行了分析。在 燕山地区中生代地层分布最广的应属髫髻山组和 后城组,前者以火山岩为主,后者以碎屑岩为主。因 此对它们形成的构造环境的研究对了解燕山地区 中生代演化的过程至关重要。

1 髫髻山断陷盆地的形成

叶良辅等^[6]1920年命名的" 髫髻山系"出于北京 门头沟髫髻山西北坡的刘公沟,当时依据Nilssonia 等植物化石及与下伏地层九龙山组的不整合关系, 将其时代定为晚侏罗世。髫髻山组出露范围比后城 组大,在太行山涞源县和易县以及冀东青龙县和抚 宁县都有出露,厚度为291~3731 m。灰紫色溢流相中 性熔岩和近火口相火山碎屑岩是髫髻山组的主体, 间夹紫红和灰绿色的河流沉积物,底部存在一套火 山泥石流相和喷发沉积相。

1991年中国地质大学出版了北京西山大台幅 1:5万地质图和区域地质调查报告[®]。在此基础上,笔 者对大台—娘娘庙—木城涧和下韦店—青白口一带 做了一些路线地质调查,结合前人资料,得到如下几 点认识:①髫髻山组地层上叠在印支期所形成的北

基金项目:国家自然科学基金项目(40072073)和中国科学院知识创新工程重大项目(KZCX1-07)研究成果。 作者简介:邵济安(1940-),女,教授,博士生导师,从事大地构造研究。E-mail wangcc@mail.tsinghua.edu.cn ❶ 北京市地质矿产局,中国地质大学(北京),大台幅区域地质调查报告(1:50000),1990.

收稿日期 2003-05-31 ;修订日期 2003-10-12

东东走向的断陷盆地之上 断陷盆地南北两侧是基 底降起带 降起带中反映断陷盆地伸展的滑动构造 发育。②髫髻山组与下伏的下、中侏罗统地层为角 度不整合接触,不整合面起伏大。③髫髻山向斜是 一个典型的箱状向斜,向斜西南的转折端呈方形 (图1),而且是南翼陡(倾角45°~55°),北翼缓(10°~ 20° 的不对称向斜。煤田勘探揭示, 髫髻山组地层 弯曲幅度随深度增加而递减,最终消失在南大岭 的顶界面上[7] 剖面上也显现为箱状向斜。④在向 斜的南翼和转折端,在九龙山组上部平行髫髻山 箱状向斜发育了一条灰绿色的闪长玢岩脉或岩 床,连续出露4.5~5 km,大台煤矿以北的闪长玢岩宽 达200 m(图1)。盆地形态和同期的闪长玢岩脉本身 就说明了岩浆喷发和侵位的伸展构造背景。这一点 与高德臻等17的结论是一致的:下伏向斜形成后,处 于拉张状态,该状态导致了髫髻山组火山的间歇喷 溢与猛烈爆发 形成厚度大于1000m的火山岩。

2 髫髻山组和后城组火山岩组分特征

为方便起见,将髫髻山组和后城组火山岩放 在一起分析。髫髻山组火山岩在早期研究中被认 为是一套钙碱性安山质岩石^[1]。为确定髫髻山组 和后城组的形成环境,本次研究又进一步对这2个 组中的火山岩进行了岩石-地球化学分析。 髫髻 山组火山岩主要取自蔚县草沟堡、宣化孙家庄,后 城组火山岩采集于宣化庞家房背坡村西和怀柔县 长哨营。

2.1 岩石学特征

将本文的14个样品的全岩化学分析结果(表1) 和鲍亦冈等在门头沟、昌平、密云、延庆等地所获得 的20个数据[8]以及大台幅髫髻山组的16个火山岩数 据中H₂O和CO₂除去后,重新计算各氧化物的百分 含量。根据CIPW标准矿物(表1)的Ne-Ol-Hy-Q分 类^[9],本区后城组和髫髻山组的玄武岩Hy>3,均为 亚碱性玄武岩系列,进一步划分,除了庞家房5号样 品为橄榄拉斑玄武岩外,大部分是石英拉斑玄武岩。 TAS图解(图2)显示, 髫髻山组和后城组的火山岩主 要是一套粗面质岩石,以粗面安山岩为主,部分玄 武质粗面安山岩和粗面岩,还有少量粗面玄武岩 和高钾流纹岩。硅-钾图的分析结果(图3左)也显 示髫髻山组和后城组火山岩主要定名为安粗岩、 部分为钾玄岩(橄榄安粗岩)和钾玄质玄武岩。这 套高钾类型的岩石通常被看做是钾玄岩系列,此 外还伴有较多的粗面岩、高钾安山岩和高钾流纹 岩。该岩石组合已不同于钙碱性系列,与Joplin^[10]、 Morrison^[11]定义的钾玄岩一致。如按Morrison^[11]划分

	Table 1 Chemical analyses for volcanic rocks of the Tiaojishan and Houcheng Formations													
			后	城	组							い 「「」	组	
样号	1	2	4	5	8 – 1	8 – 2	9	27	\mathbf{J}_{t1}	J_{t2}	$J_{\scriptscriptstyle {\cal B}}$	\mathbf{D}_{j1}	D_{j2}	D_{j5}
岩性	粗面岩	英安岩	玄武岩	玄武岩	玄武岩	玄武岩	玄武岩	玄武岩	安山岩	粗面岩	粗安岩	粗安岩	玄武岩	石英粗面岩
产地	庞家房	庞家房	庞家房	庞家房	庞家房	庞家房	庞家房	长哨营	草沟堡	草沟堡	草沟堡	孙家庄	孙家庄	孙家庄
SiO_2	61.80	69.73	46.50	49.85	49.34	49.38	49.23	48.24	60.60	61.94	60.55	59.05	48.58	64.54
${\rm TiO}_2$	0.96	0.46	3.19	2.92	3.15	3.11	2.94	1.59	0.55	0.60	0.60	0.74	1.94	0.89
$\mathrm{Al}_2\mathrm{O}_3$	14.81	12.26	14.95	14.17	14.81	14.79	14.5	16.44	19.13	17.81	18.37	17.23	16.62	14.29
FeO	1.24	0.36	0.47	0.57	3.78	5.76	4.76	5.19	0.69	0.64	0.78	1.24	3.28	2.26
$\mathrm{Fe}_{2}\mathrm{O}_{3}$	5.40	4.09	13.35	12.4	7.86	6.04	7.21	5.65	2.76	3.11	3.14	4.88	7.15	3.99
MnO	0.19	0.03	0.16	0.13	0.18	0.19	0.21	0.14	0.05	0.05	0.04	0.07	0.08	0.16
CaO	1.68	2.27	7.86	4.71	6.51	6.5	6.51	3.43	5.31	4.45	4.91	1.66	6.35	1.62
MgO	1.15	0.73	1.85	4.57	3.51	3.7	3.77	3.43	1.03	0.87	1.02	2.01	4.75	0.61
K_2O	5.67	3.51	1.10	2.58	2.25	2.19	2.18	1.07	3.49	3.79	3.53	4.88	2.56	5.97
Na ₂ O	4.24	2.60	3.44	4.57	4.42	4.48	3.37	3.24	3.88	3.71	3.75	5.30	3.35	3.71
P_2O_5	0.32	0.23	1.15	0.55	0.83	0.72	1.31	0.30	0.25	0.19	0.22	0.28	0.93	0.26
烧失量	2.17	3.34	4.30	3.23	3.47	3.26	3.52	6.13	2.15	2.54	2.70	2.72	4.13	1.52
总计	99.63	99.61	99.32	100.3	99.75	100.1	99.52	99.73	99.89	99.70	99.61	100.1	99.72	99.82
q	5.42	33.34	6.14	0	1.58	3.30	7.67	18.15	14.68	16.25	15.33	1.31	8.41	10.88
hy	11.64	12.63	41.2	8.69	23.44	18.32	21.94	14.15	17.30	15.82	16.96	11.28	25.14	8.43
di	1.02	0	0	4.74	0	0	0	0	0	0	0	0	0	0.07
ol	0	0	0	14.34	0	0	0	0	0	0	0	0	0.43	0
ne	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ap	0.72	0.52	2.67	1.24	1.88	1.62	2.98	0.74	0.56	0.43	0.50	0.63	2.13	0.58
il	1.87	0.91	6.44	5.72	6.19	6.10	5.82	3.39	1.07	1.17	1.76	1.44	3.86	1.72

表1 髫髻山组和后城组火山岩的化学分析结果

注:数据由中国科学院地质与地球物理研究所X荧光光谱实验室分析 %

的钙碱性与钾玄岩系的界线,则投点绝大部分落入 钾玄岩系列(图3右),以较高的钾含量区别于钙碱性 系列。从TAS图解中投点的集中程度看,与参考文献 [12]用85个数据投点的范围十分一致。表明取自不 同地点(包括髫髻山组建组剖面在内)的数据是有 代表性的。文献[12]结合北京髫髻山组,对钾玄岩组 合在化学成分上既相似又区别于碱性系列和钙碱 性系列的重要特征作了详细讨论,本文不再赘述。

庞家房后城组的玄武岩中多见玻璃体,它们分 布在细小的矿物间隙中,表现为全消光,呈褐色,无 定形。玻璃体的SiO₂,K₂O和Na₂O含量低,FeO和 MgO含量高,富含挥发分,其成分大体相当于斜铁 辉石。它们填隙在辉石和斜长石等矿物之间,表明 快速上升的原始岩浆来不及结晶,在骤冷环境下形 成了非晶态结构的玄武质玻璃。玄武岩中常见钛铁 矿(表2),基质中的辉石以普通辉石和易变辉石为 主,含少量斜铁辉石。

2.2 元素地球化学特征

髫髻山组和后城组火山岩稀土配分型式基本

一致,无Eu异常,LREE富集型,只是后城组玄武岩的配分曲线略平缓些(图4)。这些特征说明髫髻山组和后城组火山岩在成因上具相关性,基性和中酸性岩不存在衍生关系,不存在斜长石的分离结晶作用,

Fig. 2 TAS diagram

1、2分别为本文和参考文献 8 的后城组火山岩 3、4分别为本文和 参考文献 8 的髫髻山组火山岩 5为1:5万大台幅髫髻山组火山岩

图3 SiO₂-K₂O图^[14]

Fig. 3 SiO₂-K₂O diagram

左图据文献 14], 钾玄质玄武岩、钾玄岩和安粗岩被通称为钾玄岩系列;

右图界线据参考文献[11]。圆点为髫髻山组,十字为后城组

表 2 后城组玄武岩中玻璃与矿物成分的电子探针分析结果 Table 2 Microprobe analysis of the glass and mineral composition in basalts of the Houcheng Formation

矿物	样号	SiO_2	${ m TiO}_2$	$\mathrm{Al}_2\mathrm{O}_3$	FeO	MnO	CaO	MgO	K_2O	Na ₂ O	总计
	5 - 5	45.10	0.02	6.80	23.32	0.04	1.95	13.81	0.09	0.04	91.17
玄武质	8 – 6	40.55	0.00	5.31	22.32	0.00	2.75	12.19	0.30	0.08	83.5
玻璃	8 - 8	47.14	0.04	3.69	25.65	0.10	2.54	6.32	0.30	0.00	85.78
	8 – 16	47.04	0.00	3.59	27.20	0.24	1.96	7.97	0.10	0.02	88.12
存+ 存 4 Σ广	5 – 4	0.06	50.71	0.12	45.10	0.53	0.10	1.86	0.00	0.00	98.48
ta ta w	8 – 7	0.04	49.31	0.07	48.03	0.52	0.06	0.70	0.05	0.04	98.82
单斜辉石	5 - 8	51.98	1.18	1.62	11.04	0.32	19.68	14.48	0.04	0.45	98.50
斜方辉石	5 – 9	50.80	0.32	0.20	30.40	0.77	3.68	14.42	0.00	0.12	100.7
单斜辉石	8 – 3	51.75	0.73	0.94	13.93	0.50	19.69	12.14	0.07	0.49	100.2
斜方辉石	8 – 1	50.89	0.26	0.22	32.66	0.77	1.76	14.12	0.03	0.08	100.8
单斜辉石	8 – 12	51.02	1.37	1.98	12.03	0.32	19.75	13.55	0.04	0.44	100.5
斜方辉石	8 - 13	50.29	0.43	0.16	33.79	0.78	2.95	12.13	0.02	0.05	100.6

注:数据由北京大学电子探针实验室测定 %

它们与源区的部分熔融有关。K、Rb、Sr、Ba等元素富 集程度较高(表3)。 髫髻山组火山岩的^{sy}Sr/^{ss}Sr初始 值为0.7068^[1]。

2.3 关于火山岩岩浆来源的讨论

根据前述火山岩组分特征,可知后城组玄武岩 来源于上地幔。后城组和髫髻山组中基性火山岩是 一套钾玄岩系火山岩,钾玄岩系列是一种独立的幔 源岩浆类型^[15,16]。对于髫髻山组火山岩富K₂O、LREE 和不相容元素的原因,廖群安^{[17}等作了详细的讨论, 认为它们起源于交代富集后的上地幔;而高钾流纹 岩或粗面英安岩是壳源岩浆与钾玄岩系列原生岩 浆不同程度混合的结果。笔者认为这一解释比较符 合本文数据测试的结果。 前人关于髫髻山组火山岩的岩浆来源还有以下 几种不同的看法。①根据在La/Sm-La图解中火山岩 投影点都落在部分熔融线附近,认为岩浆起源于上地 幔的部分熔融。②根据⁸⁷Sr/⁸⁶Sr比值,认为火山岩具有 壳幔混合源区的特征^[18]。③壳幔混源岩浆起源于壳幔 边界或起源于地壳,但产生部分熔融的地壳物质是由 地幔物质演变而来的^[8]。不论这些观点有何差异,有 一点是共同的,即岩浆来源深,与壳幔相互作用有关。

在上述分析的基础上,笔者尝试采用Th/Hf-Ta/Hf判别图来讨论后城组玄武岩类岩石所反映的 大地构造环境,因为Th、Hf、Ta都是强不相容元素, 其亲岩浆性变化是同步的,Th/Hf和Ta/Hf比值在地 幔部分熔融过程中只有很小的变化。汪云亮等^{[19}统

计了世界各地10000余组已知不同构造背景下玄武 岩的Ta/Hf和Th/Hf比值,归纳出一些构造环境的判 别标志,建立了典型大地构造环境判别图。后城组 玄武岩的投点均落入大陆拉张带(或初始裂谷)区 域内(图5),根据判别标志给出的构造环境是一个可 供参考的间接证据。

3 后城组的时空分布

位于髫髻山组之上和白旗组之下的后城组是

图5 玄武岩类大地构造环境的Th/Hf-Ta/Hf判别图^[19]
Fig. 5 Th/Hf-Ta/Hf discrimination diagram of the tectonic setting of basalts
I—大洋板块发散边缘N-MORB区 1I—板块汇聚边缘(II,—大洋岛弧玄武岩区 1I2—陆缘岛弧及陆缘火山弧
玄武岩区)1II—大洋板内洋岛、海山玄武岩区及T-MORB、
E-MORB区 1V大陆板内(IV,—陆内裂谷及陆缘裂谷拉斑
玄武岩区 1V2—陆内裂谷碱性玄武岩区 1V3—大陆拉张带 或初始裂谷 这武岩区 /V-地幔热柱玄武岩区

1959年命名的,建组地点在河北省赤城县后城附近。 该组以碎屑岩为主,层位稳定,其岩性明显区别于以 火山岩为主的髫髻山组和白旗组,因此在燕山地区 中生界研究中往往作为标志层。前人研究常把后城 组置于燕山构造演化的中期阶段,作为受逆冲构造 控制的山间槽地或山前拗陷的产物^[20]。笔者认为,后

表 3 髫髻山组和后城组火山岩的微量元素丰度 Table 3 Trace element contents of volcanic rocks of the Houcheng and Tiaojishan Formations

样品	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Rb	Sr	Ba	Th	Та	Hf
1	49.77	103.3	11.80	44.50	8.91	3.03	7.85	1.223	6.68	1.40	4.11	0.59	3.83	0.74	94.3	43.3	402.8	7.75	1.10	7.68
2	39.14	77.84	8.55	31.63	6.02	1.27	5.22	0.797	4.53	0.87	2.43	0.36	2.43	0.41	73.2	369.5	672.0	10.46	1.12	5.00
4	48.24	106.7	129.1	52.51	10.95	4.25	10.28	1.59	8.09	1.65	4.51	0.64	3.58	0.67	22.1	480.3	1425	4.60	0.96	6.20
9	49.79	110.6	138.3	55.85	12.08	4.43	11.59	1.62	8.93	1.74	4.78	0.69	3.72	0.71	43.4	453.5	1349	4.44	0.91	6.20
27	84.38	174.5	20.01	76.22	12.70	3.58	9.796	1.18	5.11	0.97	2.50	0.32	1.88	0.32	13.7	982.2	1058	3.71	0.92	7.88
J_{t1}	45.80	93.97	11.12	41.43	6.65	1.56	4.50	0.72	3.69	0.68	1.89	0.26	1.75	0.28	122.9	876.5	1078	13.67	0.75	6.27
J_{t2}	46.22	94.79	11.17	41.28	6.57	1.44	4.49	0.72	3.76	0.70	1.96	0.29	1.86	0.30	133.2	747.6	1151	15.14	0.85	6.93
$J_{\mathfrak{B}}$	45.29	92.98	10.88	40.37	6.48	1.46	4.37	0.68	3.54	0.66	1.87	0.27	1.73	0.28	119.9	758.6	1151	14.14	0.83	6.58
D_{j1}	35.19	71.28	8.69	32.66	5.40	1.38	3.71	0.60	3.09	0.58	1.60	0.23	1.51	0.24	79.41	565.5	1273	6.62	0.86	3.76
D_{j2}	61.68	131.7	16.83	67.92	11.26	2.88	8.47	1.27	6.53	1.21	3.23	0.45	2.85	0.44	43.7	722.9	1594	3.50	1.07	7.32
D_{j5}	53.08	110.1	13.65	54.09	9.23	2.85	8.17	1.37	7.72	1.51	4.26	0.64	4.12	0.67	95.8	98.52	623.5	8.27	1.10	8.44

注:数据由中国科学院广州地球化学研究所测定,10-6

城组形成于受伸展构造控制的、多个分散的断陷盆 地中。

3.1 分布

河北省的后城组相当于辽西的土城子组。后城 组主体分布在燕山的基底隆起带的北西侧和北侧, 最北到北纬41°的尚义—平泉一线,最南到太行山北 段的蔚县。从蔚县东南草沟堡、北水泉,宣化县的深 井镇、罗家洼、崞村镇、庞家房至西家屯,沿着北东 走向的太行山断续出露。在宣化县的响水堡—下花 园一带后城组分布于从北东向向东西走向转折的 逆冲断层的西北侧和北侧(图6)。在赤城的东兴堡、 后城,延庆的千家店、花盆乡等地继续出露,地层走 向北东东(50°~70°)。再向东,分布在凤坨梁—汤河 口—长哨营及古北口—新城子一带,东段在遵化马 兰峪隆起北侧的下板城—承德一带大面积出露,大 多分布在断陷盆地中。地层以北东70°走向为主,总 厚160~4425 m, 假整合于髫髻山组之上, 或超覆于 中—新元古界之上^[1]。 3.2 时代

后城组中含介形虫、叶肢介、瓣鳃类、爬行类和 植物等多门类化石,例如蔚县地区的昆虫化石,宣化 堰家沟的聂氏宣化龙化石,后城附近的古鳕鱼科的 鱼类化石和裸子植物的孢粉化石,延庆花盆乡的双 壳类、叶肢介、昆虫以及大量植物化石,延庆千家店 "硅化木公园"的硅化木。与国内及欧洲的化石组合 对比,上述动植物群的时代面貌为晚侏罗世或晚侏 罗世早期^[21-23]。

为了解后城组的年代,本次研究对宣化庞家 房一带后城组上部的玄武岩进行K-Ar稀释法同位 素定年,其年龄为144.7 Ma±2.8 Ma(表4),与花盆乡 后城组粗安岩年龄144.6 Ma^[21]基本一致,该年龄是 1990年核工业部三所采用锆石U-Pb法测试的。联 系到后文提到的髫髻山组安山岩147.6 Ma的Ar-Ar 年龄以及上覆张家口组139.2 Ma~138 Ma±13 Ma的 Rb-Sr等时线年龄^[24],认为后城组145 Ma的年龄是 可信的。综合后城组动植物化石时代和火山岩同

Fig. 6 Geological sketch map of the Xuanhua area
 Q—第四纪 j₃h—后城组 j₃t—髫髻山组 j₁x—下花园组 Pt₂₋₃—中-新元古界;
 1—火山熔岩 2—逆冲断层 3—正断层 4—滑覆体 5—不整合面

表 4 后城组玄武岩的 K – Ar 同位素年龄 Table 4 K – Ar ages of basalts of the Houcheng Formation

样品编号	$^{40}\mathrm{Ar_{rad}}$ /%	⁴⁰ Ar _{rad} /%(克分子克)	K/%	表面年龄(±1σ,Ma)
8	94.19	4.937E – 10	1.89	144.7 ± 2.8

注:中国地震局地质研究所K-Ar年龄实验室李大明分析

位素年龄,将后城组的时代定为晚侏罗世。

4 后城组组成及沉积作用特征

后城组以陆相碎屑岩为主,含有少量火山熔岩 或火山碎屑岩,横向厚度变化大(55~4425m)。同时 相变也是十分明显的,承德地区以砾岩等粗碎屑岩 为主,冀西的碎屑岩粒度相对比较细。本文以冀西 北宣化、赤城、延庆等地区的研究为主。

后城组的沉积序列可大致划分为3段。下段以粗 碎屑岩为主,主要为中、粗砾岩,夹含砾粗砂岩和少 量粉砂岩。这套粗碎屑岩分布偏南,主要在中新元 古界隆起北侧宣化、承德一带。宣化县深井镇良马 台东沟的砾岩出露厚度大于100m,为灰白或紫红 色砾岩,砂质胶结,砾石大小一般为5~10 cm,大者 达20~30 cm,略有磨圆,定向排列。砾岩的砾石成分 单一 80%以下伏蓟县系白云岩为主。砾岩中夹少量 灰绿色的安山岩。在宣化响水铺压在低角度推覆断 层之下的后城组砾岩成分非常复杂,有燧石条带白 云岩的砾石和岩块(巨大岩块达70 cm×30 cm),有下 花园组(J₁x)的黑色砂岩岩块和髫髻山组(J₂t)的火山 岩砾石 远离断层砾石减少 粒度变细。承德地区后 城组的下部砾岩发育、厚度可达708m。砾岩层主要 为厚层—块状,基质或颗粒支撑,底面平整,不具侵 蚀性 表现出典型的碎屑流沉积过程。砾岩层内部 发育不同规模的交错层和砂岩透镜体。后城组下段 粗粒沉积岩相和相组合特征总体反映冲积扇和辫 状河沉积过程,沉积组合的垂向变化也进一步指示 当时沉积环境经历了由下部冲积扇向上发展为辫 状河流的演变过程。

中段是后城组的主体,以紫红色、灰绿色砂岩、 粉砂岩、页岩为主,少量含砾粗砂岩和火山岩。砂岩 与粉砂岩和泥岩在整个层序中可形成不同厚度的 亚层序。地层韵律频繁变化为该组地层的特点之 一。以赤城县东兴堡乡沿公路出露的一段500m长的 短剖面为例,在新的1:5万地质图中东兴堡仍保留为

后城组地层。该剖面由一套砾岩、砂岩、粉砂岩和泥 岩组成 形成明显的韵律性层序。砂岩和细砾岩为中 厚层状,有些粗大的、无分选的砾岩在层序中多为不 同规模的透镜体 底部有明显的冲刷槽 砾石成分为 太古宇片麻岩和元古宇白云岩。整个层序呈向上粒 度变细的趋势 最上部以灰黄色的砂岩、粉砂岩和灰 绿色的泥岩为主。局部见砂岩中的交错层。上部细碎 屑岩在延庆县千家店硅化木地质公园以及兴隆县鹰 手营子出露得较为完整。千家店下德龙湾剖面主要 由3部分组成:下部为粗砂岩,在底部发育一层3m厚 的砾岩,产状270°∠30°,西侧受断层控制,东侧不整 合超覆在蓟县系之上,总厚47m;中部由互层状的砂 岩和页岩组成 厚92 m;上部为粉砂岩和黑色炭质页 岩互层 ,局部夹煤线 ,总厚50 m(图7)。在延庆县花盆 乡和宣化县崞村、堰家沟还发育了薄煤层及石膏层。 密云县前石火岭一带,后城组中的煤层呈鸡窝状,厚 约3.2 m,可供小煤窑开采[21]。此外,在怀柔县长哨营 榆树沟以及鹰手营子一带还出现砂质灰岩和泥灰岩 (图7)。

萧宗正等^[2] 在《北京中生代地层及生物群》一书 中,结合动植物化石研究,对后城组作了深入的研 究。根据笔者面上调查的认识,萧宗正等在延庆花盆 乡测的后城组剖面(图7)的二、三段相当于上文提到 的后城组中段。二段主要由含砾的粗砂岩、细砂岩、 粉砂岩、页岩组成,按着粒度变化大体可以划分为7 个韵律层。下部的黑色薄层页岩含叶肢介、昆虫及植 物化石,灰绿色薄层粉砂岩中含双壳类化石,杂色薄 层凝灰质细砂岩中含硅化木化石。三段为火山碎屑 岩夹正常沉积的砂岩,其中有一15 m厚的含气孔粗 安岩夹层。

中段的沉积岩相组合特征指示它们是一套河流 和湖泊沉积物,沉积环境可进一步划分为河流相、泥 炭沼泽相及浅湖相。其中以河流相为主,河流相的韵 律层中砾石具叠瓦状构造,为河流滞留相产物;砂岩 呈扁豆状产出,含岩屑,矿物成熟度较低;泥岩层理

Fig. 7 Stratigraphic columns of the Houcheng Formation

不发育,含少量菱铁矿结核。总体上显示了河−湖-沼泽相交替出现的沉积环境^[21]。

上段以出现火山熔岩和火山角砾岩为特征,间 夹细砾岩、砂岩、粉砂岩,局部夹薄煤层。例如,在宣 化堰家沟一带出现大量变成膨润土的酸性凝灰岩, 蔚县北水泉、宣化崞村和赤城水厂发育玄武岩和流 纹岩,怀柔长哨营出现辉石粗安岩,延庆花盆后城 组剖面上部第四段为层状火山碎屑岩,厚190m,未 见顶。值得提及的是,在1:20万天镇幅地质图中可以 看到,在西家屯—庞家房—崞村一带有一面积约100 km²侵入后城组和震旦系的辉绿岩床。笔者在庞家 房背坡村西调查发现,这是产状平缓(130°∠15°~ 20°)的玄武岩层,其上部是一套中酸性火山岩。这套 火山岩的总厚度大于60m,从上到下依次出现.①黄 绿色具大气孔(直径1 cm左右)的粗安岩,②灰色含 少量气孔的英安岩 (③中酸性火山角砾岩 (④由紫红 色玄武岩组成的自碎岩流集块岩或岩流角砾岩 ,岩 流表面粗糙 ,呈疙瘩状 "角砾 "直径2~4 cm (⑤灰紫 色气孔发育的玄武岩 ; ⑥黑色致密含少量气孔的玄 武岩 ,⑦黄绿色含细小杏仁体玄武岩 ,⑧黑色枕状玄 武岩。玄武岩的出露厚度约20m ,该剖面未见底 ,被 第四系覆盖(据1:20万地质图 ,在该剖面西400 m处 可见到下伏的后城组沉积岩系)。上述火山岩剖面的 前3层为一套中酸性火山岩 ,后5层为玄武质熔岩流。

第⑧层黑色枕状玄武岩,枕体彼此叠置,大多呈 椭圆形,长轴10~30 cm。岩枕边部一般有2~5 mm宽 的冷凝边,可见棕色火山玻璃,局部脱玻化,发育球 颗结构,由斜长石组成的放射状集合体。岩枕中心呈 显晶质,具辉绿结构。枕状构造从边部向中心的岩石 化学组分变化显示了典型的水岩反应特点[11],岩枕 边部(样品8-1)相对岩枕中心(样品8-2)具有较低的Na₂O、SiO₂含量和较高的K₂O、Fe₂O₃、TiO₂含量(表1)。尽管选取的岩枕样品直径仅有6 cm,探针分析的结果(表5)也反映出斜长石成分具有相应的变化规律,例如,从5号和8号2块岩枕切片的边部向中心各取3颗斜长石进行分析,结果显示SiO₂和Na₂O递次降低,CaO和Al₂O₃递次升高,以及长石牌号不断增高的变化趋势。

庞家房一带的玄武岩与上覆的中酸性熔岩产 状一致,倾角平缓,在地貌上共同组成出露面积达 70 km²,总厚度大于60 m的熔岩台地。玄武岩层明显 的"红顶"现象表明基性和酸性熔岩之间存在喷发 间断,不存在侵入接触关系,玄武岩是溢流玄武岩, 存在枕状构造,而非辉绿岩岩床。熔岩的基性—中 酸性岩石组合也不同于新生代火山岩。玄武岩的确 认对讨论后城组形成的构造环境非常重要。

从后城组的空间分布来看,它们大多分布在基 底隆起前缘的断陷盆地中(图6)。这些盆地往往是孤 立的、分散的,沉积地层经常不见顶。后城组下段砾 岩的砾石大多与隆起带的岩石组成有关,具有河流 冲积扇的组成特征,后期往往被基底隆起向北或北 西的推覆体所覆盖。总体来看,远离基底隆起的粒 度相对变细,宣化县罗家洼剖面(从良马台经堰家 沟、水泉到庞家房)的后城组剖面基本上反映了上、 中、下3段的岩性变化(图7)。这种变化也反映在沉积 层序的垂向变化上,当时沉积环境经历了由下部河 流冲积扇向中段河流—湖泊体系的演变。河湖相地 层(例如延庆千家店等地区的后城组)明显地侧向 超覆在元古宙基底之上,反映当时水体不断地扩 大。上段河流相砂砾岩沉积的同时火山活动增强。 由于晚侏罗世地壳的差异活动,各地的后城组岩性 和厚度变化比较大,大体上可以进行对比。不排除

处于盆地不同部位的剖面存在某些粒序上的差异, 为此本文在大范围内选取了7个地层柱状剖面(大部 分是区调报告中所附的代表性剖面 (图7)。

后城组是一个构造活跃的热演化时期的产物, 显示出4个重要特征:①以河—湖相沉积作用为主; ②生物不但门类繁多,而且更新快;③从下段到中 段,碎屑岩粒度逐渐变细,中段细碎屑岩存在超覆现 象,④后期火山活动和沉积物粒度又相对变粗,意味 着地壳相对平静的状态结束,再次活动。

5 髫髻山组和后城组形成环境讨论

髫髻山组和后城组呈假整合接触关系。据Davis 等珍在兴隆黄土梁髫髻山组地层中采集的安山岩样 品 ,其⁴⁰Ar/³⁹Ar年龄为147.6 Ma±1.6 Ma。以火山活动 为主的髫髻山组夹有碎屑岩沉积,而以沉积岩为主 的后城组也发育有火山岩组合。火山岩的岩石-地 球化学分析结果也进一步显示2个组中火山岩的岩 浆具有相似性。这些特点反映这2个组的形成和发育 是处于同一区域构造背景之中,或在成因上密切相 关。对髫髻山组和后城组火山岩来源分析的结果表 明 岩浆源于深部 火山岩的喷溢应是在岩石圈伸展 背景下发生的,与深断裂活动有关。有人曾结合北京 地区髫髻山组的研究指出:晚侏罗世时期大量钾玄 质幔源岩浆作用应代表地幔上隆导致的张性环境, 可能正是这种地幔上隆导致了该地区的断陷[11]。火 山岩首先堆积在断陷盆地中,随后发生后城组粗碎 屑沉积物的充填。

据魏海泉负责的1:5万大台幅岩相学研究结果, 髫髻山组可分为3段 J、II段均为河流冲积相为主的 复成分砾岩或砂砾岩 JII段为火山岩。按其成因II段 可进一步分为火山泥石流相和喷发沉积相。前者以 安山质砾石砾岩、卵石砾岩为主,层厚15~40m不

表 5 后城组枕状构造中斜长石电子探针分析结果 Table 5 Microprobe analysis of plagioclase in pillow structure in the Houcheng Formation

样号	测点部位	SiO_2	Al_2O_3	CaO	Na ₂ O	斜长石牌号
	边部(5-1)	58.2	26.36	8.29	6.31	59
5	过渡带(5-7)	56.16	27.43	9.59	5.73	65
	中心(5-10)	55.48	27.68	10.36	5.30	68
	边部(8-5)	57.05	26.36	8.62	5.87	62
8	过渡带(8-10)	56.06	26.85	9.94	5.61	66
	中心(8-14)	55.28	28.09	10.17	5.29	68

759

注:数据由北京大学电子探针实验室测定,氧化物含量 %

等。砾石大小相差悬殊,最大者大于30cm,呈次滚 圆状,长宽比1~2,排列无明显定向性。粒度小者常 呈次棱角状,长宽比近于1,充填在大粒度砾石之间, 起支撑、充填作用。松散胶结,胶结物为泥质、钙质。 上述典型的火山泥石流相堆积特征反映髫髻山组 早期断陷盆地边缘处于十分不稳定的差异升降状态,预示着即将爆发大规模的火山活动。

后城组底部砾岩的堆积反映沉积早期以强烈 断陷为特征,冲积扇和辫状河流沉积体系正是在这 种构造环境下形成的,而非挤压构造环境下的前陆 盆地沉积。断陷盆地边缘的隆升部分成为相邻盆地 的物源区。后城组中部和上部的细粒沉积物向盆地 边缘的超覆,指示盆地在不断地扩大。然而,沉积物 颗粒的变细以及沉积环境由早期冲积扇/辫状河流 转变为曲流河/湖泊沉积体系的转变,说明断陷作 用逐渐变弱。因此,后城组沉积后期的盆地性质应 以凹陷作用为特征。后城组上部玄武岩的出现仍指 示一种区域伸展环境,只是强度明显减小,火山活 动不再具有区域性规模。因此,整个髫髻山组和后 城组火山活动和沉积作用的演化反映出一个完整 的主动裂谷过程。

在晚中生代华北盆地中保留了晚侏罗世—早 白垩世以来的裂谷盆地和次一级的裂陷带,裂谷主 体由渤海湾、南华北等盆地组成,附近还有冀北、辽 西与鲁西南等隆起区上残留的断陷盆地群^[26]。由此 可见,本文所讨论的伸展作用有着大尺度伸展构造 背景的支持。

后城组沉积之后发生了一次明显的挤压构造 作用,并以逆冲推覆为特点。在北太行山易县,宣 化县的水泉沟、响水堡、鸡鸣山,昌平县的十三陵, 延庆县的汤河口,以及承德地区,普遍出现由中— 新元古界组成的向北或北西逆冲-推覆的构造岩 片^[27_28]。郑亚东在讨论燕山带中生代主要构造事件 时,明确划分出一期晚侏罗世逆冲推覆事件^[28]。承德 逆冲断层推覆到约140Ma的侏罗系—白垩系地层之 上,而上盘的向形构造又被(128±1.5)-(131.7±1.5) Ma(U-Pb年龄)的花岗岩侵入。本文图6中长约20 km的响水铺低角度推覆断层压在后城组地层之上, 断层上盘的元古宙地层上驮载着髫髻山组地层。如 前所述,髫髻山组安山岩年龄是148 Ma,后城组年龄 是145 Ma,那么推覆断层时代在后城组145 Ma之后, 132 Ma之前,140 Ma左右可以作为晚侏罗世逆冲推

覆事件的时代。

从盆地演化的角度看,这期逆冲推覆构造事件 导致了早期伸展盆地的反转。然而,目前不清楚的 是,这次挤压构造变形在成因上与什么样的区域构 造背景相关。围绕华北盆地周边的基底隆起都被卷 入到这次逆冲推覆构造体系内,表现出厚皮构造特 征^[26],同时断层后缘的倾角大多呈高角度^[27]。另外, 这组逆冲断层绕基底隆起呈弥散状的弧形分布,并 不具明确的线性特征。这2个构造特征无法简单地用 挤压造山作用来解释。区域性的垂向和水平构造作 用的联合可导致断块式运动与逆冲推覆构造同时发 生,但这种构造作用的成因仍需进一步研究。

在本文编写过程中得到中国地质大学李东旭教 授和北京市地质研究所萧宗正研究员的支持与帮 助,在此表示感谢。

参考文献:

- [1] 河北省地质局. 河北省北京市天津市区域地质志[M] 北京:
 地质出版社, 1989.203~215.
- [2] 翁文灏. 中国东部中生代造山运动[J] 中国地质学会志, 1929 & (1) 33~44.
- [3] 黄汲清,任纪舜,姜春发,等.中国大地构造及其演化[M] 北 京科学出版社,1981.32.
- [4] 张文佑. 断块构造导论[M] 北京:石油工业出版社,1984.138~ 145.
- [5] 陈国达. 地台活化及其找矿意义[M] 北京:地质出版社, 1960.
- [6] 叶良辅. 北京西山地质志[J] 地质专报, 1920,甲种第1号.
- [7] 高德臻,胡道功.北京西山髫髻山向斜的形成与构造演化[A] 见:李东旭等著.北京西山地质构造系统分析[C]北京:地质 出版社,1995.21~28.
- [8] 鲍亦冈,白志民,葛世炜,等.北京燕山期火山地质及火山岩[M]北京地质出版社,1995.102~103.
- [9] 邱家骧,林景仟. 岩石化学[M] 北京 地质出版社,1991.112~ 113.
- [10] Joplin G A. The shoshonite association: A review[J] J.Geol. Soci. Aust., 1968, 15(2) 275~294.
- [11] Morrison G W. Characteristics and tectonic setting of the shoshonite rock association [J] Lithos., 1980, 13(1), 97~108.
- [12] 廖群安,邱家骧.北京地区中生代钾玄岩系列-高钾钙碱性系 列的识别与成因分析[] 岩石学报,1993, (2) 增刊):14~23.
- [13] Le Bas M J, et al. A classification of volcanic and plutonic rocks using R1-R2 diagram and major-element analyses—Its relationships with current nomenclature [J] Chem. Prtro., 1986, 29:183~210.
- [14] Pecerillo A, et al. Geochemistry of Eocene calc- alkaline volcanic rocks from the Kastamenu area, northern Tukey[J]

Contrib. Miner. Petro. , 1976 , 58(1): 63~81.

- [15] Benito R, Lopez-Ruiz J, Cebria J M, et al. Sr and O isotope constraints on source and crustal contamination in the high-K calc-alkaline and shoshonitic neogene volcanic rocks of SE Spain[J] Lithos, 1999, 46: 773~802.
- [16] Rogers N W, James D, Kelley S P, et al. The generation of pottasic lavas from the eastern Virunga province, Rwanda [J] J. Petrol., 1998, 39: 1223~1247.
- [17]李春林,等.北京西山髫髻山盆地中生代火山活动特征及成因 探讨[A]见:李东旭等著.北京西山地质构造系统分析[C] 北京:地质出版社,1995.77~82.
- [18]孙善平,等.北京西山中生代火山活动特征及 构造环境分析 [A]见:李东旭等著.北京西山地质构造系统分析[C]北 京:地质出版社,1995.65~76.
- [19] 汪云亮, 涨成江,等. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[]] 岩石学报 2001,17(3):413~421.
- [20]赵越. 燕山地区中生代造山运动及构造演化[J] 地质论评, 1990,36(1):1~13.

- [21] 萧宗正,杨鸿连,单青生.北京中生代地层及生物群[M] 北 京地质出版社,1994.33~48.
- [22] 洪友崇. 河北后城组昆虫化石的新发现和后城昆虫群的建立 [1] 北京地质,1997(1):1~10.
- [23] 段淑英. 北京硅化木林[J] 植物学报,1986,28(3):331~335.
- [24] 邵济安, 涨履桥, 储著银. 冀北早白垩世的火山-沉积作用及其 构造背景讨论[J] 地质通报 2003 22(6) 384~390.
- [25] Davis G A, Zheng Yadong, et al. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China[J] Geological society of America, 2001, 194:171~197.
- [26] 宋鸿林. 燕山式板内造山带基本特征与动力学探讨[J] 地学 前缘,1999, ((4) 309~316.
- [27] 邵济安,张长厚,等.关于华北盆山体系动力学模式的思考[J] 自然科学进展,2003,13(2):131~135.
- [28] 郑亚东 G.A.Davis ,王琮 ,等. 燕山带中生代主要构造事件与板 块构造背景问题[J] 地质学报 ,2000 ,74(4) 289~302.

Nature and tectonic environment of Late Jurassic volcanic-sedimentary basins in northwestern Hebei Province

SHAO Ji'an^{1,2}, MENG Qingren², WEI Haiquan³, ZHANG Lüqiao⁴, WANG Peiying¹

(1.Faculty of Earth and Space Sciences, Peking University, Beijing 100871, China;
2.Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
3.Institute of Geology, China Seismological Bureau, Beijing 100029, China;
4.Institute of Mineral Experimentation, Hohhot 010020, Inner Mongolia, China)

Abstract: Petrological and geochemical studies of Late Jurassic volcanic rocks in the Tiaojishan and Houcheng Formations in northwestern Hebei Province reveal that Late Jurassic volcanic rocks are composed mainly of a shoshonite series derived from the enriched mantle, and some high-potassium acidic rocks of crustal affinity. Overlying the Tiaojishan Formation, the Houcheng Formation consists primarily of fluvio-lacustrine rock associations and is believed to have deposited in rifted basins in an extensional setting. It is marked by coarse-grained sediments of alluvial fans and braided rivers in the lower part and fluvio-lacustrine fine-grained sediments intercalated with volcanic rocks in the upper part, thus generally exhibiting an upward-fining sequence. The stratigraphic and sedimentary evolution from the Tiaojishan to Houcheng Formations reflects the transition from a down-faulted basin to a downwarped basin. Regional compression occurring after the deposition of the Houcheng Formation led to the reversion of the extensional basin of this stage.

Key words : northwestern Hebei ; Late Jurassic ; down-faulted basin ; shoshonite series ; extensional tectonics