长江中下游地区 1:20 万金元素 不同尺度数据的地球化学特征响应

徐善法^{1,2},王学求^{1,2},张必敏^{1,2},聂兰仕^{1,2},迟清华^{1,2} (1.中国地质科学院地球物理地球化学勘查研究所,河北廊坊 065000;2.中国地质科学院应用 地球化学重点开放实验室,河北廊坊 065000)

摘要:通过对长江中下游地区1:20万金元素不同尺度数据的地球化学特征响应的研究,认为长江中下游存在地球化学巨省,这个地球化学巨省为长江中下游地区提供源源不断的矿源。同时,讨论了低密度地球化学方法能够 用于全国或全球地球化学填图的可行性。

关键词:长江中下游;地球化学特征响应;金元素 中图分类号: P632 文献标识码: A 文章编号: 1000 – 8918(2012)01 – 0027 – 06

从20世纪开展全国1:20万区域化探普查以 来,我国已完成了600多万km²的化探普查工作,积 累了数以千万计的高质量区域化探扫面数据,取得 了宝贵的资料。这些资料在地质找矿,特别是在找 金矿中发挥了巨大作用,但是其潜在的价值尚未得 到充分发挥和利用,前人并未对这些数据是否与不 同尺度的地球化学特征响应有某种对应关系进行过 研究。长江中下游地区横跨湖北、江西、安徽、江苏 省,是一个地质找矿工作历史悠久,各种方法利用程 度与综合研究工作程度较高的地区。该区有多个大 型铜、铁矿矿集区,大中型矿床聚集,主要矿产资源 储量(如铁、铜、硫、金等)在我国已探明的资源储量 中所占比重较大,是我国重要的成矿区带之一^[1-7]。 笔者希望通过此次研究,对全国1:20万区域化探 扫面数据的再一次利用起到示范作用。

1 区域地球化学特征

1.1 数据来源及说明

所用数据来源于全国 1: 20 万区域化探普查中 的地球化学测量数据,由于所涉及的地区面积较大, 这些图幅的样品采集可能不是由一个单位完成的, 样品也不是由一个实验室在同一时间段内完成的, 因此数据存在一定的图幅误差。为了更好地利用和 评价这些数据,研究过程中并没有对数据进行任何 处理,因此,图上有少数矿床(点)并未落在异常内, 但这并不影响我们对数据的整体认识与研究。

1.2 1:20万地球化学数据特征

对全区收集的1:20万区域地球化学数据进行 综合分析后发现,大部分元素的峰度和偏度都较大, 特别是成矿元素 Ag、As、Au、Cu、Hg、Mn、Mo、Pb、Sb、 Sn、W、Zn 的含量变化范围较大,且偏离正态条件, 说明本区地质构造背景复杂。浓集系数大于1.5 的 指标有 As、Au、Bi、Cd、Hg、Mo、Sb、Sn、Sr、W、CaO、 Na₂O,表明这些指标在研究区内有明显的富集现 象;浓集系数在1.2~1.5 的指标有 Ag、Ba、Be、Cu、 F、P、U、Zr、MgO,表明这些指标在研究区内明显偏 高,显示一定的富集趋势。另外,长江中下游以富集 CaO、Na₂O和 MgO 为特征(表1)。

1.3 1:40万地球化学数据特征

1:40万地球化学数据是以4km×4km为网格大小,10km为搜索半径,用距离倒数的指数加权平均进行插值,对1:20万区域地球化学数据进行网格化后得到的。从1:40万地球化学数据的参数统计(表2)可知,大部分元素的峰度和偏度相对较大,但与1:20万区域地球化学数据相比,元素的极差偏小,峰度与偏度也相对较小。这主要由于在计算过程中,某些高值数据被其他数据分摊了,但数据的总体格局并没有变化。成矿元素Ag、As、Au、Cu、Hg、Mn、Mo、Pb、Sb、Sn、W、Zn的含量变化范围较大, 且偏离正态条件。浓集系数大于1.5的指标有Au、Cd、Mo、Sb、Sn、Sr、CaO;浓集系数在1.2~1.5的指标有Au、Cd、Mo、Sb、Sn、Sr、CaO;浓集系数在1.2~1.5的指标有Ag、As、Ba、F、Hg、Pb、W、MgO、Na₂O,显示

基金项目:国家 973 计划课题(2007CB411406)

收稿日期:2010-12-30

36 卷

				42.1				n-7930	.=)(+)	_			
指标	Ag	As `	Au	В	Ba	Be	Bi	Cd	Co	Cr	Cu	F	Hg
最小值	1	0.1	0.02	0.1	5	0.08	0.01	1	0.22	0.1	0.1	39	1
最大值	21960	920	7729.6	830	22260	237	175	145000	115.5	1374	3534.5	94980	81500
平均值	111.1	10.73	2.34	54.3	631	2.30	0.48	271	12.6	55.7	23.4	523	88
标准差	186.0	13.61	33.18	36.9	538	2.09	1.48	1132	5.6	31.7	35.8	1514	576.6
峰度	39.8	14.50	188	2.1	8.8	42.5	49.2	50.8	1.4	5.1	38.8	37.4	104.9
偏度	3463.9	506.21	41951	24.0	167.5	3690.6	4119.4	4793.3	9.7	130.3	2481.1	1685.4	13094
背景值	80.2	6.8	1.13	49.2	445	1.9	0.31	110	12	51.8	18.6	384	53
<u>浓集系数</u>	1.39	1.57	2.07	1.11	1.42	1.21	1.55	2.46	1.05	1.08	1.26	1.36	1.66
指标	La	Li	Mn	Мо	Nb	Ni	P	Pb	Sb	Sn	Sr	Th	Ti
最小值	1.8	0.9	5	0.07	0.1	0.1	1	0.4	0.02	0.1	0.8	0.1	332
最大值	5190	1050	27550	522	240	652.8	20620	9526.2	658	1260	2199	478	48000
平均值	44.9	35.4	699	1.19	20.4	23.0	556	31.5	0.97	5.5	112.6	14.7	4744
标准差	25.3	20.4	355	3.15	9.1	14.9	358	57.8	3.63	11.4	125.2	8.8	1411
峰度	118.8	14.7	18.2	75.9	3.7	5.3	6.5	102.7	108.9	56.8	3.4	10.3	2.2
偏度	24061	499.7	95 4.3	11046	34.4	117.2	178.2	14748	16938	5234.7	17.4	273.9	26.5
背景值	40.3	32.6	627	0.62	17.1	20.5	443	25.7	0.48	3.47	52.9	12.6	4730
<u>浓集系数</u>	1.11	1.09	1.11	1.92	1.19	1.12	1.26	1.23	2.02	1.57	2.13	1.17	1.00
	U	V	W	Y	Zn	Zr	Al ₂ O ₃	CaO	Fe ₂ O ₃	MgO	K ₂ O	Na ₂ O	SiO ₂
最小值	0.08	2	0.04	0.6	2.3	18	0.2	0.03	0.2	0.08	0.1	0.03	6.8
最大值	88.9	2094	20311	220	5453.3	8289	31.55	34.29	29.31	55	9.4	35	96.8
平均值	3.02	82.6	3.7	26.9	80.2	373	13.0	0.91	4.54	1.0	2.44	1.0	69.1
标准差	2.23	40.3	79.4	8.5	60.8	189	2.5	1.29	1.42	0.72	0.85	0.97	6.1
峰度	9.1	5.9	238.2	3.7	27.3	7.1	0.1	6.3	1.4	13.1	0.8	3.1	-0.5
偏度	170.9	138.4	59917	40.3	1797.3	156.1	1.2	82.6	6.6	615.5	1.0	51.8	2.2
背景值	2.5	78.7	2.35	25.6	67.5	309	12.9	0.33	4.26	0.77	2.23	0.37	70
浓集系数	1.20	1.05	1.56	1.05	1.19	1.21	1.01	2.76	1.07	1.30	1.09	2.70	0.99

表 1 研究区 1:20万区域地球化学参数统计

注:Au 的含量单位为10⁻⁹,氧化物的含量单位为%,其他元素的含量单位为10⁻⁶;浓集系数=平均值/背景值。表2、表3同。

表 2 研究区 1:40 万区域地球化学参数统计

指标	Ag	As	Au	В	Ba	Be	Bi	Cd	Co	Cr	Cu	F	Hg
最小值	20.3	0.7	0.28	0.5	125.2	0.47	0.05	29	2.4	6.1	2.7	140	9.3
最大值	2250.3	138. 9	755.93	507.4	7061.1	34.18	24.29	16872	39.9	288.5	374.4	17828	7138.5
平均值	110.2	10.6	2.35	57.2	605	2.25	0.47	248	12.6	56.3	23.2	504	91.0
标准差	75.1	7.3	6.87	30.4	349	1.11	0.53	416	4.0	22.0	15.1	470	146.2
峰度	6.6	3.2	70.9	0.75	4.2	8.6	13.9	10.5	0.3	0.3	7.3	14.0	19.5
偏度	93.5	23.8	7208.1	7.4	35.1	148	390.2	214.9	1.0	2.5	101.9	293.5	588.5
背景值	89.5	8.6	1.47	55.2	474	1.96	0.34	121	12.8	63.1	20.5	394	62.8
浓集系数	1.23	1.23	1.60	1.04	1.28	1.15	1.38	2.05	0.98	0.89	1.13	1.28	1.45
指标	La	Li	Mn	Mo	Nb	Ni	Р	РЬ	Sb	Sn	Sr	Th	Ti
最小值	12	7.4	103.1	0.17	3.7	1.4	96.5	10.5	0.06	1	18.1	3.7	1338
最大值	247.4	596.4	3762.3	90.24	91.7	123.7	3147.7	758.9	33.73	134.2	1218.7	140.6	13479
平均值	44.5	35.2	692	1.13	20.3	23.2	542	31.5	0.92	5.5	110	14.6	4734
标准差	11.4	15.3	191	1.27	6.6	10.2	258	19.8	1.03	5.6	104	6.1	970
峰度	1.6	10.0	1.8	21.1	2.0	0.9	3.2	12.9	11.8	8.9	3.3	5.7	0.9
偏度	9.4	249.0	12.5	1225.8	8.9	5.4	15.8	303.5	267.1	123.9	13.5	63.2	5.5
背景值	42.1	33.9	651	0.69	17.8	24.3	465	26.2	0.56	3.7	71.2	12.9	4762
浓集系数	1.06	1.04	<u> </u>	1.64	1.14	0.95	1.17	1.20	1.64	1.50	1.54	1.13	0.99
指标	U	V	W	Y	Zn	Zr	Al_2O_3	CaO	Fe ₂ O ₃	MgO	K ₂ O	Na ₂ O	SiO ₂
最小值	0.24	18.4	0.2	6.7	14.9	128.3	3.95	0.1	1.41	0.12	0.65	0.1	46.4
最大值	26.29	419.1	1256	98.5	813.2	2533.2	23.71	11.7 2	11.48	9.21	6.89	4.38	89.2
平均值	2.97	81.9	3.42	26.6	78.2	370.8	12.91	0.89	4.49	1.0	2.38	0.99	69.4
标准差	1.35	25.1	14.7	6.0	31.5	129.6	1.91	0.84	0.97	0.48	0.70	0.83	4.6
峰度	4.0	1.1	49.9	2.3	3.5	3.5	0.3	2.57	0.8	2.6	0.7	1.7	-0.5
偏度	31.8	7.3	3402	16.2	35.5	29.6	1.6	11.6	2.1	19.9	1.0	2.6	2.9
背景值	2.57	82.0	2.46	26.1	69.2	319.8	12.76	0.48	4.32	0.82	2.22	0.69	70.1
浓集系数	1.16	1.00	1.39	1.02	1.13	1.16	1.01	1.85	1.04	1.22	1.07	1.43	0.99

了不同程度的富集趋势。

1.4 1:100万地球化学数据特征

1: 100 万地球化学数据以 10 km × 10 km 为网 格大小,25 km 为搜索半径,对 1: 20 万区域地球化 学数据进行网格化后得到。从 1: 100 万地球化学 数据的参数统计(表 3)可看出,大部分元素的峰度 和偏度都较大,但与 1: 20 万区域地球化学数据相 比,元素的极差偏小,峰度与偏度也相对较小,这也 是由于计算过程造成的。成矿元素 Ag、As、Au、Cu、 Hg、Mn、Mo、Pb、Sb、Sn、W、Zn 的含量变化范围较大, 且偏离正态条件。浓集系数大于1.5 的指标有 Au、 Cd、Sb、Sn、Sr、CaO、Na₂O;浓集系数在1.2~1.5 的 指标有 Ag、As、Ba、Bi、F、Hg、Pb、U、W、MgO,显示了 不同程度的富集趋势。

指标	Ag	As	Au	В	Ba	Be	Bi	Cd	Co	Cr	Cu	F	Ha
最小值	22.3	0.72	0.28	0.7	133.5	0.55	0.054	33.3	2.8	5.4	2.8	149	9.7
最大值	1380.6	93.54	268.88	369.4	4868.3	33.46	30.278	9394.2	40.07	206.7	221.8	10312	2949 3
平均值	112.5	10.3	2.26	54.5	600	2.33	0.51	258	12.2	53.4	22.4	504	84.8
标准差	75.1	7.2	6.0	31.4	338	1.19	0.78	441	4.1	22.9	14.2	441	99.8
峰度	4.8	2.9	33.1	0.6	3.5	8.8	20.8	9.9	0.4	0.3	4.8	11.1	14.6
偏度	43.0	17.7	1349.7	3.3	23.5	167.2	687.8	147	0.9	1.0	44.5	• 175.9	338.1
背景值	89.6	8.1	1.45	52.2	469	1.99	0.35	129	12.1	61.7	19.2	400	63.2
浓集系数	1.26	1.27	1.56	1.04	1.28	1.17	1.46	2.00	1.01	0.87	1.17	1.26	1.34
指标	La	Li	Mn	Mo	Nb	Ni	P	Pb	Sb	Sn	Sr	Th	Ti
最小值	14.4	7.2	110.4	0.1	4.61	1.7	93.5	11.0	0.06	1.06	19.0	4.1	1307
最大值	154.7	559.9	2739.1	119.7	119.78	104.8	3014.7	378.6	32.16	340.5	995.2	148.5	11349
平均值	45.1	34.8	683	1.18	20.5	22.2	527	33.0	0.90	5.7	104.5	15.4	4657
标准差	12.7	15.3	198	1.28	7.5	10.3	258	19.2	1.15	8.4	101.8	7.1	1013
峰度	1.9	13.6	1.4	12.6	2.8	0.9	3.3	7.3	14.6	23.6	3.3	5.1	0.6
偏度	7.6	437.7	7.2	326.4	18.9	4.2	15.7	95.2	346.6	840.7	13.0	56.1	3.6
背景值	41.9	33.9	646	0.70	17.8	21.3	458	26.5	0.54	3.8	67.2	12.9	4704
浓集系数	1.08	1.03	1.06	1.69	1.15	1.04	1.15	1.25	1.67	1.50	1.56	1.19	0.99
指标	U	V	W	Y	Zn	Zr	Al_2O_3	CaO	Fe ₂ O ₃	MgO	K ₂ 0	Na ₂ O	SiO ₂
最小值	0.23	18.9	0.24	8.1	16.8	137.9	4.48	0.03	1.57	0.16	0.65	0.1	47.9
最大值	24.02	263.7	637.1	96.4	708.3	2386	22.19	11.67	10.76	8.5	6.42	4.27	86. 6
平均值	3.14	79.0	3.7	26.7	79.5	381.3	12.95	0.81	4.42	0.94	2.44	0.91	69.3
标准差	1.49	26.2	14.4	6.7	32.6	143.6	1. 96	0.84	1.00	0.50	0.76	0.82	4.9
峰度	3.6	0.8	32.9	2.4	3.8	3.5	0.05	3.0	0.7	3.1	0.8	1.9	-1.1
偏度	28.1	3.5	1296.6	15.8	48.8	26.6	1.6	17.9	1.7	30.0	1.1	3.0	13.1
背景值	2.6	78.9	2.6	25.9	69.7	322.8	12.86	0.40	4.24	0.76	2.28	0.59	69.7
浓集系数	1.21	1.00	1.42	1.03	1.14	1.18	1.01	2.03	1.04	1.24	1.07	1.54	0.99

表 3 研究区 1: 100 万区域地球化学参数统计

2 不同尺度地球化学数据特征响应

分别以 2 km × 2 km、4 km × 4 km、10 km × 10 km × 10 km、16 km × 16 km、25 km × 25 km 为网格大小,对应的以 5、10、25、40、62.5 km 为搜索半径绘制金元素 地球化学异常图,异常下限均取 2.5 × 10⁻⁹。

图1中金的地球化学异常分散,异常面积较小, 但基本上能看出具有成矿成带的趋势,有鄂东南成 矿带、九江一瑞昌成矿带、铜陵成矿带等,大多表现 为局部异常,是单个矿床(矿田)或由小数矿床组成 的局部成矿域的地球化学特征响应。

图 2 中金的地球化学异常已成片出现,已知矿 床大多在异常中,在大冶一阳新、武穴、铜陵一安庆、 景德镇一黄山、绍兴—杭州—苏州、广德庙西、芜 湖一马鞍山—南京、南昌—进贤等地区已形成了— 定规模的地球化学异常区带,在这一区带内,金的含 量较高,地球化学套合关系清楚,说明内部可能存在 大型或超大型矿床。

图 3 中金的地球化学异常与图 2 相比,异常区 域更集中,异常范围更大,地球化学套合关系明显, 已知矿床大多在异常中。在江西与安徽之间出现了 一个很大的圆形构造,位于景德镇一黄山—绩溪— 宁国—铜陵—安庆—景德镇一带,面积达 35 500 km²,属于地球化学巨省。在这个地球化学巨省内, 有 9 024 个样品数据,其中金含量最大值 7 729.6 × 10⁻⁹,最小值 0.02 × 10⁻⁹,平均值 5.3 × 10⁻⁹,资源 总量 25 557 t,说明该地球化学巨省中金含量较高, 浓集特征显著。在绍兴—杭州—湖州—苏州—常州 一带,也出现了一个地球化学巨省,面积达 20 000 km²,有 2 338 个样品数据,金含量最大值为602.9 ×

图 2 长江中下游 1: 40 万金的地球化学异常

图 3 长江中下游 1: 100 万金的地球化学异常

10⁻⁹,最小值 0.1×10⁻⁹,平均值 4.6×10⁻⁹,资源总量 1 300 t。这两个地球化学巨省内,金的含量都较高,地球化学套合关系非常清楚,浓集特征显著。在黄石一大冶和瑞昌、南昌一进贤等地区已形成一定规模的地球化学异常区带,区带内金含量也较高,地球化学套合关系清楚,其中南昌一进贤地区异常面积达5 000 km²,有1 171 个样品数据,金含量最大值为 52×10⁻⁹,最小值 0.4×10⁻⁹,平均值 5.3×10⁻⁹,资源总量 2 000 t;黄石一大冶地区异常面积达 1 200 km²,有 300 个样品数据,金含量最大值为 150×10⁻⁹,最小值 0.2×10⁻⁹,平均值 3.9×10⁻⁹,资源总量 600 t;瑞昌地区异常面积达 2 500 km²,有 530 个样品数据,金含量最大值为 330×10⁻⁹,最小值 0.2×10⁻⁹,平均值 4.5×10⁻⁹,资源总量 1 600 t。

图 4 与图 3 相比,金的地球化学异常更趋统一, 异常区域更集中,块体范围较大。绩溪和芜湖—马 鞍山—南京合并为一个地球化学巨省,面积达到了 35 500 km²,有 11 162 个样品数据,其中金含量最大 值为 7 729.6×10⁻⁹,最小值为 0.02×10⁻⁹,平均值 为 4.7×10⁻⁹,资源总量 28 000 t,地球化学套合关 系较清楚。绍兴—常州—带的地球化学巨省面积达 19 000 km²,有 4 081 个样品数据,其中金含量最大 值为 904×10⁻⁹,最小值 0.1×10⁻⁹,平均值 4.1× 10⁻⁹,资源总量 10 400 t。南昌—进贤地区异常面积 达5 300 km²,有 1 216 个样品数据,其中金含量最大 值为 52×10⁻⁹,最小值 0.4×10⁻⁹,平均值 2.9× 10⁻⁹,资源总量 2 100 t。黄石—大冶地区异常面积 达1500 km²,有367个样品数据,其中金含量最大

图 4 长江中下游 1: 256 万金的地球化学异常

图 5 长江中下游 1: 625 万金的地球化学异常

值为 150 × 10⁻⁹, 最小为 0.2 × 10⁻⁹, 平均值 3.6 × 10⁻⁹, 资源总量 720 t。瑞昌地区异常面积达 3 000 km², 有 600 个样品数据, 其中金含量最大值为 330 × 10⁻⁹, 最小为 0.2 × 10⁻⁹, 平均值 4.1 × 10⁻⁹, 资源 总量 1 600 t。

在图 5 中,长江中下游地区金的地球化学异常 连成一片,成为一个特大的地球化学异常区,面积达 95 300 km²,有 17 841 个样品数据,其中金含量最大 值为7 729.6×10⁻⁹,最小值0.02×10⁻⁹,平均值为 4.1×10⁻⁹,资源总量52 500 t,说明长江中下游地区 存在一个金的地球化学域,且内部的地球化学模式 表现出明显的套合关系,使得长江中下游地区具有 源源不断的矿源,成为长江中下游地区存在大型、超 大型及特大型矿床的重要成矿条件。黄石一大冶和 瑞昌地区异常合二为一,面积达3 600 km²,有 727 个样品数据,其中金含量最大值为250×10⁻⁹,最小 值0.2×10⁻⁹,平均值3.7×10⁻⁹,资源总量1 800 t。 南昌一进贤地区异常面积达4 600 km²,有1 087 个 样品数据,其中金含量最大值为 52×10⁻⁹,最小值 0.5×10⁻⁹,平均值2.9×10⁻⁹,资源总量1 800 t。

从1:20万~1:625万金的地球化学异常图 中可以看出,金的异常区域逐渐变大,反映异常变化 从细节走向全局,从地球化学异常到地球化学巨省, 但金的地球化学特征并未发生大的变化。

3 结论与讨论

(1)以研究区 1: 20 万区域化探数据为基础计算的 1: 40 万、1: 100 万数据,保持了原尺度数据的总体格局和地球化学特征。

(2)从1:20万~1:625万地球化学异常图所

示的金异常范围看,金异常变化逐渐从细节走向全局,从地球化学异常到地球化学巨省,但金的地球化 学特征并未发生大的变化。

(3)长江中下游地区存在一个约 11 万 km² 的 地球化学巨省,为长江中下游地区提供了源源不断 的矿源,使长江中下游地区存在很多大型、超大型及 特大型矿床。

(4)不同尺度的地球化学异常图反映了金在同一地区不同的变化趋势,小比例尺反映全局,大比例 尺显示细节。用1:20万数据制作的1:625万地 球化学异常图能够反映全局的地球化学信息,因此, 用低密度数据进行系统追踪以寻找潜在的大型、超 大型矿床,无疑是一种好的方法,也是一条高效率、 低成本的可行途径,从而也证明,用低密度进行全国 地球化学填图或者全球地球化学填图是可行。

参考文献:

- [1] 翟裕生,姚书振,林新多,等.长江中下游地区铁铜(金)成矿规 律[M].北京:地质出版社,1992:1-234.
- [2] 李瑛,贺菊瑞,孙南圭,等.长江中下游地区铁帽型金矿床
 [M].北京:地质出版社,1992:1-65.
- [3] 韦永福,吕英杰,江雄新,等.中国金矿床[M].北京:地震出版 社,1994:153-154.
- [4] 吴言昌. 安徽省沿江地区矽卡岩型金矿成矿条件和成矿规律 [C]//中国金矿主要类型找矿方向与找矿方法文集 第二辑. 北京:地质出版社,1994:203-276.
- [5] 王道华,傅德鑫,吴履秀.长江中下游区域铜金铁硫矿床基本 特征及成矿规律[M].北京;地质出版社,1987:23-93.
- [6] 伍超群,杨洪之.鸡笼山砂卡岩型金铜矿床地球化学特征及成 矿模式[J].地质与勘探,1993,29(8):52-57.
- [7] 吕庆田,杨竹森,严加永.长江中下游成矿带深部成矿潜力、找 矿思路与初步尝试——以铜陵矿集区为实例[J].地质学报, 2007,81(7):865-881.

GEOCHEMICAL CHARACTERISTICS RESPONSE OF DIFFERENT SCALES OF DATA: A CASE STUDY OF GOLD ELEMENT FROM 1: 200000 REGIONAL DATA OF MIDDLE-LOWER REACHES OF THE YANGTZE RIVER

XU Shan-fa^{1,2}, WANG Xue-qiu^{1,2}, ZHANG Bi-min^{1,2}, NIE Lan-shi^{1,2}, CHI Qing-hua^{1,2}

(1. Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China; 2. Applied Geochemical Open Laboratory, CAGS, Langfang 065000, China;

Abstract: Based on a study of the geochemical characteristics response of different scales of gold element data from 1: 200000 geochemical survey in the middle-lower reaches of the Yangtze River, the authors hold that there exists a giant geochemical province in the middle-lower reaches of the Yangtze River, which has continuously provided ore sources for the middle and lower Yangtze River areas. The feasibility of applying the low-density geochemical method to whole China or the whole world is also discussed in this paper. Key words: middle-lower reaches of the Yangtze River; geochemical characteristics response; gold element

作者简介:徐善法(1963 –),男,博士,教授级高级工程师,主要从事勘查地球化学、应用地球化学、地球探测与信息处理工作。