文章编号: 1009-6248 (2003) 02-0050-10

西天山地区浅成低温热液型金矿地质 特征及成矿模式

沙德铭^{1,3}, 董连慧², 毋瑞身³, 田昌烈³, 贾斌³

(1. 东北大学资源与土木工程学院,辽宁 沈阳 110006;2. 新疆地质勘查局,新疆 乌鲁木齐 830000;3. 沈阳地质矿产研究所,辽宁 沈阳 110033)

摘 要:新近发现于西天山吐拉苏地区的阿希大型金矿床及其外围的伊尔曼得、恰布坎卓它等金矿床 (点)的矿化类型为浅成低温热液型,并进一步划分为冰长石-绢云母型和硅化岩型。矿床赋存于伊犁晚 古生代裂谷区的吐拉苏—也里莫墩火山岩带中,矿床围岩为下石炭统大哈拉军山组中基性—中酸性陆 相火山岩系。冰长石-绢云母型以阿希金矿为代表,矿床为沿火山口缘环状。放射状断裂充填的石英脉 型:硅化岩型以伊尔曼得金矿为代表,矿化体呈层状、似层状,受火山岩系底部沉火山碎屑岩控制。结 合该地区成矿地球化学特征分析,本文讨论了区内金矿成矿特征、成矿背景和成矿条件,建立了西天山 地区浅成低温热液型金矿的成矿模式。

<mark>关键词</mark>:浅成低温热液型金矿;冰长石-绢云母型;硅化岩型;成矿模式;阿希金矿;伊尔曼得金矿;西 天山地区

中图分类号: P611 文献标识码: A

与陆相火山作用有关的浅成低温热液系统金矿 是近年来全球发现的大型、超大型金矿的主要类型, 引起世人的广泛关注。从全球角度来看,该类型金 矿的分布集中在环太平洋带内带的新生代岛弧 区^[1~6](日本—菲律宾—巴布亚新吉内亚和美洲西 海岸)和外带的地盾区之上的中生代断陷盆地^[7~12] (中国东部沿海地区)。该类型金矿的这种成矿区域 性、时限性和构造属性被地质学家广泛接受,并按 照这一思路实施找矿工作。

二十世纪九十年代初,我国西部找矿工作的重 大突破之一是在西天山的吐拉苏地区发现了阿希大 型金矿和其外围的伊尔曼得、恰布坎卓它、京希等 金矿床 (点)。研究成果显示,阿希等金矿是产在晚 古生代裂谷环境下的浅成低温热液矿床,并进一步 划分为冰长石-绢云母型 (以阿希金矿为代表)和硅 化岩型(以伊尔曼得金矿为代表)^[13~21]。西天山阿希 等金矿的发现和研究成果,拓展了浅成低温热液系 统金矿新的找矿思路和找矿领域。

1 成矿地质特征

西天山地区浅成低温热液金矿宏观上受伊犁晚 古生代裂谷(亦称伊犁晚古生代火山岩区^[19])控制, 后者依据产出及活动特征可以划分为3个火山岩 带,自南而北依次为察布查尔山早—中石炭世火山 岩带、阿吾拉勒山中石炭世—二叠纪火山岩带和吐 拉苏-也里莫墩早石炭世火山岩带。阿希等浅成低温 金矿集中产于吐拉苏-也里莫墩火山岩带内,同时 在察布查尔山火山岩带内也有线索发现。笔者等在 研究过程中,在本地区划分了4级火山构造,与浅

收稿日期: 2003-01-16; 修回日期: 2003-04-15

基金项目:国家科技攻关项目(85-902-04-01)、(96-915-03-06)和地质大调查项目(199910200218)

作者简介:沙德铭(1962-),男,研究员,从事矿产地质研究工作,现为东北大学博士研究生。

成低温金矿有关各级火山构造及其控矿特征列入表 1。直接的控矿构造为火山口缘环状(弧形)、放射 状断裂以及其他形式的次级断裂和裂隙^[16,19]。

金矿的容矿围岩为下石炭统大哈拉军山组的一 套中基性-中酸性火山岩,构成了一个完整火山旋 回,可进一步划分为3个亚旋回和5岩性段(表2)。 阿希金矿为代表的冰长石-绢云母型金矿直接容矿 围岩为大哈拉军山组第5岩性段(上安山岩段)的 安山岩、英安岩和石英安山玢岩,矿体呈脉状充填 于火山口缘断裂系统内。伊尔曼得金矿为代表的硅 化岩型金矿受控于大哈拉军山组第二岩性段沉积砾

表1 与西天山地区浅成低温金矿相关火山构造及其控矿特征

Tab. 1 Differentiation and ore-control features of volcanostructures of the enithermal gold deposits

	struc	dates of the epithemia	i go la depositis
级	别	名 称	控矿规模
Ⅰ级火	山构造	伊犁晚古生代火山岩区	伊犁金矿集区
Ⅱ级火	山构造	吐拉苏—也里莫墩 火山岩带	吐拉苏—也里 莫墩金矿带
Ⅲ级火	山构造	吐拉苏火山盆地	阿希金矿田
IV级火	山构造	阿希破火山口	阿希金矿床

岩、沉火山角砾岩和酸性凝灰岩内, 矿体呈层状、似 层状产出,受层间裂隙带、剥离带控制。

表 2 西大山地区浅成低温金矿谷矿火山岩沽动特征一觉

Tab. 2 Features of the host volcanic rocks of the epithemal gold deposits in West Tianshan Mountains

								-		
时代	岩性 段	旋 回	亚旋 回	厚度 (m)	岩石组合及岩 岩 性	相岩相	火山 环境	火山 相系	火山作用 机 制	与火山构造关系 及产出状态
$C_{1}d^{2}$ $C_{1}d^{2}$ $C_{1}d^{2}$ $C_{1}d^{2}$ $C_{1}d^{2}$	C_1d^5	<i>l</i> ⁵		710	石英角闪安山玢岩、杏仁状辉石 安山岩、角闪安山岩、英安质角 砾熔岩、含火山弹火山角砾岩夹 凝灰质砂岩、砾岩	爆发-沉积柤、 喷溢柤、次火山 岩柤、火山颈 (管道) 相		喷发 沉积	喷溢作用为主, 伴以爆发-沉积 作 用 及 期 后 (潜)次火山作 用	集中分布在火山岩带西 部的吐拉苏地区,主体呈 近南北向分布,在阿希金 矿区附近-破火山喷发 中心、火山管道外部相, 被陆立内师之火山颈(管
		八 哈			含火山弹火山集块角砾岩夹薄 层安山岩、晶屑岩屑凝灰岩	爆发相、喷溢相	陆	相 系		道)相切割,其上为下石 炭统阿恰勒河组火山-沉 积岩不整合覆盖
	a .1	拉 拿			英安质火山角砾岩、火山集块 岩、英安质玻屑凝灰岩、火山灰 凝灰岩及安山岩	爆发相为主	拍		爆发、喷溢作用 交互作用及期 后次火山作用	广泛分布在吐拉苏-也 里莫墩地区,呈北北西向 即近东西向各带状分布,
		山 火	业旋回	2 254	中酸性火山角砾岩、岩屑玻屑凝 灰岩、酸性熔结凝灰岩、英安岩 及安山岩	爆发相为主, 喷 溢相次之	11	喷发相系	1	与下、委底地层重断层 接触,构成吐- 也火山岩 带的主体
	C_1d^3	山旋	坊	178	霏细斑岩、杏仁状玄武岩、橄榄玄 武岩、玄武安山岩、安山质火山角 砾岩、火山集块岩及英安斑岩	喷溢相为主, 爆 发相次之			喷溢作用为主, 爆发作用次之	主要分布在吐拉苏地区 火山岩带南北边缘内侧, 或围绕基底岩块呈环状
	$C_1 d^2$		第 I 亚 旋 294 回		安山岩、流纹质火山灰球凝灰 岩、火山灰凝灰岩、火山灰球熔 结凝灰岩、沉凝灰岩、沉凝灰角 砾岩夹灰岩、沉积砾岩、石英霏 细斑岩、流纹质火山灰凝灰岩	沉积-爆发相为 主, 喷溢相次之	海陆交互相	沉积—喷发和	爆发作用为主, 水下沉积作用 为辅	分布,构成火山构运的外 部(边缘)相
	C_1d^1			150	沉积砾岩	沉积相	10	系	沉积作用	

2 矿化类型及矿床地质特征

2.1 矿化类型

根据金矿成矿地质环境 容矿火山岩、成矿方 式、矿物组合、蚀变特征及其成矿地球化学特征等, 将区内浅成低温热液型金矿进一步划分为冰长石- 绢云母型和硅化岩型[15]。

- 2.2 矿床地质特征
- 2.2.1 冰长石-绢云母型

以阿希金矿为代表,矿化明显受火山机构控制 (图 1)。火山机构由火山管道相和次火山岩相的安 山质角砾熔岩,石英角闪安山玢岩和喷出-喷溢相的 安山岩、安山质凝灰岩、集块角砾岩和含火山弹的 集块岩、集块角砾岩等构成。火山岩系均以火山口 为中心呈弧形展布,向内对倾,反映破火山口的形 成过程。火山机构东北部为下石炭统阿恰勒河组碎 屑岩覆盖。在高精度磁测图上,磁异常呈环形磁异 常带,由大小不等的局部磁异常链接而成。异常带 与地表环状(弧形)构造吻合较好。对其进行化极和延拓处理表明,深部环状构造、放射状构造仍较发育^[16,19]。阿希金矿产出于阿希破火山口的西缘,地表出露矿体7条,其中I号矿体长千余米,延深450m,最大厚度34.63m,品位中等,单矿体储量已达大型规模^[16-18]。

图1 阿希金矿地质图

Fig. 1 Geomap of Axi gold deposit 1. 下石炭统阿恰勒河组碎屑岩; 2~ 8. 下石炭统大哈拉军山组陆相火山岩 (2. 英安质角砾集块熔岩; 3. 石英角闪 安山玢岩; 4. 安山质火山角砾岩; 5. 含火山弹火山角砾岩; 6. 安山岩; 7. 晶屑岩屑凝灰岩; 8. 安山质凝灰岩); 9. 长石斑岩; 10. 断裂及编号; 11. 火山岩产状; 12. 主要金矿脉及编号

阿希金矿主矿体受火山口缘弧形 F2 断裂控制, 呈脉状充填,矿石主要为石英脉型,少量蚀变岩型; 脉石矿物为石英(玉髓)、绢云母、方解石、冰长石、 明矾石和粘土矿物等;矿石矿物:银金矿、硒银矿、 黄铁矿、毒砂、白铁矿、方铅矿、深红银矿、闪锌 矿、黄铜矿、黝铜矿、黄铁钾矾和角银矿等;矿石 多呈角砾状(石英、碧玉、安山玢岩)、蜂窝状,网 脉状 (石英)、梳状构造,显示出低压特点; 矿物组 分中以冰长石、银金矿、深红银矿、硒化物 黄铁 钾凡及层纹状、胶状玉髓等的组合为主,显示低温 特点等^[16~18]。

根据矿物共生组合、相互穿插的关系, 阿希金 矿可以划分为4个成矿阶段: 灰白色-石英-玉髓阶 段、烟灰色石英-玉髓阶段、石英-碳酸盐阶段和石英 -硫化物阶段。角砾状构造是各成矿阶段最为普遍的 矿石组构,角砾多具有隐爆角砾岩特点,为晚期热 液充填胶结。

围岩蚀变强烈,包括面型展布的火山自蚀变的 绿泥石化和线性分布的硅化、绢云母化、碳酸盐化 和粘土化。热液蚀变分带清楚,沿含金石英脉两侧 向外逐次为硅化带、绢英岩化带和碳酸盐化、粘土 化带^[15,20]。

包裹体测试结果,成矿温度集中在 120~ 180 °C,由此计算获得成矿压力 72×10⁵~ 218×10⁵ Pa, 成矿深度 400~ 500 m,显示浅成低温矿床特点^[16]。

总之, 阿希金矿在成矿条件、成矿特征等方面 与世界同类型金矿(如日本菱刈)相近和可比。 2.2.2 硅化岩型

以伊尔曼得金矿为代表,比较有规模的还有京 希、恰布坎卓它、吐拉苏西南等矿床。该类型金矿 为本区比较特殊的一类金矿,具有一定的找矿前景。

与阿希金矿(冰长石-绢云母型)相比,其成矿特 点明显不同。在宏观成矿特征上与日本著名的南萨型 (亦曾以硅化岩型相称)相近,但迄今为止,在该类型 金矿中尚未发现深成明矾石、硫盐等酸性硫酸盐型金 矿的标型矿物,故暂以"硅化岩型"命名^[15]。

伊尔曼得金矿产于下石炭统大哈拉军山组第二 岩性段的沉积砾岩、沉凝灰角砾岩和酸性凝灰岩中, 明显受容矿岩厚度和产状等条件控制。矿化体与围岩 渐变过渡,顺层产出,形态上呈似层状、层状、透镜状。 金矿化远离火山活动中心,以热液浸染交代为主,面 型分布。矿体出露东西长 250 m,南北宽 15~100 m, 平均宽度 50 m。试金样品最高品位 5.37 × 10⁻⁶,平均 1.3 × 10⁻⁶,并由此圈出 9 个矿体(图 2)。其中工业 矿体 2 个,规模分别为 57 m × 4 m 和 38 m × 3 m。

含金矿石主要有含金强硅化沉火山角砾岩、含金 强硅化沉凝灰角砾岩、含金强硅化凝灰砾岩及含金强 硅化凝灰砂岩等。金矿床矿物组成简单,矿石矿物包 括硫化物黄铁矿、毒砂、白铁矿和氧化物褐铁矿、赤铁 矿、金红石和黄铁钾矾等,脉石矿物主要为石英,其次 尚见方解石、黑云母、绿泥石、绢云母等。

矿床成矿温度低(以88~98°C为主,个别达 300°C左右),成矿压力低(56.5×10⁵~176×10⁵ Pa),成矿深度浅(226~705m),成矿流体低盐度 (0.03% ~ 5.55%, W NaCl%)。成矿流体以大气降水为 主,成矿介质 pH 值 5.5,显示中性特点 (200°C时 中性 pH = 5.56),成矿环境为还原环境。

图 2 伊金曼得金矿地质略图 (据漆树基等修改, 1995)

Fig. 2 Geo-sketch of Yiem and gold deposit
1. 第四系; 2. 凝灰砾岩; 3. 凝灰岩; 4. 黄铁矿化; 5. 高岭土化; 6.
(1~3) × 10⁻⁶矿体; 7. > 3 × 10⁻⁶矿体; 8. 断裂; 9. 推测断裂;

总之,该类型金矿具备了某些浅成低温热液金矿 的特征,但与冰长石-绢云母型金矿不同,也与酸性硫 酸盐型金矿有异。其发现拓宽了靶区金矿找矿思路, 也为浅成低温热液金矿的研究提供了新的内容。

3 成矿地球化学特征

3.1 容矿火山岩地球化学

3.1.1 容矿火山岩岩石化学成分

本区金矿容矿围岩为一套中基性-中酸性火山 岩和次火山岩。化学成分 SD₂ (52.16% ~ 78.32%, 平均 64.63%)、A LO₃ (9.63% ~ 17.54%)、N a₂O (0.08% ~ 6.67%, 平均 3.39%), K₂O (0.12% ~ 5.73%, 平均 2.79%),属于玄武安山岩(粗面玄武 岩)-安山岩(粗安岩)-英安岩(粗面英安岩)-流 纹岩组合。与中国安山岩平均化学成分相比,具有 相对富 SD₂, N a₂O、贫 K₂O、T D₂, CaO 和M gO, 全碱含量(2.05% ~ 8.76%)较高, N a₂O 含量明显 高于 K₂O 和里特曼指数相对偏高之特征。岩石化学 成分以钙碱性系列火山岩为主,少部分碱性系列火 山岩。火山作用具有从钙性火山岩经过钙碱性火山 岩向碱性火山岩演化的特点,反映在火山作用过程 是一个碱质增加的过程。 正如资料所示:本区容矿火山岩的活动比较复 杂,虽然出现中基性和酸性火山岩的共生,但未构 成双峰式组合。在里特曼-戈蒂里图解(图3)中,成 分点主要落在B区内的岛弧型火山岩右侧,部分成 分点落入偏碱性—碱性岩区。我们的理解是:大哈

图 3 大哈拉军山组火山岩 bg τ bg σ **图**解 (据里特曼, 1973)

Fig. 3 Rittmann idagram of volcanic rocks of Dahalajunshan formation

(after R it tm ann, 1973)

A 区.非造山带火山岩; B 区.造山带火山岩; C 区.A、B 区派 生之碱性火山岩。1.第2岩性段; 2.第3岩性段; 3.第4岩 性段; 4.第5岩性段 拉军山组火山岩不是单纯的钙碱性系列(岛弧型)火山岩,而是钙碱性-碱性系列组合,岩石化学成分具有造山带钙碱性岩向大陆内部稳定区碱性岩过渡的特征。

3.1.2 容矿火山岩稀土元素地球化学特征

大哈拉军山组火山岩稀土元素含量较高, Σ_{REE} 从 41.59×10⁶~135.83×10⁶,明显高于 W.V.Boynton 推荐之球粒陨石稀土元素总量 (5.2533×10⁶)。而与世界安山岩REE=(25~ 341)×10⁶相比,在其范围内并总量中等。其中轻 稀土含量 29.05×10⁶~95.37×10⁶,重稀土含量 12.54×10⁶~38.75×10⁶,轻、重稀土L/H皆大 于1,属于轻稀土富集型。Sm/Nd明显低于球粒陨 石(Sm/Nd=0.333),接近大陆壳平均稀土元素组 成。微量元素总体上以K、Rb、Ba、Th等大离子元 素的明显富集,Ti、Y、Yb、Sc等的明显亏损为特 征。接近于板内过渡玄武岩系列岩石的组成。

3.1.3 容矿火山岩成矿元素组成特征

为了探讨金矿成矿作用过程中成矿元素及其变 化特征, 笔者有针对性地采集了容矿火山岩、各类 近矿蚀变岩以及矿石样品,进行了定量分析。表 3 是 与阿希金矿相关的分析数据。

从表 3 可以看出: 在阿希金矿的容矿火山岩中

表3 阿希金矿成矿元素组成特征表 (×10⁻⁶)

	Tab. 3	The ore-form ing	elements com	position of Axi	gold deposit	$(\times 10^{-6})$
--	--------	------------------	--------------	-----------------	--------------	--------------------

	样品数			. 地壳	微	建元素平均	值	浓集克拉克值			区域背景浓集率	
元素	围岩	蚀变岩	矿石	丰度	围岩	蚀变岩	矿石	围岩	蚀变岩	矿石	蚀变岩	矿石
Au	20	15	16	0.004	0.208	0.57	5.68	59.43	162.6	1 621	2.74	27.29
Ag	20	15	16	0.075	1.68	3.25	10.20	22.40	43.33	135.9	1.95	6.07
Cu	20	15	16	63	41.88	37.8	27.69	0.66	0.6	0.44	0.9	0.66
Pb	20	15	16	12	21.34	28.77	35.60	1.79	2.40	2.97	1.35	1.67
Zn	20	15	16	94	65.06	62.36	27.05	0.69	0.66	0.29	0.96	0.42
A s	20	15	16	1.8	35.30	1 488	4 273	19.61	827	2 374	42.16	67.25
Sb	20	15	16	0.62	7.18	41.07	140.8	11.58	66.24	227.2	5.72	19.61
Вi	20	15	16	0.004	0.08	0.14	0.20	18.33	31.86	46.51	1.74	2.58
Нg	20	15	16	0.089	0.04	0.16	0.23	0.49	1.77	2.60	3.63	5.33
Se	20	15	16	0.075	0.03	0.23	1.28	0.38	3.12	17.11	8.17	44.83
Mo	20	15	16	1.3	0.47	3.04	24.75	0.36	2.34	19.05	6.46	52.66
Sn	20	15	16	1.7	1.96	3.83	2.28	1.15	2.25	1.34	1.95	1.16
Be	9	3	4	1.3	1.38	1.25	1.34	1.06	0.96	1.03	0.91	0.97
Ва	9	3	4	390	107	98	298.9	0.27	0.25	0.77	0.92	2.79
Co	11	12	12	25	24.32	22.4	25.02	0.97	0.90	1.00	0.92	1.03
Ni	11	12	12	89	74.7	57.25	66.72	0.84	0.64	0.75	0.77	0.89

注: 微量元素地壳丰度值据黎彤 (1970)。

Au、Ag、As、Sb、Bi等元素含量明显高于地壳克 拉克值, 浓集系数分别为 59.43、22.40、19.61、 11.58 和 18.33、Pb、Sn、Be 等元素亦显示一定程 度的富集、其他元素则不同程度亏损。说明容矿火 山岩具有高的Au、Ag、As、Sb、Bi等元素背景场; 近矿蚀变岩中, Au、Ag、As、Sb、Bi等元素浓集 系数分别达 162.57、43.33、826.99、66.24 和 31.86,显示出蚀变作用过程中上述元素发生了进一 步富集之特点。同时, Hg、Se、Mo、Sn 等元素的 含量也显示了富集之特征,属于带入元素;而Cu、 Zn、Be、Ba、Co、N i 等则出现一定程度亏损,属于 带出元素; 矿石中元素的富集达到顶峰, 其中Au、 A s, A g, Sb, B i, Se 浓集克拉克值达到十数乃至数 千倍, Hg, Pb 等进一步富集, 在蚀变岩中亏损的元 素, 除了Cu、Zn 进一步亏损外, 其他元素则有不同 程度富集特点。

同时,我们也对以伊尔曼得为代表的硅化岩型 金矿矿石及其围岩进行了同样的工作,发现,容矿 火山岩Au、Ag、As、Sb、Hg、Pb 丰度都高于地壳 克拉克值数倍、数十倍,具富集场特点;含金矿石 中上述元素进一步同步富集。

从富集程度和过程上看,与浅成低温Au 矿化 相关的伴生成矿元素为Ag、Ag、Sb、Bi、Se、Hg 等成矿元素组合与围岩具备的成矿元素背景组合基 本一致。我们对比理解是:矿化与围岩之间存在某 种继承性关系。

3.2 矿床同位素地球化学

3.2.1 铅同位素

为了便于对比, 笔者测定了矿石中黄铁矿、方 铅矿、白铁矿等含金硫化物的铅同位素组成, 同时 也对基底岩石、火山岩和次火山岩进行了全岩测试。 结果显示, 基底岩系、容矿火山岩和含金矿石的铅 同位素组成具有比较好的一致性, 其中²⁰⁶Pb/²⁰⁴Pb 为 17.920 6~ 18.582 4,²⁰⁷Pb/²⁰⁴Pb 为 15.435 5~ 15.6079,²⁰⁸Pb/²⁰⁴Pb 为 37.750 9~ 38.428 0, 变化 范围较小, 显示某种可能存在的继承性联系。在对 比了多伊和扎特曼 (1979) 所建立的全球不同地质 环境铅构造模式 (图 4) 后发现, 本区铅同位素样品 数据点几乎全部落在地幔曲线零年龄端的右外侧和 单阶段演化模式零等时线的左侧。大部分样品点聚 集在造山带曲线和地幔线之间,部分样品位于造山 带与上地壳曲线之间,另有少数样品则位于下地壳 曲线之上;说明大哈拉军山组火山岩的铅同位素基 本上是由不同来源铅不同比例混合而成,反映在火 山岩的来源上具多源混合之成因特点。同时,考虑 到铅同位素组成的一致性,认为金矿化铅可能来源 于基底岩系和火山岩。

图 4 阿希金矿区铅同位素组成图解

(据Doe 和 Zartman, 1979) Fig. 4 Pb⁻isotopic composition of A xi gold deposit (after Doe and Zartman, 1979)

3.2.2 硫同位素

阿希金矿含金矿石中黄铁矿 δ^{4} S 值变化为 0.95‰~10.51‰,平均4.93‰,峰值域为4‰~5‰ (表4)。说明其所代表矿石硫同位素组成特征属于 "低重硫型"。反映黄铁矿形成时处于较为封闭的还 原环境。 δ^{4} S 主体集中在低的正值,没有负值出现, 说明成矿作用过程中硫的来源可能比较单一,以深 源火山成因硫为主。与中生代东部沿海地区陆相火 山岩区金矿相比较(紫金山金矿 δ^{4} S 值-9.01‰~ 2.35‰^[10],平均-2.80‰;团结沟金矿 δ^{4} S 值-0.7‰~ -12.5‰,平均-5.06‰^[11]),阿希金矿的 δ^{4} S 值域的变化范围不大,但前二者主要集中在负 值区,反映出在硫来源等方面是存在一定差别的。

伊尔曼得金矿硫同位素为- 5.2‰, 显然富轻 硫, 与阿希金矿存在明显差异, 反映成矿作用不是 在单一的封闭系统内进行, 而是在较为开放的系统 内完成。这一点与矿石内广泛出现的石英晶簇 晶 洞构造等反映一致。从组成上与中国东部火山岩区 金矿相似。

表 4 阿希金矿硫同位素组成

Tab. 4 The sulfur isotopic composition of A xi gold deposit

ß	可希	01	02	03	04	05	06	07
河石	则定 广物	黄铁矿	黄铁矿	黄铁矿	黄铁矿	黄铁矿	黄铁矿	黄铁矿
č (5 ³⁴ S ‰)	5.41	6.38	2.89	6.08	5.10	8.10	4.01
ß	可希	08	09	10	11	12	13	伊尔 曼得
河石	则定 广物	黄铁矿	黄铁矿	黄铁矿	黄铁矿	黄铁矿	黄铁矿	黄铁矿
6	5 ³⁴ S ‰)	10.51	4.3	4.03	2.68	3.72	0.95	-5.2

注: 序号 01~ 08 系笔者等资料, 其余为新疆地勘局试验测试中 心资料。

3.2.3 氢氧同位素

阿希金矿氢氧同位素测试结果列入表 5, 可见 其 δ⁸O_{H2}0 值变化为- 10‰~ 6.73‰, δ_{H2}0 值为-59‰~ - 115.6‰,其氢氧同位素组成特点与中国东 部沿海陆相火山岩区乃至全球陆相火山岩区浅成低 温金矿相似,基本处于同一值域范围,显示成矿流 体以大气降水为主。

 $\delta^{18}O_{H,O}$ 样品号 测定矿 Фн,о δ^{18} O石英 矿床 SA 15-9 石英 - 59.504 5.938 - 10 SA I10-1 石英 - 62.653 8.984 3.5 SA 16-3 石英 - 106.26 12.158 3.7 SA 18-3 石英 - 79.488 8.561 - 3.66 SA I1-2 石英 - 113.56 13.196 6.73 阿希金矿 SA 16-7 石英 - 103.88 11.611 4.57 SA 126-9 - 81.001 石英 8.062 - 3.03 901T6-S04 石英 - 101.4 13.08 1.97 石英 901T6-S06 - 115.2 - 2.65 12.24 901T6-S03 石英 - 109.8 - 2.62 12.43 紫金山金 - 98~ 6.3~ 3.6 矿[19] 团结沟金 - 115~ 4.4~ 0.4

表 5 阿希金矿矿石氢氧同位素组成

Tab. 5 The H-O isotopic composition of A xi gold deposit

注: 紫金山、团结沟金矿有关数据据陆志刚等 (1997) 和胡受 奚等 (1998)。

3.2.4 铷锶同位素

矿[20]

阿希金矿区铷锶同位素测定结果显示: 阿希金 矿不同阶段含金石英脉锶同位素平均含量略有差 别,⁸⁷Sr/⁸⁶Sr 相差不大, (⁸⁷Sr/⁸⁶Sr); 初始比值十分接 近,平均为 0.706,反映出不同成矿阶段的内在联 系^[21]。含金石英脉锶同位素初始值与区内容矿火山 岩、矿化有关蚀变矿物十分接近,均小于 0.709,大 于 0.705,结合矿石中黄铁矿硫同位素显示的深源 特点,可以推断: 阿希金矿成矿的矿质主要来源于 区内火山岩和次火山岩,成矿作用无疑与区内火山 岩系具有密切的成因联系。

3.3 成矿流体地球化学

包裹体是在矿物生长过程中捕获成矿(岩)介 质而形成,因此,研究包裹体的成分可以有效破译 成矿流体的基本物质组成及其成矿物理化学条件。

阿希金矿包裹体细小, 多数在 2~ 5 μ m, 多呈纯 液相, 气液两相少见。包裹体成分富水, 达到 71.52%~97.57%, 流体浓度很低, 与矿床低盐度 特征是一致的。流体属于 K⁺ [N a⁺] -SO²⁺ [CT] 型, 总体以 K⁺ > N a⁺ (K⁺/N a⁺ > 2), SO²⁺ > CT (SO²⁺/CT 为 3~ 20), 贫 Ca²⁺、M g²⁺ (N a⁺/(Ca²⁺ + M g²⁺) 为 10~ 60), 以富含 CO₂ 以及还原性气体 (CO、 CH 4、H₂) 为特征。碱金属离子的大量存在, 有利于 SO₂ 的大量溶解、迁移, SO²⁺ 含量高, 对形 成黄铁矿等主要载金矿物有利; CO₂ 含量高, 反映了 成矿流体受大气降水的影响程度加大; O₃ N₂ 等气 体的普遍存在也说明大气降水的参与^[26]。

伊尔曼得金矿包裹体非常细小, 一般 1~ 3 μ m, 以富水为特征(占 87.97%~97.72%)。液相成分 中,碱金属离子含量远大于碱土金属离子,特别是 K⁺ 明显高于其他离子达 1~ 2 个数量级;阴离子以 SO² 居多,占总量的一半以上;气相成分中 CO₂ CH₄、CO 含量较高,分别为 93.71×10⁻⁶、195.22 ×10⁻⁶和 100.92×10⁻⁶。两件样品包裹体均一温度 分别为 300°C和 93°C,获得成矿压力 56.6×10⁵~ 176.2×10⁵ Pa,成矿深度 250~700 m。成矿流体盐 度较低,为 0.21%(μ NaCl%),pH 值 5.5,属于中 性流体(200°C时中性 pH 值为 5.56)。

4 成矿模式

通过以上对西天山地区浅成低温热液金矿的介 绍,结合国内外同类金矿的研究成果,建立本区该 类矿床成矿模式如下(图 5)。

图 5 西天山地区浅成低温热液金矿成矿模式 Fig. 5 M etallogenic model of the epithem al gold deposit in W est Tianshan M ountains

早石炭世早期,大约相当于杜内期早期,由于 地壳伸展作用,使大陆克拉通开裂形成伊犁裂谷,随 着裂谷的拉开作用加剧,引发大规模火山喷发作用, 形成了厚度较大的富含Au、Ag、As、Sb、Bi等成 矿元素高背景场的大哈拉军山组火山岩建造。阿希 等金矿所在位置处于北西西向和北北西向区域性基 底断裂交汇部位,形成了中心式喷发的火山活动中 心。

早石炭世大哈拉军山火山作用晚期阶段,深部 岩浆房的塌陷作用导致阿希破火山口形成。其结果 是来自较深部的次火山岩浆沿火山颈相(安山质角 砾熔岩)边界贯入,切割前期形成的火山岩地层,并 围绕破火山口形成一系列环状及放射状分布的火山 断裂。其中作为火山口缘环状断裂一部分的弧形 F₂ 断裂是阿希金矿的重要的控矿断裂。

在长期活动的火山口附近,沿火山岩层裂隙或 断裂下渗的天水在深部热源(浅成岩体?)驱动下形 成循环的热流体。这种成矿流体的运移和现代地热 体系流体的运移相似,以自然对流为主,流体运移 的动力是深部热源。近源流体受热而密度减小,在 热动力作用下向上运动,而地表天水在重力作用下 向下运移,形成以热源为中心的对流圈。循环流体 通过火山岩等含金载体,不断萃取围岩中的成矿物 质,逐渐成为具有一定温压条件的含矿流体。

近火山中心部位,含矿流体沿破火山口构造断 裂系统上行,在近地表位置发生隐爆,压力快速释 放而产生热液沸腾作用,使原本单一的液相流体变 为多相流体,H₂O、H₂S、CO₂等挥发分的快速逸离, 改变了流体的pH、Eh 等物理化学条件,使得载金 络合物不稳定而分离,发生SD2等沉淀充填而形成 含金石英脉;同时,成矿流体运移过程中与围岩发 生水-岩反应,导致了以硅化-绢云母化-冰长石化为 代表的近矿蚀变作用的发生。这种流体循环—上行 隐爆—热液沸腾—含矿质淀积作用的反复作用,最 终形成以多期热液沸腾作用为特色的角砾状。层纹 状等组构为特征的充填为主的石英脉型金矿化。

远火山中心部位,含矿流体循环并沿有利构造 部位(层间裂隙带)上行,在天水稀释作用机制下, 流体性质发生改变,载金络合物不稳定而分解,沿 富原生孔隙和次生孔隙的大哈拉军山组底部沉火山 碎屑岩选择性充填交代,形成顺层展布的似层状矿 化体。岩石遭受硅化作用后脆性增大,更易于遭受 热液的裂隙化^[2],这就是硅化岩型金矿多次热液同 位叠加富集成矿的原因。以上成矿作用过程如图 6,

5 结论

综上所述,西天山吐拉苏地区金矿形成于晚古 生代陆相环境下,宏观上受伊犁晚古生代裂谷活动 控制。金矿成矿具有明显的低温、浅成特点,并可 进一步划分为冰长石-绢云母型和硅化岩型。其中以 阿希金矿为代表的冰长石-绢云母型金矿为热液充 填石英脉型,成矿特点可以与世界同类金矿对比;以 伊尔曼得等金矿为代表的硅化岩型金矿为热液交代 作用为主的蚀变岩型,成矿特征既不同于阿希等金 矿,又不具备酸性硫酸岩型金矿的某些标型特征,有

图 6 西天山地区浅成低温热液型金矿成矿过程示意图

Fig. 6 Schematic map of ore-forming process of the epithermal gold deposits in West Tianshan Mountains

图 6 西天山地区浅成低温热液型金矿成矿过程示意图

Fig. 6 Schematic map of ore-forming process of the epithemal gold deposits in West Tianshan Mountains

待于进一步研究。

矿床成矿元素富集特点、稳定同位素示踪和成 矿流体地球化学特征等的研究结果显示,容矿围岩 大哈拉军山组火山岩与金矿成矿具有明显的成生联 系,是金矿成矿的物质来源——"矿源层",同时, 火山活动过程又是一个巨大的释热过程,"热泵作 用"的结果,形成了以火山口为中心的,以大气降 水为主体组成的流体循环系统,流体循环过程中,与 围岩(火山岩等)发生水-岩反应,萃取成矿物质进 入流体,形成含矿热液。

流体运移至近地表环境,于不同的构造部位,分 别发生了流体沸腾和天水稀释作用而各自形成热液 充填型的冰长石-绢云母型金矿和热液交代型的硅 化岩型金矿。

参考文献:

[1] Heald P, *et al*. Comparative anatomy of volcanic-hosted epithemal deposits acid-sulfate and adularia-sericite types [J] . Econom ic Geology, 1987, 82 (1): 1-22.

- [2] White N C, Hedenquist J W. Epithem al environments and styles of mineralization-variation and their cause, and guidelines for exploration [J]. Jour. Geochem. Exploration, 1990, 36: 445-474.
- [3] 毋瑞身. 低温浅成热液金矿若干问题探讨 [J]. 贵金属地质, 1993, 2 (1): 47-53.
- [4] Hedenquist J W, Antonio Arribas and James Reynolds, Evolution of an intrusion-centered hydrothermal system: far Southeast-Lepano porphyry and epithermal Cu-Au deposits, Philippines [J]. Economic Geology, 1998, 93 (4): 373-404.
- [5] Henley R W. Epithem al gold deposits in volcanic terranes [A]. In: Foster R P, Blackie, ed. Gold M etallogeny & Exploration [C]. 1991, 133-164.
- [6] Berger B.R, Henry R.W. A dvances in the understanding of epithem al gold-silver deposits, with special reference to the Western United State [J]. Econm ic Geology, Monograph, 1989, 6: 405-423.
- [7] 应汉龙, 浅成低温热液金矿床的全球背景 [J]. 贵金属 地质, 1999, 8 (4): 241-250.

- [8] 李之彤,我国东部中(新)生代火山热液型金矿地质特征[A].金矿地质论文集[C].北京:地质出版社,1982.
- [9] 林宝钦.中国东部冰长石-绢云母型低温浅成热液金矿[J].贵金属地质,1992,1(4):199-206.
- [10]陈仁义, 芮宗瑶. 五风浅成热液金矿床地质特征及成矿 机理 [J]. 矿床地质, 1993, 12 (1): 20-28.
- [11] 胡受奚, 王鹤年, 王德滋, 等. 中国东部金矿地质学及 地球化学 [M]. 北京: 科学出版社, 1998.300-334.
- [12] 陆志刚,陶奎元,谢家莹,等.中国东南大陆火山岩地 质与矿产 [M].北京:地质出版社,1997.248-256.
- [13] 刘洪林,董连慧. 阿希金矿地质特征及成因初探 [J].新疆地质, 1994, 10 (2): 110-119.
- [14]李本海, 薛秀娣. 新疆阿希金矿 [号脉矿床矿石特征及 其成因意义 [J]. 新疆地质, 1994, 12 (2): 146-156.
- [15] 毋瑞身,田昌烈,杨芳林,等.新疆阿希地区金矿概论[J].贵金属地质,1996,5 (1): 5-21.

- [16] 沙德铭.西天山阿希金矿流体包裹体研究 [J].贵金属地质,1998,7 (3): 180-188.
- [17]沙德铭,等.西天山阿希古破火山口构造及其控矿意义[J].地质论评,1999,45(增刊):1088-1094.
- [18] 翟伟,杨荣勇,漆树基,等.新疆伊宁县伊尔曼得热泉
 型金矿地质特征及成因 [J].矿床地质,1999,18
 (1):47-54.
- [19] 沙德铭, 毋瑞身, 等. 西天山吐拉苏—也里莫墩矿带金 矿成矿条件与成矿规律 [A]."九五"全国地质科技重 要成果论文集 [C].北京:地质出版社, 2000, 247-250.
- [20]董连慧,田昌烈.西天山吐拉苏—也里莫墩金成矿带简 述[J].地质与资源,2001,10(2):85-90.
- [21] 董连慧. 阿希金矿主要蚀变类型及其与金矿化关系[J]. 地质与资源, 2001, 10 (3): 129-132.
- [22] 李华芹,谢才富,常永亮,等.新疆北部地质演化及成 岩成矿规律 [M].北京,科学出版社,1998.107-127.

The geochem ical characteristics and ore-forming model of the epithermal gold deposit in West Tianshan Mountains

SHA Derm ing^{1,3}, DON G L ian-hui², WU Rui-shen³, T AN Chang-lie³, J A B in^{1,3}

(1.N ortheast University, Shenyang 110006, China; 2.X injiang Geo-survey

Bureau, Ürüm qi 830000, China; 3. Shenyang Institute of Geology and Mineral Resources, Shenyang 110032, China)

Abstract: A xi gold deposit and its peripheral ore deposits Yiem ande, Q iabukanzuota, which formed in L ate Paleozoic volcanic rocks in W est T ian shan M ountains, are considered as epithem alm ineralizing type, and divided furtherly into adular-sericite type and silicated rock type. The gold deposits are formed in Tulasu-Yelimodun volcanic belt of YiliL ate Paleozoic rift. And the country rocks of the gold deposit are continental intemediate-acid volcanic erup tive rock series of Dahalajunshan formation (C1d) and corresponding sub-volcanic bodies which belong to line-alkali-alkali series association. A xi gold deposit considered as the representative of the adular-sericite type was controlled by volcano-structures and the main ore bodies were quartz vein type filling in ring-like fault near crater. And it is low-temperature and low-pressure feature by its ore texture and mineral assembladge. Yiem ande gold deposit considered as the representative of the sedimentary volcanic rocks of the low er part of Dahalajunshan form ation and its ore bodies are layer and layer-like. So by analyzing the metallogeno-geo-chem ical characteristics of the ore deposits, the authors discuss the settings, conditions and the characteristics of the gold deposit and set up its ore-form ing model with epithem al characteristics.

Key words: epithem al glod deposit; adular-sericite type; silicated rock type; ore-forming model; A xi gold deposit; Yiem and e gold deposit; W est Tianshan Mountains