doi:10.3969/j.issn.1007-3701.2016.01.004

东秦岭灵山岩体岩石谱系单位类埃达克质花岗岩及其成因 和构造环境意义

赖群生,樊中玲,易志强,邵世威,张 跃,杨 涛 LAI Qun-Sheng, FAN Zhong-Ling, YI Zhi-Qiang, SHAO Shi-Wei, ZHANG Yue, YANG Tao

(河南省地质矿产勘查开发局第一地质勘查院,郑州 450000)

(The First Geological Exploration Institute of Henan Provincial Bureau of Geo-exploration and Mineral Depvelopment, Zhengzhou 450000, Henan)

Lai Q S, Fan Z L, Yi Z Q, Shao S W, Zhang Y an Yang T. The lithodemic units of adakite-like granite on genetic Types and tectonic settings for the Lingshan Pluton, East Qinling. *Geology* and Mineral Resources of South China, 2016, 32:21–33.

Abstract: Lingshan Pluton is located in two sides of the Tongbai–Shangcheng Fault, which is the south Qinling metamorphic belt of East Qinling orogenic belt. According to the internal contact relation and structure differences, Lingshan Rock stage divided into four main units as well as another three independent units. Lingshan granite show high silica– alkali, potassium–rich , low magnesium, poor calcium alkaline series. The high total REE is rightward incline, and the features of trace elements are rich in large ion lithophile elements (K, Rb, Ba). while the high field strength elements (Zr, Hf, P, Ta, Nb, Ti) are depleted. Lingshan granite is syntectic S–type with the geochemical characteristics of I–type and adakite–like granite, which was formed in the arc–continent post collision (anorogenesis) tensional environment.

Key words: Lithodemic units; S-type granite; East Qinling; Lingshan pluton; adakite-like granite

2010-2014年,笔者在开展1:5万河南省境代1:20万区域地质调查¹¹和90年代1:5万区域内游河等十一幅矿产地质调查中,对上世纪80年 地质调查¹²⁴¹对灵山岩体的划分再认识,对其进行解

收稿日期:2015-11-11;修回日期:2016-1-11.

基金项目:河南省 2009 年度地质勘查基金矿调项目:河南省境内游河幅、长台关半幅、浉河港幅、信阳市幅、五里店半幅、谭家河幅、李家 寨幅、涩港幅、蔡家河幅、大新店幅、宣化店幅 1:5 万矿产地质调查.

第一作者:赖群生(1968-),男,高级工程师,长期从事地质调查和找矿工作,E-mail:laiqunsheng@126.com.

体,划分为主侵入期四个单元和补充期三个独立单 元⁵。本文介绍灵山岩体岩石谱系单位划分和内部 接触关系,在岩石地球化学特征研究的基础上对岩 石成因类型和构造环境再分析。

1 地质背景

灵山岩体主体呈北西向椭圆状,出露面积约 385 km²,位于河南省信阳市区东南部,展布于罗山 县朱堂 – 彭新 – 山店一带,向南西、向南延伸到湖 北省境内。灵山岩体地处秦岭造山带东段的南秦岭 构造带中的龟(山)-梅(山)断裂南侧和桐(柏)-商 (城)断裂两侧(图1)。岩体的西南侧超动侵入早古 生代姚畈片麻岩杂岩,西侧超动侵入早白垩世李 家寨岩体,北侧及东侧侵入震旦系-下奥陶统肖 家庙岩组、中元古界龟山岩组、泥盆系南湾组、下 古生界定远组及中-新元古界浒湾岩组。接触面 外倾,变形较弱。北西侧围岩普遍具角岩化、萤石 矿化、硅化和褐铁矿化,在肖畈一带见有多金属矿 化和钼矿化;北东侧及东侧围岩具弱角岩化、硅化 和褐铁矿化。

图1 灵山岩体岩石谱系单位划分略图(左下角图据参照文献[6]修改)

Fig. 1 The Sketch Map of classification of lithodemic units on the Lingshan Pluton

1.地质界线;2.性质不明断层;3.平移断层;4.正断层;5.逆断层;6.超动接触界线(短齿指向早期侵入体);7.脉动接触界线;8.涌动接触界线; 9.区域韧性剪切带;10.韧性拆离断层;Q-第四系;K₂z-周家湾组;K₁c-陈棚组;Dn-南湾组;Z-O₁x-肖家庙岩组;Pz₁dy-定远组;Pt₂g-龟山岩 组;Pt₂₋₃h-浒湾岩组;K₁Xδ-学堂冲岩体;K₁bηγ、K₁yηγ、K₁tηγ、K₁L⁴ηγ、K₁L³ηγ、K₁L²ηγ、K₁L¹ηγ-依次分别为八宝山独立单元、 杨湾独立单元、团山独立单元、四单元、三单元、二单元、一单元;K₁LJηγ-李家寨岩体;Dog-垛子冲片麻状花岗岩块;Yog-姚畈片麻岩杂 岩;γπ-花岗斑岩脉;I.龟(山)-梅(山)断裂;II.桐(柏)-商(城)断裂;II.八里畈断裂;a.鸡公山岩体;b.李家寨岩体;c.灵山岩体;d.新县岩 体;e.达权店-商城岩体. 区域上基本构造格架表现为北西西向弱应变 域和线状强应变带相间排列,并且被北东 – 北北东 向脆性断裂截切,形成网格状构造系统。北东 – 北 北东向断裂及其与北西西向断裂复合部位,除控制 大别山地区灵山、新县、商城三大花岗岩基的形态 外,还控制了大别山北麓中酸性小岩体的侵位和产 出状态⁷⁷。

2 岩石谱系单位划分及地质特征

以前,1:20万区域地质调查曾经把灵山岩体 划分为从粗粒到细粒的中心相、过渡相和边缘相。 后来,1:5万区域地质调查则依据花岗岩类岩石 谱系单位的划分原则¹⁸,又把灵山岩体从早期单元 到晚期单元划分为由细粒演化为粗粒或由粗粒演 化为细粒。1:5万矿产地质调查通过对内部接触 关系观察分析,结合1:5万地面高精度磁测、地质 剖面测量、地质路线调查和岩性及岩石地球化学特 征对比,对灵山岩体的划分进行了再认识,将1:5 万游河等五幅区域地质调查划分的灵山岩体西段 (杨家湾 - 界牌水库西一线以西)解体为李家寨岩 体,其特征为富含斜长花岗岩、闪长岩、花岗闪长 岩、辉长岩和斜长角闪岩包体;解体后的灵山岩体 划分为主侵入期四个单元和补充期三个独立单元 (图1、表1)。按其形成的先后顺序描述如下:

表1 灵山岩体各单元基本特征

Table.1 The basic features table of the Lingshan Pluton various u	ınit
---	------

单元	代号	侵入体 个数	岩性	结构 类型	接触 关系	同位素年龄
 八宝山 独立单元	$K_1 b \eta \gamma$	9	灰-暗灰色似斑状细 粒黑云二长花岗岩	似斑状	7 10 11	
杨湾独 立单元	$K_1 y \eta \gamma$	12	浅肉红色似斑状细 粒黑云二长花岗岩	似斑状	个接触	黑云母 K-Ar 年龄 100.3 Ma ^[2]
团山独 立单元	K_1 tηγ	52	灰白-浅肉红色(含 斑)细粒黑云二长花 岗岩	细粒- 似斑状	不接触	Rb-Sr 全岩等时线年龄 121 Ma ^[3] 、锆石 U-Pb 年龄 129.90 Ma、129.92 Ma ^[5]
四单元	$K_1 L^4 \eta \gamma$	8	灰白-肉红色粗粒黑 云二长花岗岩	粗粒- 似斑状	小按朏	锆石 U-Pb 年龄 130.70 Ma ^[9]
三单元	$K_1 L^3 \eta \gamma$	25	灰白-肉红色中粗粒 黑云二长花岗岩	中粗粒 -似斑 状	脉动脉动	黑云母 K-Ar 年龄 128.05 Ma ^[2] 、 122.68 Ma、126.83 Ma ^[3] 、锆石 U-Pb 年龄 129.3 Ma ^[9-10]
二单元	$K_1 L^2 \eta \gamma$	51	灰白-浅肉红色中细 粒黑云二长花岗岩	中细粒	涌动	黑云母 K-Ar 年龄 127.65 Ma ^[3] 、锆石 U-Pb 年龄 125.38 Ma、128.37 Ma ^[9]
一单元	$K_1 L^1 \eta \gamma$	28	灰白-浅肉红色细粒 黑云二长花岗岩	细粒- 似斑状	脉动	黑云母 K-Ar 年龄 131.6 Ma ^[2]

2.1 一单元

零星分布于灵山岩体的南部、西部及北部边缘,共由28个侵入体组成,出露面积约19km²;本单元为该岩体最早的侵入体,黑云母K-Ar年龄131.6 Ma^[2]。与二、三、四单元均呈脉动接触,三个单元中常见本单元的残留体、捕虏体,但未见明显的应变组构和蚀变。与三单元接触带附近可见钾长伟晶岩囊包体,沿接触带可见不连续的似伟晶岩带,

长石晶体生长方向垂直于接触面,且指向三单元。 南部边缘的侵入体中围岩捕虏体较发育,规模变化 也较大,大的几米到几十米,小的只有几厘米;暗色 包体较发育,其粒度小于1cm,形态一般均较规则, 尤其是靠近接触带的包体,其长轴平行片麻理方向 分布,显示较强的应变组构。西部及北部边缘的侵 入体中偶见微粒包体。

2.2 二单元

灵山岩体的主要单元,主要分布于岩体的中 部,由51个大小不等的侵入体组成,出露面积约 116 km²。与一、四单元均呈脉动接触;南部侵入体 与一单元的接触带,在本单元一侧可见1 cm 左右 冷凝边和一单元的捕虏体,有时可见有粗大的钾长 石、石英形成似斑晶,组成宽几 cm 到十几 cm 的似 伟晶岩带。与三单元在西部主要呈脉动接触;局部 为涌动接触,混合带宽2~3m,沿接触带无明显的 应变组构。与三单元在中东部主要呈涌动接触,局 部呈脉动接触。涌动接触表现为粒度上呈过渡性连 续变化,接触界线不清,接触带内二者均无明显的 应变组构;脉动接触表现为岩性界线清晰,沿接触 带可见断续发育有粗大的微斜条纹长石斑晶和球 粒状石英斑晶、黑云母条带平行接触带分布,三单 元中见有本单元的捕虏体。本单元中微粒包体少 见,可见暗色的矿物析离体,粒径小于1 cm。

2.3 三单元

也是灵山岩体的主要单元,主要分布于岩体的 南部、东部和西部,由 25个大小不等的侵入体组 成,出露面积约169km²。与一、四单元呈脉动接触; 与一单元接触面附近,本单元中可见一单元的捕虏 体。与二单元在西部主要呈脉动接触,局部为涌动 接触;在中东部主要呈涌动接触,局部呈脉动接触, 接触面附近可见本单元的岩枝穿入二单元。东部和 西南部的侵入体中微粒包体较发育,含量1%±,南 部和西部的侵入体中可见微粒包体。

2.4 四单元

分布于灵山岩体的西部,由8个规模不等的侵 入体组成,出露面积约17km²。与一、二、三单元均 呈脉动接触。

2.5 团山独立单元

主要呈不规则状分布于岩体的中东部,南部呈 条带状、浑圆状零星出露,由 52 个规模大小不等的 侵入体组成,出露面积约 56 km²。与围岩均呈超动 型侵入接触,沿接触带见有细粒边或冷凝边,并见 有岩枝穿入围岩,急变式接触关系清楚,接触面倾 向围岩。可见该单元截切三单元中石英脉。本单元 中偶见微粒包体。

2.6 杨湾独立单元

零星分布于灵山岩体西南部,由12个侵入体 组成,总出露面积约4km²。一般呈岩脉、小岩株出 现,产于二、三单元之中,与围岩超动式侵入接触, 界面较清晰。本单元中常见微粒包体。

2.7 八宝山独立单元

零星分布于灵山岩体北东部,由9个侵入体组 成,总出露面积约4km²。与围岩超动式侵入接触, 界面较清晰。与团山独立单元的接触面附近,可见 团山独立单元的捕虏体,并可见本单元呈枝状穿入 团山独立单元中,为该岩体最晚的侵入体。该单元 中微粒包体发育。

3 岩石地球化学特征

3.1 主量元素

灵山岩体各单元岩石化学成分变化范围较窄 (表 2)。SiO₂含量较高,为71.03%~77.41%(平均 75.26%);(K₂O+Na₂O)较富,为7.58%~9.20%(平均 8.56%)且 K₂O/Na₂O 比值除一单元为0.41 外,其他 单元均大于1,为1.01~1.47(平均1.19);CaO 含量 较低,为0.36%~1.15%(平均0.61%);MgO 含量较 低,为0.08%~0.45%(平均0.24%);总体显示出高 硅碱富钾贫钙低镁的特征。

灵山岩体各单元岩石分异指数(DI)为 88.64~ 97.17,平均 94.44,反映了岩体经过了高程度的分 异演化作用;碱度率(AR)为 2.50~4.70,平均 3.62, 在 AR-SiO2碱度关系图(图 2)上,样品投点仅个别 落在钙碱性岩区,其他落在碱性岩区;铝饱和指数 (A/CNK)为 0.97~1.25,平均 1.05;CIPW 标准矿物 中多有刚玉(C)分子出现,属铝质 A 型花岗岩,与前 人的研究结果相同¹⁰⁰。

3.2 稀土元素和微量元素

灵山岩体稀土元素含量及特征参数、微量元素 含量及特征参数见表3、表4。稀土元素总量(Σ REE)较高(77.90×10⁻⁶~178.63×10⁻⁶);轻重稀土 元素比值(LREE/HREE)为8.51~26.49,分馏程度 高;δEu单元平均值为0.33~0.72,Eu亏损明显。 稀土元素球粒陨石标准化分布型式呈右倾海鸥式 展布(图3),反映同源岩浆演化的特征。 大离子亲石元素 Rb (144.2×10⁻⁶~411×10⁻⁶) 含量高,Ba(21.2×10⁻⁶~1008×10⁻⁶)变化范围大,Sr (5.7×10⁻⁶~342.5×10⁻⁶)变化范围大,放射性热元素 U (1.6×10⁻⁶~10×10⁻⁶)含量高,Th (7.05×10⁻⁶~ 41.3×10⁻⁶)含量高,高场强元素 Nb (10×10⁻⁶~ 36.53×10⁻⁶)和 Ta(0.68×10⁻⁶~7.2×10⁻⁶)含量变化 大。在微量元素原始地幔标准化蛛网图(图 4)上, 大离子亲石元素 K、Rb、Ba 等富集,高场强元素 P、

图3 稀土元素球粒陨石标准化分布型式

RbBaTh U K Ta NbLa Ce Sr Nd P Zr Hf SmTi Y YbLu 0.1 RbBaTh U K Ta NbLa Ce Sr Nd P Zr Hf SmTi Y YbLu

图4 微量元素原始地幔标准化蛛网图

Fig. 4 The figure of the primary mantle-normalized trace elements

Ta、Nb和Ti等相对相邻元素亏损,其中1、4单元 和八宝山独立单元显示较强地亏损Ta和4单元亏 损Nb,均为主动大陆边缘花岗岩类的特点,具典型 的低Ba、Sr、低Y和低Yb花岗岩的特征,U、Th含 量显著偏高。由表4可知,有4个样品的Nb/Ta比 值大于17.5和3个样品的Zr/Hf比值大于37.5,均 大于地幔值,暗示岩浆来源有地幔岩浆成分的加 入。

表 3 可见,除 9 和 16 号样品以外,大多数样品 Yb≤1.9×10⁻⁶ 和 Y≤18×10⁻⁶;除 16 号样品以外, 其他样品 La/Yb 比值>12。表 4 可见,Sr/Y 比值较 低,除 8 号样为 40.13 外,其他样品为 1.10~16.08, 不超过 C-型埃达克岩 Sr/Y 比值 (≥20);Nb/Zr 比 值皆大于 0.04。Harker 图解上,Sr,Y,Yb 的含量和 Sr/Y 比值与 SiO₂ 的含量成反比关系,K₂O 的含量和 SiO₂ 的含量关系不明显(图 5a-e),La/Yb-Yb 图解

图5 埃达克质岩的岩石地球化学图解[16] Fig.5 The geochemical diagrams of adakitic rock

表2 灵山岩体岩石化学成分及特征参数	? The parameter of the petrochemical compositions and features of Lingshan Pluton
	The J
	le 2
	Tab

	$100 \mathrm{Fe}^{3+}/(\mathrm{Fe}^{3+}+\mathrm{Fe}^{2+})$	44.44	47.06	50.00	44.44	44.44	44.44	44.44	47.62	43.48	31.58	33.33	42.11	37.50	44.44	44.44	45.45
	C	3.60	0.20	0.78	0.31	1.38	0.00	0.00	0.82	1.33	0.00	0.00	0.00	1.02	0.71	0.82	1.83
参数	DI	88.64	94.22	97.17	96.76	95.82	96.22	96.01	90.77	92.34	93.03	96.81	92.76	94.65	96.14	95.60	94.03
特征	AR	2.50	3.58	3.73	3.98	3.46	3.97	4.14	3.47	2.93	3.27	4.70	3.53	3.77	3.73	3.72	3.47
	A/ CNK	1.25	1.02	1.07	1.03	1.12	0.97	0.98	1.04	1.11	0.98	0.98	0.98	1.09	1.06	1.06	1.05
	K ₂ O/ Na ₂ O	1.34	1.25	1.21	1.25	1.21	1.27	1.20	1.01	1.47	1.34	1.12	1.24	1.15	1.26	1.26	0.41
	ALK	8.79	8.50	8.43	8.58	8.63	8.71	9.25	8.92	8.48	8.09	8.76	8.74	8.25	9.10	9.19	7.70
	Total	99.72	99.10	99.89	100.08	99.83	99.40	99.46	77.66	100.06	100.73	100.32	99.15	100.68	99.58	99.28	99.67
	Loss	0.45		0.47	0.49	0.45			0.48	0.98	2.01	0.62		1.83	0.49		1.24
	P_2O_5	0.08	0.04	0.01	0.02	0.02	0.02	0.03	0.11	0.05	0.02	0.02	0.06	0.02	0.01	0.01	0.55
	Na ₂ O	3.74	3.74	3.80	3.79	3.88	3.82	4.19	4.41	3.40	3.42	4.12	3.87	3.80	4.00	4.03	5.39
	K_2O	4.99	4.68	4.59	4.75	4.69	4.84	5.01	4.45	5.00	4.57	4.61	4.80	4.36	5.02	5.09	2.19
0 ⁻²)	CaO	0.89	0.68	0.39	0.36	0.44	0.58	0.61	1.15	0.55	0.87	0.42	0.91	0.37	0.39	0.41	0.68
含量(1	MgO	0.34	0.24	0.10	0.10	0.13	0.26	0.20	0.43	0.45	0.29	0.11	0.39	0.26	0.08	0.19	0.27
氧化物	MnO	0.03	0.03	0.01	0.02	0.02	0.01	0.02	0.03	0.02	0.14	0.04	0.04	0.04	0.02	0.02	0.05
	FeO	0.31	0.28	0.15	0.34	0.17	0.31	0.17	0.62	0.49	0.91	0.56	0.46	0.70	0.30	0.16	0.62
	$\mathrm{Fe_2O_3}$	1.08	0.97	0.41	0.41	0.52	0.42	0.59	0.97	1.34	0.40	0.31	1.03	0.43	0.40	0.61	1.01
	Al ₂ O ₃	16.53	12.59	12.77	12.30	13.65	12.21	13.10	14.80	13.30	12.00	12.27	12.96	12.71	13.48	13.58	13.04
	TiO_2	0.26	0.12	0.10	0.09	0.10	0.10	0.06	0.27	0.26	0.14	0.10	0.22	0.09	0.01	0.07	0.20
	SiO_2	71.03	75.73	77.09	77.41	75.76	76.83	75.48	72.05	74.22	75.96	77.14	74.41	76.07	75.38	75.11	74.43
1	样号	ZHB ^[5]	2418/2 ^[3]	ZHY ^[5]	YQ16 ^[2]	ZHD ^[5]	$240^{[2]}$	PH2 ^[3]	ZH5265 ^[5]	YQ36 ^[4]	PH-3 ^[2]	YQ15 ^[2]	PH6 ^[3]	YQ4 ^[2]	2448/6 ^[2]	PH8 ^[3]	190 ^[2]
	者性	\(\) \(\	ポムサーマ 花岗岩	似斑状細粒 園 - 四 - 17	黒ム母」 花岗岩	(今頃)加封	(1976) 第云母二大 花岗岩		粗粒黑云母 二长花岗岩		中租粒黑云 四一とまじ	母			中 田 村 三 大 花 男 子 子 志 子 子 子 子 子 子 子 子 子 子 子 子 子 子 子 子	Ŧ	细粒黑云母 二长花岗岩
1	单元	人宝山 444	第 七 中 七	杨湾独	立单元		团山独 立单元		四单元		1〕 汨 1				二单元		一单元
赵	r up	1	2	3	4	5	6	٢	~	6	10	11	12	13	14	15	16

	Pluton
	Lingshan
А	$0\mathbf{f}$
持征参 <u>数</u>	features
重及	put
今 日	nts á
土元素	conter
体稀	REE
北	the
К	of
表3	parameter
	he j
	3 T
	le
	Lat

La/Yb 58.19 28.77 23.72 57.50 20.17 25.30 26.78 15.29 33.52 40.0024.89 34.11 34.44 29.51 8.92 0.55 δEu 0.29 1.300.400.52 0.32 0.72 0.440.36 0.32 0.360.680.57 0.51 0.31 LREE/HREE 17.45 18.85 21.35 26.49 19.36 13.72 19.38 23.11 20.90 13.64 24.35 20.64 20.81 9.31 8.51 持征参数 HREE 14.74 10.03 9.68 5.13 11.21 6.74 4.62 4.62 4.67 7.30 5.22 3.604.304.066.21 LREE 127.08 122.43 137.30 136.79 168.95 109.63 168.6389.36 85.18 90.50 109.11 74.30 89.47 98.88 95.41 ZREE 133.82 127.05 106.63 178.63 114.77 175.93 152.04 114.33 146.82 102.94 95.17 91.39 93.77 93.97 77.90 15.72 13.44 15.12 24.6 9.45 5.68 7.67 6.02 6.59 6.03 7.32 8.53 5.43 5.205.41 У 0.2600.303 0.127 0.12 0.19 0.28 0.25 0.11 0.36 0.140.29 0.371 0.21 0.21Lu 0.1 1.761.680.801.52 0.83 0.75 2.400.65 1.681.032.4 Yb 1.31.30.91 0.9 0.239 0.385 0.17 0.2040.13 0.180.129 0.160.38 0.15 0.13 0.13 0.11 0.11 0.29 Tm 0.768 1.460.660.97 0.72 0.772.690.990.640.63 2.44 1.061.59 0.810.7 Er 0.716 0.475 0.196 0.279 0.374 0.18 0.18 0.300.17 0.900.300.54 Ho 0.3 0.21 0.21 0.8362.745 1.12 (10-6) 2.28 0.73 0.83 3.84 2.35 0.820.771.681.24 0.841.71 Dy 1.5 稀土元素含量 0.4140.133 0.394 0.253 0.2680.13 0.300.18 0.460.15 0.16 0.37 0.630.3 0.2 Tb 1.762.801.021.11 0.941.803.54 1.19 2.83 0.97 0.81 1.283.21 1.9 Gd 1 0.4140.6840.099 0.872 0.16 0.45 0.140.421 0.13 0.56 0.14 0.940.640.27 0.28 Εu 3.46 2.73 2.73 2.96 1.55 4.52 5.083.03 1.65 2.68 1.071.03 1.55 3.81 3.7 Sm 21.72 10.53 12.06 24.23 30.23 14.8 26.6 12.0 20.4 9.05 14.2 12.5 9.81 9.51 9.61 pN 4.183.65 3.36 8.79 6.78 6.76 3.68 7.94 4.20 4.63 4.2 3.81 2.91 3.31 \mathbf{Pr} 6.1 41.12 55.55 80.83 54.66 44.89 80.56 62.24 47.39 53.4 61.5 59.0 42.4 38.5 Ce 60 34. 序号同表 35.47 39.80 34.82 43.58 51.80 46.030.61 21.0 26.00 41.81 21.4 37.4 36.7 30.5 30.7 La 注: 15 16 1011 12 13 上 Πþr _ 9 2 3 4 S ∞ 6

28

2016年

	of the Lingshan Pluton
表4 灵山岩体微量元素含量及特征参数	Table 4 The parameter of trace elements contents and features (

承				检	测巧	í II (>	<10-e)								卦	征参数				
⊡¦r	Sr	Rb	Ba	Th	Та	Nb	Zr	Ηf	U	Li	C_{S}	Li*10 ³ /Mg	K/Rb	K/Cs	Rb/Cs	Rb/Li	Sr/Y	Nb/Zr	Nb/Ta	Zr/Hf
-	195.0	210.8	530.9	30.93	2.03	22.30	150.8	6.25	5.82	20.57	2.18	9.87	198	19151	96.73	10.24	14.51	0.15	11.00	24.11
7	103.6	219.98	21.2	33.1	7.2	22.3	135.7	2.7	3.23	34.00		23.28	178			6.47	10.96	0.16	3.10	50.26
З	18.27	341.7	24.31	35.06	2.56	34.74	106.6	5.06	8.01	6.22	2.25	9.93	112	17052	152.11	54.92	2.38	0.33	13.59	21.06
4	16	250	59	21	1.2	34	06	5.5	2.5				158				2.66	0.38	28.33	16.36
5	26.33	314.03	50.26	33.42	2.45	32.33	100.16	5.04	10.00	8.29	2.14	10.31	125	18316	146.74	37.88	3.99	0.32	13.22	19.89
L	18.05	396.5	63.2	41.00	6.23	36.53	116.93	3.07	7.41	23.33		19.24	105			17.00	2.47	0.31	5.86	38.09
8	342.5	144.2	1008	18.57	0.68	11.57	156.9	7.42	4.67	27.74	2.43	10.62	258	15317	59.37	5.20	40.13	0.07	16.94	21.14
6	120	248	640	41.3	2.9	23.4	156	5.2	4.8	6.0	5.4	2.19	169	7758	45.93	41.33	4.88	0.15	8.07	30.00
10	87	204	290	31	0.8	10	141	5.6	3.2				188				16.08	0.07	12.50	25.18
11	16	411	53	18	0.8	28	86	5.5	1.6				93				2.95	0.33	35.00	15.64
12	138.38	216.04	385.66	31.5	5.68	25.56	142.52	4.53	5.23	23.4		9.86	186			9.23	9.15	0.18	4.50	31.46
13	5.7	404	48	19	0.8	17	77	9	3				16				1.10	0.22	21.25	12.83
15	27.5	349.43	96.17	34.4	6.30	29.77	99.43	1.57	5.00	15.50		13.43	122			22.54	4.84	0.30	4.73	63.33
16	21.85	249	626.5	7.05	0.8	19.5	173.5	7.75	3.23				74				1.39	0.11	24.38	22.39
注:序	号同表 2.																			

上(图 5a-f),除 9 和 16 号样品以外,其他样品落入 C-型埃达克岩范围内。综上所述,灵山花岗岩可称 为 C-型(大陆型)类埃达克质花岗岩^[13-14],可与海 南岛晚海西 - 印支期,甚至喜马拉雅期埃达克质岩 的构造环境及其成因相对比^[15]。

La/Yb 比值≥12、Nb/Zr 比值>0.04 是主动大陆边缘埃达克质花岗岩的特征标志,指示碰撞俯冲环境和岩浆侵入过程中存在强烈结晶分异作用。上述特征表明灵山岩体的成岩过程经历了高度的分异演化作用。

4 岩石成因类型和构造环境分析

灵山岩体与围岩呈明显的侵入接触;沿岩体与 地层的接触带,围岩普遍具角岩化、萤石矿化、硅化 和褐铁矿化,局部有多金属矿化和钼矿化;岩体内 含有围岩捕虏体;反映出岩浆成因特点。各单元岩 石均由黑云二长花岗岩组成,其成分变化范围很 窄。从岩石地球化学特征上看,A/CNK为0.97~ 1.25 且多小于1.1,SiO₂ 含量 71.03%~77.41%,均 大于65%,Na₂O 含量 3.74%~5.39%,均大于3%, 100Fe³⁺/(Fe³⁺+Fe²⁺)为31.58~50 且多大于40,CIPW 标准矿物刚玉为0~3.6%且多小于1%,无透辉石; 在 A-C-F 图解(图 6)中,样品多落入 S 型花岗岩 区。部分元素对比值:Li×10³/Mg 为 2.19~23.28, K/Rb 多为112~258,K/Cs 为 7758~19151,Rb/Cs

图6 A-C-F图解 Fig. 6 The ACF diagram I.I型花岗岩;S.S型花岗岩.

为 45.93~152.11, Rb/Li 多为 17~54.92, 与刘英俊^[12] 划分的同熔型花岗岩较为接近。大陆型(C-型)埃 达克质岩的微量元素地球化学特征表现为 La/Yb 比值 > 12, Sr/Y 比值 > 20, Nb/Zr 比值 > 0.04, 稀土 元素强烈富集 La 和 Ce, 其稀土配分型式为铲式右 倾斜式; 对比研究表明, 灵山花岗岩具埃达克质岩 (C-型) 微量元素和稀土元素的部分地球化学特 征。上述表明灵山花岗岩是具有某些 I 型和类埃达 克质花岗岩地球化学特征的同熔 S 型花岗岩, 岩浆 物质来源主要为下壳源, 有地幔物质的加入。

大离子亲石元素 K、Rb、Ba 等富集,高场强元 素 P、Ta、Nb、Ti 等相对相邻元素亏损,具壳源花岗 岩特将征。在 R₁-R₂ 图解(图 7)中,多数样品落入造 山期后花岗岩区中;在 Rb-(Yb + Nb)、Rb-(Yb + Ta) 图解(图 8)中,样品多落入同碰撞花岗岩区,少数

Fig. 7 The diagram of the $\mathrm{R_{1}\text{-}R_{2}}$ tectonic setting discrimination

样品落入火山弧花岗岩区,可能与源岩成分和重熔 程度低有关;ORG标准化地球化学配分模式(图9) 与中国西藏同碰撞花岗岩相似,但是,1和4号样 品具有明显的Ta和Nb低谷,而且2、5和6号的 Ba低谷比西藏同碰撞花岗岩更加突出;在图10(a) 图解中,大多数样品落入大陆板内的陆 – 陆碰撞 区,少数样品落入大陆拉张带(初始裂谷)区,在图 10(b)图解中,大多数样品落入活动大陆边缘,少数 样品落入陆缘岛弧。上述表明灵山花岗岩可能形成 于弧 – 陆碰撞造山后(非造山)的拉张环境,但还没 有达到陆内初始裂谷的程度。

在三叠纪中晚期华北克拉通和扬子克拉通结 束板块构造体制的全面碰撞而最终闭合后,中国东

图8 Rb-(Yb+Nb)、Rb-(Yb+Ta)构造环境判别图解

Fig. 8 The tectonic setting discrimination diagram of the Rb-(Yb + Nb) and Rb-(Yb + Ta)

图9 灵山序列ORG标准化地球化学配分模式与典型地区对比

Fig. 9 The contrast of the ORG normalized geochemical distribution patterns on Lingshan sequence and typical area 1.第一单元;2.第二单元;3.第三单元;4.第四单元;5.团山独立单元;6.杨湾独立单元;7.八宝山独立单元;8.中国西藏同碰撞花岗岩.

部全面转入陆内构造演化阶段。早中侏罗世陆内叠 覆造山使秦岭-大别山地区地壳加厚,原有的造山 带岩石圈结构失衡,俯冲楔断离拆沉,上地幔与中 下地壳物质混熔形成造山期后中酸性混浆型岩浆 源。晚侏罗世,受环太平洋构造域的影响,中国东部 乃至整个东秦岭地区构造运动发生了大的体制转

图10 埃达克质岩的构造环境判别图解

Fig. 10 The tectonic setting discrimination diagrams of adakitic rock

(a) Th/Zr-Nb/Zr判别图:Ⅱ-板块汇聚边缘(Ⅱ-大洋岛弧,Ⅱ2-陆缘岛弧及陆缘火山弧);Ⅲ-大洋板内;Ⅳ-大陆板内[Ⅳ-板内裂谷及陆缘 裂谷玄武岩区,Ⅳ2-大陆拉张带(初始裂谷)玄武岩区,Ⅳ3-陆-陆碰撞玄武岩区];Ⅴ-地幔热柱、(b)Th/Yb-Ta/Yb图解:IA-陆缘岛弧;AC-活 动大陆边缘;WPV-大陆板内火山带;WPB-大陆板内玄武岩.

换,即从近南北向挤压机制转入近东西向伸展机 制,形成近东西-北西西向走滑正断层和北东向平 移正断层,使地幔对流平衡和岩石圈状态平衡遭到 破坏,岩石圈不同程度减薄,发生的岩石圈拆沉作 用,幔源岩浆与地壳重熔的岩浆混合形成花岗质岩 浆,两组深大断裂构成棋盘格子状构造,为造山期 后形成中酸性混浆型岩浆提供了通道。桐柏-大别 山地区的晚侏罗-早白垩世商城、新县、灵山、鸡公 山、车云山混浆型花岗岩岩基侵入就位和一系列山 前断陷盆地南缘晚侏罗-早白垩世早中期金刚台 组、陈棚组陆相中酸性火山岩喷发(溢)是当时东秦 岭-大别山地区构造体制发生转换的有力佐证^[17]。

5 结论

(1)根据1:5万地面高精度磁测、岩体内部接触关系、结构及岩石地球化学等特征对比,将前人划分的灵山岩体进行解体,划分为主侵入期四个单元和补充期三个独立单元。岩石类型为黑云母二长花岗岩,岩体的岩性单一。

(2)岩石化学成分为碱性系列,具高硅碱富钾 贫钙低镁的特征;属铝质花岗岩。稀土元素总量较 高,轻重稀土分馏程度高,Eu亏损明显;稀土元素 球粒陨石标准化分布型式呈右倾海鸥式,反映同源 岩浆演化的特征。微量元素原始地幔标准化蛛网图上,大离子亲石元素 K、Rb、Ba 等富集,高场强元素 Zr、Hf、P、Ta、Nb、Ti 等相对相邻元素亏损,具典型的 低 Ba、Sr、低 Y 和 Yb 花岗岩的特征,表明灵山花岗 岩经历了充分演化。众多的岩石地球化学特征表明 灵山花岗岩是具有某些 I 型和类埃达克质花岗岩 地球化学特征的同熔型 S 型花岗岩。岩浆演化以结 构演化为主,成分演化为辅;具明显的同源岩浆演 化特征。

(3)灵山岩体沿北东向和北西西向断裂复合部 位被动就位;岩石地球化学特征参数及图解判断该 花岗岩形成于弧 – 陆碰撞造山后(非造山)的拉张 环境,但还没有达到陆内初始裂谷的程度。

本文是曾在该区从事过1:5万区域地质调查 和矿产地质调查工作同志劳动成果的总结。作者与 河南省地调院曾宪友教授级高级工程师、河南省国 土厅王志宏高级工程师讨论过该岩体的成因和构 造环境,在此一并表示诚挚的感谢!

参考文献:

[1] 柏元夫,彭应达,张天翼,等.1:20万新县(大悟)幅(H-50-I) 区域地质调查报告[R].信阳:河南省地质局区域地质调查 队、湖北省地质局区域地质调查队,1981:1-273.

- [2] 张宗恒,陈曾武,张凤瑞,等.1:5万周党镇幅(8-50-2-甲) 宣化店镇幅(8-50-1-丁)区域地质调查报告(上册)[R].信 阳:河南省地质矿产厅第三地质调查队,1991:1-158.
- [3] 冯广中,卢朝臣,张 先,等.1:5万涩港幅(H-50-I-B)区域地 质调查报告[R].郑州地质学校,1993:1-221.
- [4] 曾宪友,陈曾武,张四清,等.1:5万游河幅(I49E023024)狮河港幅 (I49E024024) 信阳市幅 (I50E024001) 谭家河幅 (H49E001024)李家寨幅(H50E001001)区域地质调查报告 [R].信阳:河南省地质矿产厅第三地质调查队,1996:1-186.
- [5] 赖群生,易志强,易成龙,等.河南省境内游河幅、长台关半幅、浉河港幅、信阳市幅、五里店半幅、谭家河幅、李家寨幅、涩港幅、蔡家河幅、大新店幅、宣化店幅1:5万矿产地质调查报告[R].郑州:河南省地质矿产勘查开发局第一地质勘查院,2014:1-541.
- [6] 李发岭. 河南大别山北麓千鹅冲特大隐伏斑岩型钼矿床 地质特征及成矿时代[J].矿床地质,2011,30(3):457-468.
- [7] 杨泽强.河南商城县汤家坪钼矿成矿模式研究[D].北京:中国地质大学(北京),2007:1-74.
- [8] 高秉璋,洪大卫,郑基俭,等.花岗岩类区1:5万区域地质填 图方法指南[M].武汉:中国地质大学(武汉)出版社,1991: 1-169.
- [9] 孟芳. 大别山北麓灵山岩体的成岩成矿作用研究 [D].北 京:中国地质大学(北京),2013:1-154.

- [10] 周红升,苏华,马昌前.灵山岩体的形成时代、构造背景及 其A型花岗岩的厘定[J].信阳师范学院学报:自然科学版, 2009,22(2):222-226.
- [11] 邱家骧,王人镜,王方正,等.应用岩浆岩岩石学[M].武汉: 中国地质大学(武汉)出版社,1991,1-418.
- [12] 刘英俊,张景荣,孙承辕,等.华南花岗岩类中微量元素的 地球化学特征 [A].//徐克勤.花岗岩地质和成矿关系[C]. 南京:江苏科技出版社,1984:511-525.
- [13] 朱章显,杨振强,姚华舟.巴布亚新几内亚新生代两类埃达克岩的构造环境意义[J].华南地质与矿产, 2007,23(2):
 1-6.
- [14] 杨振强,朱章显.新生代埃达克岩两种成因类型的含矿性 和源区:西南太平洋带与东太平洋带对比[J].华南地质与 矿产, 2010,26(3):1-11.
- [15] 高小卫,吴秀荣,杨振强,海南岛晚海西-印支期埃达克质 岩的构造环境判别及其对比 [J]. 华南地质与矿产, 2014,30(3):206-217.
- [16] 朱章显,杨振强,胡鹏.印尼苏门答腊岛巴东地区埃达克 质岩地球化学特征和构造环境[J].中国矿业, 2015,24(5): 73-80.
- [17] 曾宪友,孙国锋,晁红丽.东秦岭铜山-天目山铝质A型花 岗岩特征及构造意义 [J]. 地质调查与研究,2010,33(4): 291-299.