DOI:10.16562/j.cnki.0256-1492.2018.01.004

木兰溪河口及邻近海域春季水文环境特征及悬沙输移 机制分析

赵金鹏,范代读,涂俊彪,张悦,刘伟

摘要:基于 2016 年春季航次观测数据,分析了木兰溪河口及邻近海域温度、盐度及浊度等水文环境要素特征;并运用通量机 制分解法分析该区兴化湾南日水道连续观测站位资料,以揭示该海域悬沙输移的控制机制。结果表明,春季兴化湾及邻近海 域温盐变化受木兰溪径流、浙闽沿岸流和台湾暖流共同控制,湾外东南侧海域受高温高盐台湾暖流控制,西北侧近岸海域受 低温低盐的浙闽沿岸流显著影响。调查海域悬沙浓度总体较低,外海泥沙通过南日水道向兴化湾内输移,但净输运量非常有 限,仅为 0.32×10⁴ kg/(m・s)。平流输沙与潮泵输沙是南日水道泥沙净输运的主要机制,底沙再悬浮作用较显著,且剪切扩 散效应也不容忽视。

关键词:木兰溪河口;兴化湾;水文环境;悬沙输移机制 中图分类号:X141 文献标识码:A

Hydrological characteristics and suspended sediment transport mechanism in spring at the Mulan Estuary and its adjacent seas

ZHAO Jinpeng, FAN Daidu, TU Junbiao, ZHANG Yue, LIU Wei State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China

Abstract: Based on the field observation data in spring of 2016 in the Mulan Estuary and its adjacent seas, hydrological environment factors, such as temperature, salinity and turbidity were analyzed. And the characteristics and mechanism of suspended sediment transport in the Nanri waterway were studied using the mechanism decomposition method. Results show that the changes in temperature and salinity in the Xinghua Bay and its adjacent seas in spring are jointly controlled by the Mulan River runoff, the Zhejiang-Fujian Coastal Current and the Taiwan Warm Current. The offshore water in southeast Xinghua Bay is dominated by Taiwan Warm Current characterized by high temperature and high salinity, while the near-shore water in the northwest of the bay is significantly affected by the Zhejiang-Fujian Coastal Current featured by low temperature and low salinity. Suspended sediment concentration in Xinghua Bay and its adjacent seas is relatively low. Offshore sediments can be transported into Xinghua Bay through the Nanri waterway, but the net sediment flux is quite limited, only $0.32 \times 10^{-4} \text{ kg/(m } \text{ s})$. The advection and tidal pumping are the major mechanisms for net sediment transport in the waterway, the resuspension of bottom sediment is significant, and the shear diffusion effect cannot be ignored.

Key words: Mulan Estuary; Xinghua Bay; hydrological environment; suspended sediment transport mechanism

河口是海洋与流域之间的过渡地带,各类物质 在此汇集、交换和转移,是海陆作用最为强烈,并对 自然过程和人类作用最为敏感的区域。河口区域水 动力条件复杂,受波浪、潮汐以及河流径流等因素影 响,盐水入侵、粘性泥沙絮凝作用、底部泥沙再悬浮 等过程异常复杂。河口输沙以悬移质为主,这些细 颗粒泥沙既是河口营养盐和有机物的载体,又能吸 附重金属,因此悬沙输移对污染物的迁移和循环起 重要作用。此外,高悬沙浓度降低了水体透光度,由 此影响了河口的初级生产力及各种生物的种类和数

作者简介:赵金鹏(1993一),男,硕士生,主要从事沉积动力学研究,E-mail:king_747441819@qq.com

通讯作者:范代读(1972一),男,教授,从事海洋地质研究,E-mail: ddfan@tongji.edu.cn

资助项目:科技基础性工作专项"典型中小入海河流河口动力沉积地貌与环境本底数据调查"(2013FY112200);中国东盟海上合作基金 "长江三角洲与红河三角洲全新世沉积演化对比研究";国家自然科学基金项目"全新世长江口低氧区形成与演化历史及控制机制"(41476031)

收稿日期:2017-06-28;改回日期:2018-01-10. 周立君编辑

量,进而对河口生态环境、生物资源和渔业生产等形成重要影响^[1]。

不同时间尺度河口泥沙通量变化是对全球变化 和近期流域人类活动的响应。最近几十年,国内外 学者对大河口及邻近海域积累了大量基础调查与研 究资料,成果丰硕。尽管越来越多地认识到中小型 河流在全球物质通量以及生物地球化学循环等扮演 着重要角色[2],但对中小型河口的各种过程和机制 研究明显不足[3]。由于中小型河流流域面积小、流 程短,其河口系统在响应环境变化方面更为迅速,更 加敏感[4]。近年来,随着对中小河流关注的增多,相 关调查研究也逐渐丰富起来。高建华等^[5]对鸭绿江 河口的悬沙输移规律、口门地区最大浑浊带的形成 机制、物质来源以及水动力条件进行了综合分析。 陈斌等[6]基于冬夏两季的实测资料,分析研究了滦 河口海域温度、盐度、叶绿素 a、浊度和溶解氧等水 文环境要素的季节性变化特征,并对相应的动力机 制做了分析。赵建春^[7]根据实测水文资料以及表层 沉积物,分析研究了杭州湾北岸近岸表层沉积物的 时空变异特征,同时应用 GSTA 模型对沉积物输运 趋势以及泥沙来源进行分析探讨,并通过掀沙计算 分析表层沉积物对高能水动力环境的响应。陈小 英[8]利用大沽河河口大风天前后实时地形、水沙变 化、水动力条件以及表层沉积物粒度参数等数据,系 统地分析了大沽河河口沉积环境短时间尺度的沉积 动力过程。郭琳^[9]利用遥感与海水含沙量数据,建 立了椒江口海水悬浮泥沙浓度遥感处理模型,并分 析了椒江口不同条件下海水悬沙的分布特征。 Rao^[10]在 Mandovi 与 Zuari 河口分析了悬沙输移的 季节性变化,并对河口最大浑浊带的形成与移动的 动力机制进行深入探讨。Priya^[11]探讨了浅水河口 湾细粒沉积物沉降速度的影响因素,结果表明其与 悬沙浓度、湍流和盐度梯度密切相关。

近年来兴化湾实施了大量的港口和围垦工程, 人类活动不可避免的对木兰溪河口及其邻近海域的 水动力环境与悬沙输移特征产生了一定的影响,因 此加强研究木兰溪河口及其邻近海域的水动力环境 特征就很有必要。李孟国等^[12]通过潮流、波浪数值 模拟、泥沙来源与运移趋势分析、冲淤态势与水下地 形变化分析等多种手段,综合研究了兴化湾的水文 泥沙特征。高劲松等^[13]通过三维 ECOMSED 模型 模拟了兴化湾的潮流特征是以往复流为主,具有驻 波性质。童朝峰等^[14,15]利用潮汐调和分析、潮流准 调和分析以及潮流数值模拟等方法,分析了兴化湾 潮汐、潮流特性以及湾内工程前后的潮位、潮流场和 余流场等的变化,并运用通量机制分解法分析了兴 化湾各测站的水沙实测资料,探讨了湾内悬沙输移 的特征与机制。

为分析探讨河口悬沙输移机制,采用较为成熟 可靠的通量机制分解法。该方法通过通量分解公式 计算各个影响因素或物理过程对总通量的贡献,以 探讨不同环境下不同动力因子对物质输移的控制机 制。通量机制分解法的优点在于可直接确定影响通 量变化的各种因素及其相互作用机制与各自贡献 量^[16]。Hansen^[17]主要讨论了垂向净环流对物质输 运的贡献。Ficher^[18]首次提出多数河口横向净环流 才是最主要的贡献因子。Jay 等^[19]认为通量机制的 主导因素包括垂向平均流剪切扩散、横向与垂向潮 剪切扩散等,并根据不同河口的主导机制来选择不 同的通量计算方法。Uncles 等^[20]提出了垂向剪切 及潮泵作用对物质输运的重要作用。王康墡等[21] 推导出河口区相对观测层次的物质断面传输公式, 增加了反映环流及振荡切变等相互作用的参数项。 万新宁等[22]运用机制分解法和等面积时变网格法 分别对口外海滨地区典型断面的悬沙通量进行了对 比计算,发现二者计算结果较为一致。YU 等[23]利 用经验公式将水平余流通量单独分解为欧拉余流、 斯托克漂流以及潮泵作用等项,利用一维水深模型 探讨了单个半日潮周期内水平余流通量的决定性因 素。Becherer 等^[24]将沉积物通量分解为正压平流 项、河口环流项以及潮泵作用项,探讨了潮汐汊道中 重力环流以及潮泵作用对悬沙输运的影响。

综上所述,前人对兴化湾海域潮流泥沙过程研 究取得了众多成果,对于流场特征与悬沙输移机制 有了一定了解。但尚未见报道对兴化湾春季水文环 境要素的具体描述,以及对其与动力因子间的响应 关系的探讨。本文以木兰溪河口及邻近海域为研究 区域,利用 2016 年春季的大面站与连续站观测资 料,对河口水文环境要素的变化特征展开研究,探讨 河口水文环境要素与动力因子之间的响应关系,并 引用通量机制分解法对兴化湾南日水道的悬沙输移 机制进行研究,探讨其悬沙输移特征和控制机制。

1 区域概况

木兰溪位于福建省莆田市境内,全长约 105km,流域面积1830km²,经三江口注入兴化湾。 根据1959—1979年统计资料,多年平均流量为 49.5m³/s,多年平均含沙量为0.3kg/m³,年均输沙 量为46.5万吨。兴化湾地处福建省沿海中部,莆田 市与福清市境内。海湾被龙高半岛、莆田平原和石 城半岛所环绕,东南侧有南日群岛掩护。湾口东南 朝向,部分岸线由基岩海岸组成,局部为淤泥质、砂 质海岸。湾内水域宽阔,东西长达50km,南北宽约 21km,面积约1000km^{2[25]}。湾内主槽自江阴半岛 最南端壁头延至湾口,再通过南日岛北侧的兴化水 道及西侧的南日水道与外海连通,两条水道水深大 部分均在20m以上。兴化湾海域潮汐为正规半日 潮,最大潮差7.51m,最小潮差2.95m,平均潮差 5.22m,潮汐动力较强,湾内涨落潮流由南日水道、 兴化水道两股水流所形成,流路稳定,呈往复流运动,南日岛外侧海域存在逆时针旋转流。兴化湾的 泥沙来源可分为木兰溪径流挟沙、岸滩侵蚀泥沙以 及在潮汐作用下由湾外通过水道进入湾内的泥沙, 其中木兰溪径流挟沙为湾内的主要泥沙来源^[26]。

2 资料与方法

2.1 野外观测与仪器布放

2016年3月27日至4月1日在木兰溪河口及 邻近海域开展了水文环境要素调查,完成了5条主 要调查断面共计42个站位的水文要素观测,并对兴 化湾南日水道FJ4-7站位(平均水深31.3m)开展了 26小时连续观测(图1)。航次调查期间,天气状况 良好,无明显风浪。观测期间,每个站位停留观测 30 分钟左右,使用双频测深仪测量每个站点的水 深;流速剖面观测使用 Flowquest ADCP 600kHz, 根据实际水深情况采用分层法对水体进行测量;带 有温、盐、深度和浊度探头的 OBS-3A 和 CTD(O-CEAN SEVEN 304Plus)固定在不锈钢架上的同一 高度,用绞车进行投放,并根据实际水深在表、中、底 三层或者表层、0.2H、0.4H、0.6H、0.8H 和底层 各停留约2分钟进行观测。全潮定点观测时仪器设 置与观测方法和大面站调查相类似,每小时对水体 的温度、盐度和浊度等多参数进行整个水柱的观测。 具体仪器参数设置见表1。

表 1 观测方法及仪器参数设置

Table 1 Method of observation and instrumental parameters

仪器/布放方式	观测参数	采样方式
Campbell OBS 3A/绞车	浊度	1Hz,表中底或六点法 观测,每层位观测 2min左右
CTD/绞车	温、盐、深	同 OBS
Flowquest ADCP 600k/船 舷固定,探头朝下	流速	2Hz,连续观测,bin: 0.5m,ping:120
双频测深仪/船舷固定,探 头距水面约 30cm	水位变化	连续测量

2.2 数据处理插值方式

本文使用 DIVA 插值方式对表底层位的温度、 盐度与浊度数据进行空间分布比较研究。为研究兴

Fig.1 Observation stations in the Mulan Estuary and its adjacent seas in spring of 2016

化湾南日水道悬沙通量,以观测站位单个潮周期内 涨潮平均流向为纵轴正向,以顺时针垂直于纵向方 向为横轴正向,将观测资料分别在横纵方位投影。 在计算中,将瞬时流速 u(z,t)在纵/横向上的投影 值 u(z,t)分解为垂向平均值及其偏差项之和^[27,28], 即:

$$u(z,t) = \bar{u} + u' \tag{1}$$

垂向平均值 ā 和偏差项 u'又可分解为潮平均项和 潮变化项之和,即:

 $\bar{u} = \bar{u}_0 + \bar{u}_t u' = u'_0 + u'_t, \quad \text{M} \ u(z,t) = \bar{u}_0 + \bar{u}_t + u'_0 + u'_t$ (2)

同理,瞬时含沙量可表达为:

$$c(z,t) = \bar{c}_0 + \bar{c}_t + c'_0 + c'_t \tag{3}$$

由于受潮振荡影响,水深随潮周期会发生较大变化, 因此将水深分解为潮平均项与潮变化项之和,即:

 $h = h_0 + h_t \tag{4}$

则悬沙潮周期 *T*_t平均瞬时单宽悬沙输移通量为:

$$T = \frac{1}{T_t} \int_0^{T_t} \int_0^1 huc \, \mathrm{d}z \, \mathrm{d}t = h_0 \, \bar{u}_0 \, \bar{c}_0 + \langle h_t \, \bar{u}_t \rangle \, \bar{c}_0 +$$

将等式右侧各项依次记为 T1—T8 表示平均流引起的悬沙输移,T2 为斯托克斯漂移输移量,T1+T2 组成平流输移项,即 Lagrange 余流输移量。T3 表示潮汐与含沙量的潮变化相关项,T4 表示悬沙与潮流场的变化相关项,T3 与 T4 共同组成潮泵作用输移项。T5 表示垂向流速与含沙量变化的相关项,为

垂向径环流的贡献;T6 与 T7 表示时均量与潮汐振 动切变引起的剪切扩散;T8 表示垂向潮振荡切变作 用^[29,30]。

3 结果与讨论

3.1 表底层水文泥沙特征

浙闽沿岸流以低温、低盐为特征,出现在春、秋、 冬3季。夏季浙闽沿岸流的南下趋势很弱,一般不 能进入台湾海峡;冬季则在强劲东北季风驱动下,浙 闽沿岸流远端可影响到汕头附近海域[31]。冬季浙 闽沿岸流温度变化范围在 8~17℃之间,盐度变化 范围在 25~31PSU 之间^[32],春季为冬、夏两季之间 过渡阶段,在水深较浅的近岸海域,温度不超过14° C,因此选取14°C等温线表征浙闽沿岸流主体。台 湾暖流水起源于台湾海峡和黑潮,是具有高温、高盐 及低悬沙量特征的水体。台湾暖流冬季温度变化范 围在 13~18°C,盐度变化在 33~34.5PSU 之间,可 将盐度高于 33.5PSU 的水体定义为台湾暖流^[33], 冬季台湾暖流一般可整体到达 31°N 甚至以北水 域^[34]。因此,下文将以 14°C 等温线和 33.5PSU 等 盐度线分别作为浙闽沿岸流和台湾暖流来讨论二者 对研究海域的影响。

如图 2 所示,木兰溪河口及邻近海域的表层温 度分布南北差异显著,变化范围在 13~16°C 之间, 兴化湾及北部海域温度在 13~14°C 之间,由于陆地 热源效应影响,湾口部分水域温度可达 14.5°C。底 层温度明显高于表层,变化范围在13~19°C之间。

图 2 2016 年春季兴化湾及邻近海域表层(a)、底层(b)温度分布图 Fig.2 Spatial distribution of surface(a) and bottom(b) water temperature in spring of 2016 at Xinghua Bay and its adjacent seas

温度小于 14°C 的浙闽沿岸流展布范围表层以兴化 湾南日水道为界;底层则以 30m 等深线为界,浙闽 沿岸流向南延伸至 FJ5 断面的近岸水域。暖水团控 制远岸水域,温度等值线分布密集,基本平行于岸 线。

兴化湾邻近海域表底层的盐度分布趋势基本相同,盐度等值线大致平行于岸线,由近岸向远岸逐渐升高,表层盐度变化范围为 24~32PSU,底层盐度 变化范围为 22~34PSU,表底层盐度差较大(图 3)。 兴化湾海域表层被低盐的木兰溪径流、浙闽沿岸流 以及海峡混合水控制,盐度未高于 33.5PSU。底层 在远岸 40m 以深水域出现盐度高于 33.5PSU 的台 湾暖流,由此向陆盐度逐渐降低。可见,盐度分布与 变化主要受制于径流与海流,浙闽沿岸流所形成的 沿岸低盐水与外海高盐水消长进退。盐度低值区与 温度低值区相一致,受浙闽沿岸流及径流影响;盐度 高值区与温度高值区相一致,为受台湾暖流影响的 海峡混合水控制。

如图 4 所示,春季近岸水体的浊度高于远岸,底 层浊度高于表层。近岸表层水体浊度在 1~25NTU 之间,远岸浊度变化范围在 1~5NTU 之间,浊度高 值区出现在木兰溪河口以及兴化水道;底层水体浊 度在 1~100NTU 之间,大部分海域底层水体浊度 在 3~80NTU 之间,浊度高值区则出现在木兰溪河 口、兴化水道以及平潭岛邻近海域。木兰溪径流挟 泥沙入海,并使河口沉积物发生再悬浮,以致河口处 表现为高浊度特征。兴化水道附近浊度高值区则受 强劲的潮流影响,使底部泥沙发生再悬浮,并使部分 再悬浮颗粒扩散至表层所形成。

图 3 2016 年春季兴化湾邻近海域表层(a)、底层(b)盐度分布图 Fig.3 Spatial distribution of surface(a) and bottom(b) water salinity in spring of 2016 at Xinghua Bay and its adjacent seas

图 4 2016 年春季兴化湾及邻近海域表层(a)、底层(b)浊度分布图 Fig.4 Spatial distribution of surface(a) and bottom(b) water turbidity in spring of 2016 at Xinghua Bay and its adjacent seas

3.2 断面温盐特征

如图 5 所示,通过 FJ3 断面发现,在木兰溪河口 存在一个低温低盐的淡水舌,延伸到 119.5°E 附近, 水体表层温度最高可达 14°C,底层温度最低达 13° C,表底相差不多,近岸垂向分布均匀,向海逐步出 现层化。近岸海域温度要低于远岸,盐度呈现出同 样趋势。在 FJ3 断面 119.7°E 以外,出现一个温度、 盐度明显高于周围水体的水团,盐度在水深 40m 以 下高于 33.5PSU,符合春季台湾暖流高温高盐的基 本特征;FJ3 断面 119.7°E 以西则受温度小于 14°C 的浙闽沿岸流以及木兰溪径流所影响。

南日水道(图 6)同样在河口处观测到低温低盐 水团,展布规模、温盐变化范围与 FJ3 断面大致相 同,在 FJ4 断面 119.65°E 以外,50m 水深以外水域 才可观测到高温高盐的台湾暖流,表明台湾暖流由 南向北沿等深线入深范围有所扩大。30m 以下水 层受台湾暖流显著影响,对 30m 以上水层影响微 弱,30m 以上水层表征为低温低盐特性,受浙闽沿 岸流控制,水团交界处出现明显的温盐跃层。

FI4-7 站位连续观测结果揭示了南日水道水文

3.3 水文环境要素的动力响应

环境要素在潮周期内的变化特征及其对潮流动力的 响应。如图7所示,流速在一天之内出现4次峰值, 呈半日潮主导特征。涨落潮流速明显不等,垂线平 均涨潮流最大流速 0.28m/s, 垂线平均落潮流最大 流速 0.20m/s。潮汐日不等现象较为显著,表现为 2个半日潮周期内(~24小时)出现一次较大的涨潮 流速峰值和一次较大的落潮流速峰值。浊度在单周 日内同样出现两次峰值,均出现在涨潮期间较大流 速发生的时刻,说明底床泥沙再悬浮是南日水道悬 沙输运的重要贡献者,且仅当流速达到底床泥沙的 临界启动速度时,才发生再悬浮现象。因此,FJ4-7 站位水体浊度在较大流速时,才相应增大。表、底层 水体的盐度变化呈现良好的一致性,涨潮期间水体 盐度上升,落潮期间水体盐度则呈下降态势。此外, 温度变化呈现出明显的潮周期特征,2个半日潮周 期内在涨潮期间温度升高,落潮期间温度降低,最高 温度出现在14:00时许。

3.4 泥沙输移机制

根据连续观测数据,按悬沙通量机制分解法计算,结果如表2所示(表中正值表示向海输移,负值 表示向陆输移)。沿南日水道向兴化湾内输移的泥 沙净通量为0.32×10⁻⁴ kg/(m•s)。由T1、T2组

Fig.5 Distribution of salinity and temperature along FJ3 section

37

图 7 FJ4-7 站两个潮周期流速、温度、盐度与浊度的变化特征 Fig.7 Variations in current speeds, temperature, salinity and turbidity over tow semidiurnal tidal cycles at FJ4-7 station

成的平流输沙综合考虑了欧拉余流与斯托克斯余流 对悬沙输移的作用,在兴化湾平均流输沙由 T1 主 导,T1 的方向与欧拉余流方向一致,表征优势流对 净输沙的贡献。T2 大小体现了潮汐与潮流的相关 性,与平均含沙量线性相关。在浅水区斯托克斯输 沙明显,尤其是河口和湾顶站位,而 FJ4-7 站位水深 远大于其他调查站位,T2 更倾向于影响浅水区悬沙 输运,因此该项输沙量占比远小于 T1。平流输沙在 总输沙中占 42.7%,表明平流输沙为悬沙净输移的 主要动力因子。

表 2 各项悬沙输沙量及其所占百分比

Table 2 Distribution of suspended sediment transport influenced by different factors in Xi	nghua Bay
--	-----------

	T1	T2	T3	T4	T5	T6	Τ7	Т8	Т
输沙量(10 ⁻⁴ kg/(m・s))	1	-0.065	0.016	-1.1	0.11	-0.0025	-0.64	0.35×10^{-4}	-0.32
占总输沙量之比(%)	40.5	2.22	1.37	37.64	3.84	0.08	15.62	0.0014	

潮泵输沙由 T3、T4 共同组成,由于涨落流挟沙 强度不同,导致底部泥沙产生潮周期内的不对称输 移,并因滞后效应使得悬沙浓度与流速变化时间序 列存在一定的相位差,涨落潮悬沙输移不能相互抵 消,从而产生净输沙。由表 2 可知,潮泵输沙以 T4 为主,表明悬沙浓度变化很大程度上受潮流速的影 响,底层泥沙再悬浮作用显著以及潮周期不对称输 沙综合影响导致 T4 占比较大。而含沙量与潮变动 相关项 T3 远远小于 T4,这应与南日水道观测站位 悬沙浓度与潮位之间存在一定的相位差有关。

T5项表征垂向环流对悬沙输移的贡献大小,垂 向净环流输沙与河口层化强度关系密切,层化明显 则导致垂向环流贡献增大。在兴化湾南日水道,潮 汐作用强,水体垂向混合均匀,因此T5的贡献减 弱,仅占3.84%。表征时均量与潮汐振动切变引起 的剪切扩散T6、T7项占比16.7%,向湾内输沙,其 中T7作了主要贡献,表明剪切扩散效应不可忽视。 由于流速和含沙量的垂线梯度方向一般相反,因此 垂向潮振动切变项T8贡献很小,作用不明显,可不 予考虑。

4 结论

2016 年春季木兰溪河口及邻近海域大面站及 定点连续观测数据分析结果表明,春季兴化湾温盐 特征受木兰溪径流、浙闽沿岸流与台湾暖流共同控 制,表现为高温高盐水团占据兴化湾外海东南侧海 域,低温低盐水团占据西北侧近岸海域。兴化湾及 邻近海域浊度分布特征主要表现为近岸高于外海, 底层高于表层,近底层物质通过再悬浮作用影响浊 度的分布。兴化湾及邻近海域水体含沙量低,外海 泥沙沿南日水道向湾内输移,净输移量仅为 0.32× 10⁻⁴kg/(m・s),水动力条件复杂却处于相对平衡的 状态。平流输沙与潮泵输沙对悬沙的净输移贡献显 著,底沙再悬浮明显,剪切扩散效应不容忽视。

参考文献(References)

iment dynamics for the phytoplankton spring bloom in a coastal marine ecosystem[J]. Journal of Sea Research, 2009, 62 (4):214-228.

- [2] Liu J T, Hsu R T, Hung J J, et al. From the highest to the deepest: The Gaoping River-Gaoping Submarine Canyon dispersal system[J]. Earth-Science Reviews, 2016, 153:274-300.
- [3] Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean——A Global Synthesis[M]// River discharge to the coastal ocean: a global synthesis. 2011.
- [4] Liu J P, Liu C S, Xu K H, et al. Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait [J]. Marine Geology, 2008, 256(1): 65-76.
- [5] 高建华,高抒,董礼先,等. 鸭绿江河口地区沉积物特征及悬 沙输送[J]. 海洋通报, 2003, 22(5):26-33.[GAO Jianhua, GAO Shu, DONG Lixian, et al. Sediment distribution and suspended sediment transport in Yalu River Estuary[J]. Marine Science Bulletin, 2003, 22(5):26-33.]
- [6] 陈斌,印萍,高飞,等. 滦河口水文环境要素季节性变化特征 及动力响应关系[J]. 海洋环境科学,2015,34(5):729-735. [CHEN Bin, YIN Ping, GAO Fei, LIU Jinqing, et al. Seasonal variation characteristics of hydrological environment factors and dynamic response relationship in Luanhe Estuary[J].Marine Environment Science, 2015, 34(5):729-735.]
- [7] 赵建春,戴志军,李九发,等.强潮海湾近岸表层沉积物时空 分布特征及水动力响应——以杭州湾北岸为例[J].沉积学 报,2008,26(6):1043-1051.[ZHAO Jianchun. Study on the characteristics of temporal and spatial changes in properties of surface sediment on near-shore seabed of strong-tide Bay: a case from the north bank of Hangzhou Bay in Shanghai[J]. Acta Sedimentologica Sinica, 2008, 26(6):1043-1051.]
- [8] 陈小英,刘金庆,郭磊,等. 胶州湾大沽河河口近岸海域短时间尺度沉积动力过程[J]. 海洋地质与第四纪地质,2016,36(6):45-50. [CHEN Xiaoying, LIU Jinqing, GUO Lei, et al. Short term depositional dynamic processes at Duge River Mouth of Jiaozhou Bay[J]. Marine Geology & Quaternary Geology, 2016,36(6):45-50.]
- [9] 郭琳,陈植华. 椒江口-台州湾悬浮泥沙分布特征遥感研究[J]. 武汉理工大学学报,2007,29(5):49-52. [GUOLin, CHEN Zhihua.Remote sensing research on the distributed characteristics of suspended matter in Jiaojiang Estuary and Taizhou Gulf [J]. Journal of Wuhan University of Technology, 2007, 29 (5):49-52.]
- [10] Rao V P, Shynu R, Kessarkar P M, et al. Suspended sediment dynamics on a seasonal scale in the Mandovi and Zuari estuaries, central west coast of India[J]. Estuarine Coastal &-Shelf Science, 2011, 91(1):78-86.

- [11] Priya K L, Jegathambal P, James E J. On the factors affecting the settling velocity of fine suspended sediments in a shallow estuary[J]. Journal of Oceanography, 2015, 71(2):1-13.
- [12] 李孟国.兴化湾水文泥沙特征分析[J].水道港口,2001,22
 (4):156-159.[LI Mengguo. Hydrographic and sediment analyses of Xinghua Bay[J]. Journal of Waterway & Harbor, 2001,22(4):156-159.]
- [13] 高劲松,周良明.兴化湾的潮流研究[J].海岸工程,2009,28
 (4):1-10.[GAO Jinsong, ZHOU Liangming. Study on tide current of the Xinghua Bay[J]. Coastal Engineering, 2009, 28(4):1-10.]
- [14] 童朝锋,王俊杰,张青.兴化湾潮汐潮流特性及工程影响分析[J].水利水运工程学报,2015(1):53-60.[TONG Chaofeng,WANG Junjie,ZHANG Qing. Tidal regime and impacts of works in Xinghua bay on hydrodynamics[J].Hydro-Science and Engineering,2015(1):53-60.]
- [15] 童朝锋,郑联枭,孟艳秋,等.兴化湾悬沙输移机理分析[J]. 水利水运工程学报,2016(2):1-10.[TONG Chaofeng, ZHENG Lianxiao, MENG Yanqiu, et al. Mechanism of suspended sediment transport in Xinghua bay[J]. Hydro-Science and Engineering, 2016(2):1-10.]
- [16] 万新宁,李九发,何青,等. 国内外河口悬沙通量研究进展
 [J]. 地球科学进展,2002,17(6):864-870.[WAN Xinning, LI Jiufa, HE Qing, et al. Review of suspended sediment flux in the world[J]. Advance in Earth Sciences, 2002,17(6): 864-870.]
- [17] Hansen D V. Currents and Mixing in the Columbia River Estuary[J]. Ocean Science and Ocean Engineering, 1965, 2: 943-955.
- [18] Fisher H B.Mixing and dispersion in estuaries[J]. Annual Review of Fluid Mechanics, 1976, 8:107-133.
- [19] Jay D A, Uncles R J, Largeir J, et al. A review of recent developments in estuarine scalar flux estimation[J]. Estuaries, 1997, 20(2):262-280.
- [20] Uncles R J, Easton A E, Griffiths M L, et al. Seasonality of the Turbidity Maximum in the Humber-Ouse Estuary, UK
 [J]. Marine Pollution Bulletin, 1999, 37(3-7):206-215.
- [21] 王康墡,苏纪兰. 长江口南港环流及悬移物质输运的计算分析[J]. 海洋学报, 1987, 9(5):627-637.[WANG Kangshan, SU Jilan. Analysis and calculation of circulation and suspended sediment transportation in the Yangtze Estuary[J]. Acta Oceanologica Sinica, 1987, 9(5):627-637.]
- [22] 万新宁,李九发,沈焕庭.长江口外海滨典型断面悬沙通量 计算[J]. 泥沙研究,2004(6):64-70. [WAN Xinning, LI Jiufa, SHEN Huanting. Suspended sediment flux at the typical cross sections in the offshore area of Changjiang Estuary[J]. Journal of Sediment Research, 2004(6):64-70.]
- [23] Yu Q, Wang Y P, Flemming B, et al. Tide-induced suspen-

ded sediment transport: Depth-averaged concentrations and horizontal residual fluxes [J]. Continental Shelf Research, 2012, 34(1):53-63.

- [24] Becherer J, Flöser G, Umlauf L, et al. Estuarine circulation vs tidal pumping: Sediment transport in a well-mixed tidal inlet[J]. Journal of Geophysical Research Oceans, 2016, DOI: 10.1002/2016JCO//640.
- [25] 中国海湾志编纂委员会.中国海湾志(第七分册)[M].海洋 出版社,1994.[Compilation Committee of China Bays. China Bay in Seventh Volumes (north of Fujian Bay)[M]. Beijing: China Ocean Press, 1994.]
- [26] 闫新兴,刘国亭.福建兴化湾近岸地貌特征与泥沙来源分析
 [J].水道港口,2012,33(6):469-474.[YAN Xinxing, LIU Guoting. Analysis of geomorphic characteristics and sediment source of near-shore area in Xinghua Bay[J]. Journal of Waterway & Harbor, 2012, 33(6):469-474.]
- [27] Dyer K R. The salt balance in stratified estuaries[J]. Estuarine & Coastal Marine Science, 1974, 2(3):273-281.
- [28] 沈健,沈焕庭,潘定安,等.长江河口最大浑浊带水沙输运机 制分析[J].地理学报,1995(5):411-420.[SHEN Jian, SHEN Huanting, PAN Dingan, et al. Analysis of transport mechenism of water and suspended sediment in the turbidity maximum of the Changjiang Estuary [J]. Acta Geographica Sinica, 1995(5):411-420.]
- [29] Dyer K R. Fine Sediment Particle Transport in Estuaries [M]// Physical Processes in Estuaries. Springer Berlin Heidelberg, 1988:295-310.
- [30] Uncles R J, Elliott R C A, Weston S A, et al. Synoptic Observations of Salinity, Suspended Sediment and Vertical Current Structure in a Partly Mixed Estuary[M]// Physics of Shallow Estuaries and Bays. Springer-Verlag, 1986;58-70.
- [31] 万小芳,潘爱军,郭小钢,等. 台湾海峡西侧水动力环境的季节变化特征[J]. 应用海洋学学报, 2013, 32(2):156-163.
 [WAN Xiaofang, PAN Aijun, GUO Xiaogang, et al. Seasonal variation features of the hydrodynamic environment in the western Taiwan Strait[J]. Journal of Applied Oceanography, 2013, 32(2):156-163.]
- [32] Gao S, Wang D, Yang Y, et al. Holocene sedimentary systems on a broad continental shelf with abundant river input: Process-product relationships[J]. Geological Society London Special Publications, 2015:1-37.
- [33] Su Y S, Weng X C. Water Masses in China Seas[M]// Oceanology of China Seas. Springer Netherlands, 1994:3-16.
- [34] 唐晓晖,王凡.长江口邻近海域夏、冬季水文特征分析[J].海 洋科学集刊,2004:46-70.[TANG Xiaohun, WANG Fan. Analyses on hydrographic structure in the Changjiang River Estuary adjacent waters in summer and winter[J]. Studia Marina Sinica, 2004:46-70.]