DOI: 10.11720/j.issn.1000-8918.2014.1.23

水平电偶源 r 方向电场值应用的理论研究

袁博1,李帝铨1,程党性2,3

(1.中南大学地球科学与信息物理学院,湖南长沙 410083;2.中国石油长庆油田分公司勘探开发研究院,陕西西安 710018;3.低渗透油气田勘探开发国家工程实验室,陕西西安 710018)

摘要:根据准静态极限条件下,水平电偶极源在均匀半空间表面产生的 r 方向电场分量 E_r 表达式,分别在一维和 三维条件下,对 E_r 进行数值模拟并迭代计算出相应视电阻率,讨论 E_r 的观测范围和应用优势。在一维条件下,通 过对四种典型层状模型(两层 D、G,三层 H、K)的数值计算,并与相同条件下的 E_x 视电阻率进行对比,结果表明:E_r 比 E_x 受测量方位的影响更小;在三维条件下,选取均匀半空间存在异常体的模型,采用积分方程法对 E_r 进行数值 计算,与相同条件下的 E_x 视电阻率进行对比,结果表明:当均匀半空间存在低阻异常体时,E_r 对低阻体 y 方向边界 的反应比 E_x 效果较好。

关键词:广域电磁法;*E*,视电阻率;一维模拟;三维模拟;*E*,视电阻率 中图分类号: P631 文献标识码: A 文章编号: 1000-8918(2014)01-0125-05

在最初的大地电磁法中,使用相互正交的电场 和磁场计算视电阻率,即卡尼亚电阻率。由于采用 平面波理论,阻抗形式简洁,解释简单。之后,Myron Goldtein 提出可控源音频大地电磁法(CSAMT),将 均匀大地上电偶极子场源的电磁场表达式简化,取 任意一组正交的电磁分量之比,也可以得到卡尼亚 电阻率表达式。但由于上述过程中采用了简化的方 法,人为的丢掉了许多代表非远区特点的高次项,该 公式被限定在了远区方成立^[1-2]。由此产生的非波 区效应,导致大量频点定义无物理意义,这种情况 下,视电阻率无法正确地反映地下地电断面的真实 电性,给人工源频率测深的资料解释造成困扰。

1978 年曹昌祺提出一种改进的波区视电阻 率^[3],1986年,B.R.Spies和 D.E.Eggers提出利用波 阻抗的实、虚部定义视电阻率^[4],但上述视电阻率 定义仍属于波区视电阻率,而波区视电阻率在过渡 带和近区产生畸变是必然的^[5]。1991年,殷长春和 朴化荣首次提出了视电阻率定义和全区视电阻率定 义的基本原则^[6],之后,汤井田、何继善系统地提出 了不同场源条件下根据不同场分量定义的全区视电 阻率,并对其分析比较^[2,5,7-10]。特别是水平电偶源 频率电磁测深中 x 方向的电场测量($E-E_x$)及相应 的全区视电阻率计算,已经在何继善提出的广域电 磁法中得到大量的实际应用^[2]。 场量 *E*_x 也存在一些不足之处。对于任意方向的场分量而言,都存在场值为零、无法测量的"零值带"。当采用赤道偶极装置时,在观测角度为 60°~120°的范围内测量,计算出的 *E*_x 视电阻率精度较高,但是在靠近零值带的一定范围内测量,计算出的视电阻率精度比较低,而且有畸变^[11],显示其受观测角度的影响比较大。这在对长测线进行数据采集的时候影响比较大,由于测线过长,需要移动场源的位置,而场源移动前后需要对少量测量点重复测量, 重复测量点所得结果的不一致会对最终解释造成困扰。

此次研究在前人的基础上,对 E-E_r,即水平电 偶源在 r 方向(由偶极矩中点指向测量点)产生的电 场分量进行一维和三维模拟,并根据均匀半空间时 的表达式提取出全区视电阻率,与 E-E_x 全区视电阻 率进行对比,分析其可行性和实用性,以期为电磁场 数据采集提供更多选择。

1 理论基础

选取坐标原点位于偶极源中心的柱坐标系,使 φ=0的方向为偶极矩方向,z 轴垂直向下。在准静 态极限条件下,水平电偶极源在均匀半空间表面产 生的电场分量可以表示为^[2,5]

收稿日期:2013-01-10 基金项目:国家自然科学基金项目(41204054)

$$E_r = \frac{IdL\cos\varphi}{2\pi\sigma r^3} \left[1 + e^{ikr}(1 - ikr)\right] \quad , \qquad (1)$$

$$E_{\varphi} = \frac{IdL\sin\varphi}{2\pi\sigma r^3} \left[2 - e^{ikr}(1 - ikr)\right]_{\circ} \qquad (2)$$

式中: E_r 为测点处沿收发连线方向的电场值, E_{φ} 为测点处垂直收发连线方向的电场值,r 为观测点距 偶极中心的距离, φ 为收发连线方向与偶极矩方向 的夹角,I 为谐变电流,dL 为偶极源的长度, σ 为半 空间的介质电导率,k 为波数。

由于不同坐标系的坐标可以相互转化,选取坐标原点同样位于偶极源中心的直角坐标系,使 x 轴指向偶极矩方向, z 轴垂直向下。由式(1)、式(2)即可推出直角坐标系条件下电偶极源的电磁场分布

$$E_{x} = \frac{I dL}{2\pi\sigma r^{3}} [1 - 3\sin^{2}\varphi + e^{ikr}(1 - ikr)] , (3)$$

$$E_{y} = \frac{3IdL}{2\pi\sigma r^{3}} \sin\varphi \cos\varphi_{\circ} \qquad (4)$$

式(1)~式(4)表明,水平电偶极源所产生电场的水 平分量与地下电阻率成正比,当磁导率为µ、谐变电 流的圆频率为ω时,有

$$k = (1 + i) \sqrt{\mu \omega \sigma / 2}$$
 (5)

式(1)~式(3)与频率有关,所以, E_r 、 E_{φ} 、 E_x 均可以 进行频率测深。 E_y 在层状介质条件下的表达式与 频率存在关系,因此式(4)同样具有频率测深意 义^[9]。

由式(1)~式(4),可以得出水平电偶极源在频 率f和收发距r一定的情况下,电场各水平分量与 观测角度的关系对比(图1)。

图 1 观测角度变化时水平电偶源各水平电场分量变化对比

由图 1 可以看出, E_r 、 E_{φ} 的零值带较少,随观测 角度变化信号强弱的变化较缓慢。采用共轴偶极装 置($\varphi=0^{\circ}$ 或 $\varphi=180^{\circ}$)时, E_r 的信号强度最大,同时 E_x 也存在幅度相同的峰值,因此 E_r 和 E_x 在共轴偶 极装置条件下可以进行对比,但是明显可以看出,固 定沿偶极矩方向的收发距之后,就信号强度而言,可 以在更长的测线上测量 *E*,。4 种电场水平分量随观 测角度的变化各不相同,若 *E*,视电阻率具有较好的 效果,则可以扩大电磁法勘探的野外观测范围,在面 对复杂的地形条件时有更多的选择。

将由 E_r 得到的视电阻率记做 ρ_r , 计算方法与 E_x 视电阻率 ρ_x 计算方法类似^[2], 由于 E_r 的观测是 通过观测两点间的电位差 ΔU_{MN} 实现的,式(1)可以 改写为

$$\rho_r = \frac{2\pi r^3}{IdL} \cdot \frac{\Delta U_{MN}}{MN} \cdot \frac{1}{\cos\varphi [1 + e^{ikr}(1 - ikr)]} , \qquad (6)$$

由式(5)可以知道,式(6)中 ρ_r 是一个隐函数,因此可以采用计算机迭代求解的方法,得到 ρ_r 的最佳 值。

2 一维模拟

在一维数值模拟中,首先在均匀半空间中验证 E_r 的正确性和有效性,然后主要对比 E_r 和 E_x 受观 测角度的影响。在一维数值模拟各曲线图中, ρ_1 第 一层介质的电阻率, $\lambda_1 = 2\pi \times 503 \sqrt{\rho_1/f}$,是电磁波在 第一层介质中的波长。

2.1 均匀半空间

由图 2 可以看出,视电阻率在全区与均匀背景的电阻率完全一致,证明了 *E*,视电阻率作为全区视电阻率的有效性和正确性。

2.2 观测角度的影响

选择 4 种典型多层地电断面模型(两层 D、G, 三层 H、K),观察观测角度对 $E_r \, E_x$ 视电阻率的影 响。由于 $E_r \, E_x$ 均分别关于 x 轴、y 轴对称,且 φ = 90°时 $E_r = 0, \varphi = \arcsin \sqrt{1/3} \approx 35.3$ °时 $E_x = 0,$ 为不失 一般性,并对比观测角度逼近 $E_r \, E_x$ 各自零值带时 的测量效果,所以观测角度选择 $\varphi = 10^\circ, 25^\circ, 45^\circ,$

80°。在图 3 中, ρ_r , ρ_x 分别对应 E_r 、 E_x 视电阻率, D、 G、H、K 为 4 种多层地电断面模型, ρ_n 为第 n 层的电 阻率, h_n 为第 n 层的厚度,基底厚度未标注。

由上图可以看出,随着观测角度的变化,*E_x*视电阻率各曲线出现明显的分离,且变化规律不明显, 而*E*,视电阻率的曲线几乎没有出现分离。两种全 区视电阻率相比,*E*,视电阻率受观测方位的影响更 小。事实上,在野外采集过程中,*E_x*的可测量角度 大多限制在 60°的扇形以内(采用赤道偶极装置时, 若采用共轴偶极装置则更小),超出这个范围之后, *E_x*视电阻率会出现比较明显的畸变, *E_r* 受观测 方位影响小这一特点使其可观测范围远远超出 *E_x*。 在野外数据采集工作中, 有时会遇到测线过长, 需要 多个场源才能完成整条测线测量的情况,这时既可 以选择测量 E,以减少场源的数量,也可以选择在相 邻场源的重复测量点处测量 E,以减少场源位置变 化对反演结果的影响。

3 三维模拟

3.1 均匀大地模型

采用简单水平均匀大地模型,电阻率为 100 Ω •m,使用三维程序对 *E*,进行数值模拟,以检验 *E*, 视电阻率在三维条件下是否适用。

从结果看,均匀大地模型计算的视电阻率最大 相对误差为4.32%,平均相对误差为3.10%。进一 步证明三维地质条件下,由*E*,提取视电阻率的原理 和程序都是正确的。

表1 均匀半空间模型三维数值模拟结果

f	$ ho_{ m s it}$ ậ	相对误差	f	$ ho_{ m s}$ 计算	相对误差
Hz	$\overline{\Omega \cdot \mathbf{m}}$	%	Hz	$\overline{\Omega \cdot \mathbf{m}}$	%
8192	97.00132	2.99868	8	103.6708	3.6708
4096	99.99589	0.00411	4	104.3266	4.3266
2048	101.5313	1.5313	2	103.9115	3.9115
1024	102.2406	2.2406	1	103.7611	3.7611
512	102.7074	2.7074	0.5	103.7511	3.7511
256	102.9264	2.9264	0.25	103.7758	3.7758
128	103.0365	3.0365	0.125	103.7975	3.7975
64	103.0979	3.0979	0.0625	103.8103	3.8103
32	103.1108	3.1108	0.0312	103.8158	3.8158
16	101.9677	1.9677	0.0156	103.8188	3.8188

3.2 均匀半空间中存在单个低阻体

采用 COMMEMI 3D-1 标准模型,模型几何尺寸

为1 km×2 km×2 km,电阻率为0.5 Ω·m,顶部埋深 250 m,围岩电阻率为100 Ω·m。模型如图4a。

将异常体按照 100 m×100 m×100 m 进行离散, 这样整个异常体就被离散成 10×20×20=4 000 个单 元。根据异常体顶部埋深为一个单元时,划分单元 的边长不大于一个单元可以满足精度要求的原则^[12],上述离散方法基本满足需求。

由图 4 可以看出,对均匀半空间存在单个高阻体的模型进行模拟时, E_r 对应的视电阻率在 x方向和 y方向均呈现出明显闭合, E_x 对应的视电阻率在 x方向呈现出明显闭合,y方向上则闭合不明显。说明当前条件下, E_x 在 y方向对边界的分辨能力不如 E_r ,两者在 x方向上的分辨能力近似。

图 4 均匀半空间中存在单个低阻体的模型及其三维模拟结果(f=16 Hz)

3.3 均匀半空间中存在单个高阻体

采用类似 COMMEMI 3D-1 的模型,模型几何尺 寸为1 km×2 km×2 km,电阻率为 10 000 Ω·m,顶 部埋深 250 m,围岩电阻率为 100 Ω·m(图 5a)。比 照均匀半空间中存在单个低阻异常体时对异常体的 离散方法,同样可以将异常体按照 100 m×100 m× 100 m进行离散,这样整个异常体就被离散成 10× 20×20=4 000 个单元。

由图 5 可以看出,对均匀半空间存在单个高阻体的模型进行模拟时, *E*, 视电阻率和 *E*, 视电阻率

在 x 方向和 y 方向均呈现出闭合,虽然可以看出 E_x 在 y 方向的分辨能力稍差,但可以接受。说明当前 条件下, E_x 与 E_r 的分辨能力近似。

4 结语

(1) E_r 的零值带较少,幅值变化随观测角度变 化较缓慢,由于 φ =0°或 φ =180°时 E_r 的信号最强, 选择对 E_r 进行测量时应尽量采用共轴偶极装置,对 E_r 视电阻率的提取与 E_x 类似,可以采取迭代计算 的方法。

(2)一维地质条件下, *E*, 视电阻率受测量方位 的影响比 *E*_x 视电阻率小, 即使在零值带附近也能取 得不错的效果。当野外数据采集的测线过长, 需要 移动场源位置时, 测量 *E*_r 可以降低重复测量点的误 差。

(3) 三维地质条件下采用共轴偶极装置时, 对 均匀半空间存在单个低阻体, *E*, 视电阻率比 *E*, 视 电阻率效果更好,体现在对 *y* 方向边界的分辨能力 更强; 对均匀半空间存在单个高阻体, 两种视电阻率 效果近似。总之, *E*, 是电磁场中值得继续研究的一 个场量。

参考文献:

- [1] 何继善 编译.可控源音频大地电磁法[M].长沙:中南大学出版社,1990.
- [2] 何继善.广域电磁法和伪随机信号电法[M].北京:高等教育出版社,2010.
- [3] 曹昌祺.水平层状大地的交流视电阻率[J].地球物理学报, 1978,21(3):248-281.
- [4] Spies B R, Eggers D E. The use and misuse of apparent resistivity in electromagnetic methods [J]. Geophysics, 1978, 21 (3): 248 – 281.
- [5] 汤井田,何继善.可控源音频大地电磁法及其应用[M].长沙: 中南大学出版社,2005.
- [6] 殷长春,朴化荣.电磁测深法视电阻率定义问题的研究[J].物 探与化探,1991,15(4):290-299.
- [7] 汤井田,何继善.水平电偶源频率测深中全区视电阻率定义的 新方法[J].地球物理学报,1994,37(4):543-552.
- [8] 何继善.广域电磁测深法研究[J].中南大学学报:自然科学版, 2010,41(3):1065-1072.
- [9] 汤井田,周聪,张林成.CSAMT 电场 y 方向视电阻率的定义及 研究[J].吉利大学学报:地球科学版,2011,41(2):552-558.
- [10]汤井田,何继善.水平多层介质上水平电偶源频率电磁测深的 阻抗实部等效电阻率[J].物探与化探,1994,18(2):92-93.
- [11] 余云春.广域电磁法一维正反演[D].长沙:中南大学,2010.
- [12] 李晓波,朴化荣.两层大地中三维体的激发极化与电阻率响应的积分方程模拟[J].地球物理学报,1988,31(3):342-352.
- [13] 黄力军.电偶源瞬变电磁测深一维全区视电阻率解释方法研究[J].物探与化探,1995,15(5):391-397.

THE THEORETICAL STUDY OF *r*-DIRECTION ELECTRIC FIELD VALUE APPLICATION OF THE HORIZONTAL ELECTRIC DIPOLE

YUAN Bo¹, LI Di-quan¹, CHENG Dang-xing^{2,3}

(1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China; 2. Exploration & Development Research Institute, Changaing Oilfield Company of PetroChina, Xi'an 710018, China; 3. National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields, PetroChina, Xi'an 710018, China)

Abstract: Depending on the formula of electromagnetic field data from horizontal electric dipole under the quasi-static conditions, this paper deals with the measurement sector and advantages of electric field *r*-direction. Through numerical calculation of several typical layered models such as D, G, H and K, the E_r apparent resistivity is compared with the E_x apparent resistivity under 1-D conditions. The result shows that the measuring position has less effect on E_r apparent resistivity. Through numerical calculation of a single anomalous body existent in half-space by using the integral equation method, the E_r apparent resistivity is compared with the E_x apparent resistivity anomalous body.

Key words: wide field electromagnetic method; E_r apparent resistivity; 1-D forward; 3-D forward; E_x apparent resistivity

作者简介:袁博(1990-),男,中南大学硕士研究生,主要从事电磁法理论研究及实际应用。