# 青海祁漫塔格沙丘地区侵入岩地质、 地球化学特征及找矿意义

李玉春1,张爱奎2,张培青2,刘光莲2

(1. 青海省第五地质矿产勘查院,青海 西宁 810006; 2. 青海省第三地质矿产勘查院,青海 西宁 810029)

摘 要:青海祁漫塔格沙丘地区由于受沙漠覆盖的影响,增加了找矿难度,近年来新发现了众多砂卡岩型铁多金属矿床和矿点。通过对区内与成矿有关的侵入岩研究,认为与成矿关系密切的代表性侵入岩组合为花岗闪长岩-二长花岗岩,与虎头崖、野马泉和四角羊沟具有相似的岩石组合特征。由早到晚,侵入岩向富 SiO<sub>2</sub>和 K<sub>2</sub>O,贫 TiO<sub>2</sub>、Al<sub>2</sub>O<sub>3</sub>、Fe<sub>2</sub>O<sub>3</sub>、FeO、MnO、MgO、CaO、P<sub>2</sub>O<sub>5</sub>,分异程度增高,A/CNK 值增大,w (Na<sub>2</sub>O)/w (K<sub>2</sub>O) 值减小,Eu亏损增强的方向演化。岩石总体属"I"型,构造背景具有接近碰撞阶段的特征。沙丘地区侵入岩岩浆源区具有清晰的地幔物质贡献印记,辉长闪长岩和花岗闪长岩表现的较为明显,具有形成大型砂卡岩型铁多金属矿床的成矿地质条件。随着矿产勘查工作的深入开展,有望实现找矿重大突破。
关键词:侵入岩;岩石学;岩石化学;地球化学;沙丘地区;祁漫塔格;青海省
中图分类号:P595 文献标识码:A 文章编号: 1009-6248(2013)03-0070-13

## The Geological and Geochemical Characteristics of the Intrusive Rock and Prospecting Significance in Shaqiu Areas, Qimantage Metallogenic Belt, Qinghai Province

LI Yu-chun<sup>1</sup>, ZHANG Ai-kui<sup>2</sup>, ZHANG Pei-qing<sup>2</sup>, LIU Guang-lian<sup>2</sup>

(1. No. 5 Exploration Institute of Geology and Mineral Resources, Xi'ning 810006, China)

2. No. 3 Exploration Institute of Geology and Mineral Resources, Xi'ning 810029, China)

**Abstract:** Restricted by the cover of desert, the prospecting in Shaqiu area of Qimantage metallogenic belt is rather difficult. Recently, a number of iron-polymetallic deposits of skarn type have been explored. Study on intrusive rocks related to mineralization in this area is conducted. Based on the findings, it is concluded that granodiorite-monzonitic granite was the typical intrusive rock assemblage closely connected to mineralizing, with the same petrotectonic assemblage characteristics in Hutouya, Yemaquan and Sijiaoyanggou deposits. From early period to late period, compositions of intrusive rocks gradually enriched in SiO<sub>2</sub> and K<sub>2</sub>O, but reduced in TiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, FeO, MnO, MgO, CaO and P<sub>2</sub>O<sub>5</sub>. The differentiated degree and Eudeficit get stronger while the ratio of Na<sub>2</sub>O and K<sub>2</sub>O is reducing. Belonging to rocks of I-type, these intrusive rocks possess features in terms of tectonic setting similar to those in collision stage. The magma source region in Shaqiu area has some explicit contribution to mantle-derived substances, especially to gabbro diorite and granodiorite, which is favorable mineralization geological condition for large-sized ron-polymetallic deposits of skarn type. With the progression of mining exploration, major prospecting breakthrough will probably be made.

收稿日期: 2013-03-18; 修回日期: 2013-04-23

基金项目:"青海省格尔木市野马泉地区铁多金属矿整装勘查区找矿部署研究"(青地调勘 [2012] 62 号)

作者简介: 李玉春 (1970-), 女, 青海省兴海县人, 地质工程师, 现主要从事地质管理工作。E-mail: 474921988@ gq. com

Key words: intrusive rock; petrology; petrochemistry; geochemistry; Shaqiu area; Qimantage; Qinghai Province

青海祁漫塔格沙丘地区地处柴达木盆地西南 缘,属于青海东昆仑西部祁漫塔格成矿带。祁漫塔 格成矿带内接触交代矽卡岩型矿床十分发育,典型 矿床有野马泉矿床、四角羊矿床和尕林格等矿床, 成矿与侵入岩关系十分密切(刘云华等,2005. 2006:李洪普等,2009:吴庭祥等,2009:丰成友 等,2010:张爱奎等,2010,2012:高永宝等, 2012)。沙丘地区为沙漠覆盖区,风成砂覆盖厚度 通常可达150~300 m。近年来,通过对地磁异常 采用钻探检查验证,找矿取得了重要进展。发现它 温查汉、它温查汉西、那陵郭勒河西、沙丘和 LM1 磁异常区等众多铁多金属矿床和矿点(曹德 志等,2012)。截至目前,初步估算的铁矿石资源 量大约可达 10 000×10<sup>4</sup> t, 共(伴) 生铜铅锌金属 资源量大约 50×10<sup>4</sup> t。已有学者对沙丘地区的它 温查汉和它温查汉西矿床控矿因素和找矿前景进行 了研究(曹德志等,2012),发现矿床成因属于接 触交代砂卡岩型,成矿受侵入岩、围岩和构造等因 素的综合控制,并对成矿时代进行了探讨(田承盛

等,2013),成矿时代属于中一晚三叠世。但受沙 漠覆盖的影响,区内侵入岩地质特征和地球化学特 征研究仍不够。为此,笔者通过钻孔岩心野外详细 观察,结合室内岩石化学和地球化学研究,旨在查 明与成矿有关的侵入岩岩石组合、成因演化及其构 造背景,这对于区域成矿规律研究,以及促进矿产 勘查实践具有重要的意义。

## 1 地质背景

青海祁漫塔格沙丘地区所处大地构造分区属祁 漫塔格结合带,北邻柴达木陆块,南与东昆中陆块 相接(张雪亭等,2007)(图 1-a)。

根据钻孔地质资料,研究区地层主要为寒武— 奥陶系滩间山群 (∈ OT)、上泥盆统牦牛山组 (D<sub>3</sub>m)和第四系 (图 1-b)。滩间山群岩性主要为 大理岩、白云质大理岩、硅化灰岩,其次为片岩、 板岩、长英质角岩,局部夹硅质岩、玄武岩、沉凝灰 岩等,为一套浅海浊积岩,具类复理石建造特征。牦



## 图 1 沙丘地区基岩地质矿产推断图

Fig. 1 Deduction map of bedrock geology and mineral resources in Shaqiu area

 流纹岩、安山岩、火山角砾岩、凝灰岩,局部夹砂岩和复成分砾岩;2.大理岩、白云质大理岩、硅化灰岩,其次为片 岩、板岩、长英质角岩,局部夹硅质岩、玄武岩、沉凝灰岩等;3.花岗闪长岩、二长花岗岩,少量辉长闪长岩和花岗斑岩;
 4. 铁多金属矿体; D<sub>3</sub>m.上泥盆统牦牛山组; ∈ OT. 寒武一奧陶系滩间山群;γδ+ηγ.花岗闪长岩、二长花岗岩为主的侵入岩 牛山组岩性为流纹岩、安山岩、火山角砾岩、凝灰 岩,局部夹砂岩和复成分砾岩。侵入岩广泛分布, 主要有花岗闪长岩、二长花岗岩,其次有少量辉长 闪长岩和花岗斑岩。矿体主要赋存在侵入岩与碳酸 盐岩外接触带的透辉石砂卡岩和透辉石石榴石砂卡 岩中(图 2),花岗斑岩中亦发现少量辉钼矿。矿 石类型主要有磁铁矿石、磁铁黄铜矿石、磁铁闪锌 矿石和闪锌方铅矿石等。自侵入岩向围岩,矿种总 体具有 Fe→Cu→Zn→Pb 的变化趋势。在它温查汉 矿区,发现 2 条主矿体,以磁铁矿为主,局部共生 黄铜矿,矿体长 700~750 m,厚度 16.69~30.21 m,延深 320~480 m, TFe 平均品位为 28.84%~ 34.57%。在它温查汉西矿区,发现 9 条主矿体, 长 400~880 m,厚度 1.88~15.00 m,mFe 平均 品位为 30.70%~50.00%,Cu 平均品位为 0.49% ~1.05%,Zn 平均品位为 0.96%~3.76%(曹德 志等,2012)。在那陵郭勒河西矿区,发现 2 条主 矿体,以磁铁矿和黄铜矿为主,矿体长 300~400 m,厚度 8.38~15.60 m,TFe 平均品位为 26.00%~35.50%,Cu 平均品位 1.37%~ 2.03%。沙丘矿区发现 1 条主矿体,主要为铁,同 时共(伴)生有铜、铅、锌。矿体长约 400 m,厚 度 4.00~28.86 m,平均 13.82 m,延深 210.09 m,TFe 品位为 30.70%~47.07%,Cu 品位为 0.38%~0.73%,Pb 品位为 0.60%~5.17%,Zn 品位为 0.84%~4.40%。



图 2 沙丘地区 1 勘探线剖面图 Fig. 2 Profile map of the first evaluation line in Sheein e

## Fig. 2 Profile map of the first exploration line in Shaqiu area

## 2 侵入岩地质特征

根据钻孔资料,结合地磁异常推断,研究区侵 入岩体主要分布于中部和南西部,平面形态呈不规 则状、椭圆状(图1-b),推断面积约100 km<sup>2</sup>,剖 面上主要侵入滩间山群碳酸盐岩和碎屑岩中,东部 侵入牦牛山组火山岩中。与地层侵入界线清楚,侵 入界面呈波浪状(图 2)、不规则状。外接触带岩 石大部分发育砂卡岩化、硅化、角岩化蚀变。

根据钻孔岩心野外观察和室内薄片鉴定,结合

岩石化学计算的花岗岩 CIPW 标准矿物数值,从 I.U.G.S1972 年推荐的岩浆岩 Q-A-P 分类图解 (图 3) 上的名称来看,研究区侵入岩岩石类型复 杂,有辉长闪长岩、花岗闪长岩、二长花岗岩和花 岗斑岩,以花岗闪长岩和二长花岗岩最为发育。

辉长闪长岩目前仅见于沙丘矿区和 LM1 磁异 常区,呈小岩株状,与花岗闪长岩或二长花岗岩呈 突变或过渡接触关系(图 4),推断辉长闪长岩与 花岗闪长岩、二长花岗岩形成于同期,但略早于花 岗闪长岩和二长花岗岩。花岗闪长岩和二长花岗岩 呈复式岩基状,二长花岗岩侵入于花岗闪长岩中, 二者接触界面不清晰,常常是过渡接触。花岗斑岩 主要分布于那陵郭勒河西矿区,在其他矿区亦有少 量分布,呈岩枝状侵入于花岗闪长岩和二长花岗岩 中。总的看来,由早到晚,岩石类型分别为辉长闪 长岩→花岗闪长岩→二长花岗岩→花岗斑岩。



#### 图 3 沙丘地区侵入岩 Q-A-P 图解

Fig. 3 Q-A-P diagrams of intrusive rocks in Shaqiu area
1. 富石英花岗岩; 2. 碱长花岗岩; 3a. 花岗岩; 3b. 花 岗岩(二长花岗岩); 4. 花岗闪长岩; 5. 英云闪长岩、斜长
花岗岩; 6. 碱长石英正长岩; 7. 石英正长岩; 8. 石英二
长岩; 9. 石英二长闪长岩; 10. 石英闪长岩、石英辉长岩、
石英斜长岩; 6. 碱长正长岩; 7. 正长岩; 8. 二长岩; 9. 二
长闪长岩、二长辉岩; 10. 闪长岩、辉长岩、斜长岩



图 4 沙丘地区辉长闪长岩与二长花岗岩的接触关系图 Fig. 4 Contaction relation between gabbro diorite and granitelle in Shaqiu area

## 3 侵入岩岩石学特征

### 3.1 辉长闪长岩

辉长闪长岩在 Q-A-P 图解(图 3)中位于10 区(闪长岩、辉长岩、斜长岩区),呈深灰色,细 粒半自形粒状结构,块状构造。主要由斜长石 (70%~75%)、钾长石(10%±)、石英(5%~ 10%)和角闪石(10%~15%)等组成(图 5)。 斜长石呈半自形板状,大小一般为0.5~1 mm, 少部分为1~2 mm,杂乱分布,常见聚片双晶、 卡钠复合双晶、肖钠双晶,略显环带,被绢云母及 黝帘石交代,表面脏,斜长石牌号:An=30( $\perp$ (010)晶带最大消光角法测定);钾长石呈半自形-他形粒状,大小一般为 0.2~0.5 mm,少部分为 0.5~1 mm,填隙状分布,轻微黏土化,钾长石种 属为正长石;石英呈他形粒状,大小一般为 0.2~ 0.5 mm,部分为 0.5~1 mm,填隙状分布;角闪 石呈半自形柱状,大小一般为 0.5~1 mm,部分 为 1~2 mm,星散状分布,常被透辉石交代,少 量残留。角闪石多色性:Ng'=绿色,Np'=浅黄绿



图 5 沙丘地区辉长闪长岩显微照片 (+) Fig. 5 Microphoto of gabbro diorite in Shaqiu area Q. 石英: Pl. 斜长石: Kp. 钾长石

色。副矿物主要为磁铁矿、锆石、磷灰石、榍石。

## 3.2 花岗闪长岩

浅灰色、浅灰白色,似斑状结构为主(图6), 其次见中细粒花岗结构,块状构造。似斑晶主要为 斜长石(1%~10%)和石英(1%~5%),其次有 少量黑云母和角闪石,均为半自形晶,大小一般为 2~3 mm,星散状分布,斜长石被绢云母交代,石 英边界不规则状。基质为斜长石(50%~60%)、 钾长石(5%~15%)、石英(20%~30%)、黑云 母(2%~5%)和角闪石(1%~5%),大小一般 为0.2~0.5 mm,少部分为0.5~1 mm或0.02~ 0.2 mm。斜长石呈半自形板状,被绢云母、方解 石交代,部分略显环带;钾长石呈半自形-他形粒 状,填隙状分布,具绢云母化;石英呈他形粒状,



图 6 沙丘地区花岗闪长岩显微照片 (+) Fig. 6 Microphoto of granodiorite in Shaqiu area Q. 石英; Pl. 斜长石; Kp. 钾长石; Bit. 黑云母; Hb. 角闪石

填隙状分布;黑云母呈片状,被绿泥石、绢云母交 代;角闪石呈半自形-他形柱状,局部具绿泥石化。 副矿物主要为磁铁矿、锆石、磷灰石、榍石。

## 3.3 二长花岗岩

肉红色,中细粒花岗结构,块状构造(图7)。 主要由斜长石(30%~40%)、钾长石(30%~ 40%)、石英(25%~30%)、黑云母(1%~5%) 组成。斜长石呈半自形板状,大小一般为0.2~1 mm,部分为2~3 mm,杂乱分布,多被绢云母、 黝帘石和方解石交代;钾长石呈半自形一他形粒 状,大小一般为0.2~1 mm,部分为1~2 mm, 少部分为3~5 mm,杂乱分布,局部具黏土化; 石英呈他形粒状,大小一般为0.5~2 mm,少部 分为2~3 mm,填隙状分布;黑云母呈片状,直 径为0.2~1 mm,星散状分布,局部被绢云母、 方解石、绿泥石等交代。岩石内常见闪长质包体, 包体大小不等,星散状分布。副矿物主要为磁铁 矿、锆石、磷灰石。



**图 7 沙丘地区二长花岗岩显微照片 (+)** Fig. 7 Microphoto of monzogranite in Shaqiu area Q. 石英; Pl. 斜长石; Kp. 钾长石; Bit. 黑云母

#### 3.4 花岗斑岩

浅肉红色,斑状结构,基质为霏细-微晶结构, 块状构造(图8)。斑晶为石英(5%~10%)、斜 长石(5%~10%)、钾长石(5%~10%),均为半 自形晶,大小一般为0.2~0.5 mm,部分为0.5~ 1 mm,少部分为1~2 mm,星散状分布。石英可 见港湾状熔蚀;斜长石呈板状,具绢云母化,部分 可见聚片双晶;钾长石呈板状,被方解石、高岭土 交代。基质为斜长石(10%~15%)、钾长石(45%~



图 8 沙丘地区花岗斑岩显微照片 (+) Fig. 8 Microphoto of granite porphyry in Shaqiu area Q. 石英

60%)、石英(20%~30%),呈霏细-微晶状,微 晶大小一般为0.01~0.02 mm,杂乱分布,局部 被绢云母交代。副矿物主要为磁铁矿、锆石、磷 灰石。

## 4 侵入岩岩石化学和地球化学特征

#### 4.1 岩石化学特征

岩石化学分析结果见表1。

(1) 辉长闪长岩 SiO<sub>2</sub>含量为 49.62%,化学成 分显示为基性岩;但岩石中普遍含石英、角闪石, 而不含辉石;镜下观察石英通常高达 5%~10%。 表明岩浆的源区富含水。因此,从岩浆中结晶出的铁 镁矿物是含水矿物角闪石和黑云母,而不是辉石

#### 表 1 沙丘地区侵入岩主量元素分析结果及参数特征表 (%)

Tab. 1 Major elements composition analysis results and parameter characteristics of intrusive rocks in Shaqiu area (%)

| 样品号        | 采集地点             | 岩石名称  | SiO <sub>2</sub> | TiO <sub>2</sub> | $\mathrm{Al}_2\mathrm{O}_3$ | $Fe_2O_3$ | FeO  | MnO  | MgO  | CaO  | Na <sub>2</sub> O | K2 0 | $P_2O_5$ | $H_20^+$ | H <sub>2</sub> O <sup>-</sup> | LOS  | total  | A/CNK | σ    | DI    | SI    | <i>R</i> 1 | R2   | A/MF | C/MF |
|------------|------------------|-------|------------------|------------------|-----------------------------|-----------|------|------|------|------|-------------------|------|----------|----------|-------------------------------|------|--------|-------|------|-------|-------|------------|------|------|------|
| SQ-1       | 沙丘 ZK4601        | 花岗闪长岩 | 68.54            | 0.33             | 15.56                       | 0.78      | 2.55 | 0.08 | 0.73 | 2.56 | 3.79              | 3.64 | 0.1      | 0.96     | 0.13                          |      | 99.75  | 1.049 | 2.14 | 46.75 | 6.35  | 2300       | 624  | 2.41 | 0.72 |
| SQ-2       | 沙丘 ZK1401        | 辉长闪长岩 | 49.62            | 1.55             | 19.39                       | 1.44      | 7.11 | 0.18 | 4.07 | 9.95 | 2.98              | 0.91 | 0.52     | 1.13     | 0.08                          |      | 98.93  | 0.809 | 2.04 | 5.97  | 24.65 | 1802       | 1685 | 0.87 | 0.81 |
| ZK101TWGS1 | 沙丘 ZK101         | 花岗闪长岩 | 69.92            | 0.29             | 14.66                       | 1.09      | 1.69 | 0.06 | 0.64 | 2.6  | 3.86              | 3.86 | 0.09     | 0.77     | 0.1                           | 0.56 | 100.19 | 0.961 | 2.2  | 49.24 | 5.75  | 2331       | 605  | 2.71 | 0.87 |
| ZK101TWGS2 | 沙丘 ZK101         | 二长花岗岩 | 75.19            | 0.15             | 12.81                       | 0.68      | 0.93 | 0.04 | 0.29 | 1.15 | 3.45              | 4.61 | 0.04     | 0.41     | 0.02                          | 0.3  | 100.07 | 1.004 | 2.01 | 61.9  | 2.91  | 2676       | 391  | 4.38 | 0.72 |
| NX-1       | 那陵郭勒河<br>西 ZK1-2 | 二长花岗岩 | 76.45            | 0.08             | 12.44                       | 0.01      | 0.86 | 0.03 | 0.12 | 0.83 | 2.94              | 5.46 | 0.01     | 0.48     | 0.22                          |      | 99.93  | 1.015 | 2.1  | 68.64 | 1.28  | 2766       | 341  | 8.09 | 0.98 |
| NX-2       | 那陵郭勒河<br>西 ZK5-1 | 花岗斑岩  | 77.05            | 0.08             | 12.16                       | 0.05      | 0.92 | 0.03 | 0.16 | 0.95 | 2.85              | 4.85 | 0.01     | 0.61     | 0.3                           |      | 100.02 | 1.042 | 1.74 | 68.22 | 1.81  | 2983       | 351  | 6.85 | 0.97 |

注:资料来源于本次工作实测;由西安地质矿产研究所实验测试中心测试,测试仪器为等离子质谱仪 ICP-MS,仪器编号 SX-50。

(谌宏伟等,2005,2006)。岩石 Al<sub>2</sub> O<sub>3</sub> 含量为 19.39%,含量较高,A/CNK 值为 0.809,CIPW 标准矿物计算没有刚玉分子出现,属亚铝质。 Na<sub>2</sub>O含量为 2.987%,K<sub>2</sub>O含量为 0.91%,钾钠 含量较低,Na<sub>2</sub>O含量大于 K<sub>2</sub>O含量,w(Na<sub>2</sub>O)/ w(K<sub>2</sub>O)值为 3.28。里特曼指数 $\sigma$ 值为 2.04,小 于 3.3,但大于 1.8,属钙碱性岩。分异指数 DI 值为 5.97,分异程度低。固结指数 SI 值为 24.65。 在 SiO<sub>2</sub>-K<sub>2</sub>O 岩石系列图解(图 9)中,属钙碱性 系列。

(2)花岗闪长岩 SiO<sub>2</sub>含量为 68.54%~
69.92%,平均含量为 69.23%,属酸性岩。Al<sub>2</sub>O<sub>3</sub>含量为 14.66%~15.56%,平均含量为 15.11%,A/CNK 值为 0.961~1.049,平均为 1.005。CIPW标准矿物计算多出现刚玉分子,属偏铝质-



 图 9 沙丘地区侵入岩岩石成因系列 SiO<sub>2</sub>-K<sub>2</sub>O 图解
 Fig. 9 SiO<sub>2</sub>-K<sub>2</sub>O discrimination diagrams of intrusive rocks genesis in Shaqiu area (实线据 Peccerillo R, Taylor S R. 1976; 虚线据 Middlemost E A K. 1985)

弱过铝质。Na2O含量为 3.79%~3.86%, 平均为 3.83%。K<sub>2</sub>O含量为3.64%~3.86%,平均含量 为 3.75%。w (Na<sub>2</sub> O) /w (K<sub>2</sub> O) 值为 1.00~ 1.04, 平均为1.02, Na<sub>2</sub>O含量稍大于 K<sub>2</sub>O含量。 里特曼指数 σ 值为 2.14~2.20, 平均为 2.17, 大 于1.8,小于3.3,属钙碱性岩。分异指数 DI 值 为 46.75~49.24, 平均为 48.00。固结指数 SI 值 为5.75~6.35,平均为6.05。在SiO<sub>2</sub>-K<sub>2</sub>O岩石 系列图解(图9)中,属高钾钙碱性系列。

(3) 二 长 花 岗 岩 SiO<sub>2</sub> 含 量 为 75.19% ~ 76.45%,平均含量为75.82%,属酸性岩。Al<sub>2</sub>O<sub>3</sub>含 量为 12.44%~12.81%,平均含量为 12.63%,A/ CNK 值为 1.004~1.015,平均为 1.010, CIPW 标 准矿物计算普遍出现刚玉分子,属弱过铝质。Na<sub>2</sub>O 含量为 2.94%~3.45%,平均为 3.20%,K2O 含量 为 4.61%~5.46%,平均含量为 5.04%。K、Na 含 量较高,w(Na2O)/w(K2O)值为0.54~0.75,平均

为 0.65, Na<sub>2</sub> O 含量小于 K<sub>2</sub> O 含量。里特曼指数  $\sigma$ 值为 2.01~2.10,平均为 2.06,属钙碱性岩。分异 指数 DI 值为 61.90~68.41,平均为 65.16,分异程 度较高。固结指数 SI 值为 1.28~2.91,平均为 2.10。在 SiO<sub>2</sub>-K<sub>2</sub>O 岩石系列图解(图 9)中,属高钾 钙碱性系列。

(4) 花岗斑岩 SiO<sub>2</sub>含量为 77.05%, 属酸性 岩。Al<sub>2</sub>O<sub>3</sub>含量为12.16%, A/CNK 值为1.042, CIPW 标准矿物计算出现刚玉分子,属弱过铝质。 Na,O含量为2.85%,K,O含量为4.85%, 钾钠 含量较高,  $\omega$  (Na<sub>2</sub>O) / $\omega$  (K<sub>2</sub>O) 值为 0.59,  $Na_2O含量小于 K_2O 含量。里特曼指数 <math>\sigma$  值为 1.74, 属钙性岩。分异指数 DI 值为 68.22, 分异 程度较高。固结指数 SI 值为 1.81。在 SiO<sub>2</sub>-K<sub>2</sub>O 岩石系列图解(图9)中,属高钾钙碱性系列。

#### 4.2 稀土元素地球化学特征

岩石稀土元素分析结果见表 2。

表 2 沙丘地区侵入岩稀土元素分析结果及参数特征表 (×10<sup>-6</sup>)

Tab. 2 REE analysis results and parameter characteristics of intrusive rocks in Shaqiu area ( $\times 10^{-6}$ )

| 样品号        | 采集地点             | 岩石名称  | La   | Ce   | Pr   | Nd   | Sm   | Eu   | Gd   | Tb   | Dy   | Ho   | Er   | Τm   | Yb   | Lu   | Y    | ΣREE   | LREE   | HREE  | LREE/<br>HREE | $\frac{{\rm La}_N}{{\rm Yb}_N}$ | δEu  | δCe  |
|------------|------------------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|--------|--------|-------|---------------|---------------------------------|------|------|
| SQ-1       | 沙丘 ZK4601        | 花岗闪长岩 | 48.4 | 81.7 | 8.17 | 24.5 | 3.29 | 0.84 | 2.68 | 0.39 | 2.24 | 0.47 | 1.38 | 0.21 | 1.6  | 0.23 | 13.5 | 176.1  | 166.9  | 9.2   | 18.14         | 21.7                            | 0.86 | 1.01 |
| SQ-2       | 沙丘 ZK1401        | 辉长闪长岩 | 18.1 | 40.1 | 5.29 | 22.1 | 4.34 | 1.64 | 4.45 | 0.65 | 3.87 | 0.77 | 1.93 | 0.29 | 1.89 | 0.25 | 20.4 | 105.67 | 91.57  | 14.1  | 6.49          | 6.87                            | 1.14 | 1    |
| ZK101TWGS1 | 沙丘 ZK101         | 花岗闪长岩 | 48.8 | 76.3 | 8.24 | 27.3 | 4.11 | 0.76 | 3.13 | 0.48 | 2.38 | 0.51 | 1.49 | 0.22 | 1.5  | 0.24 | 16.6 | 175.46 | 165.51 | 9.95  | 16.63         | 23.34                           | 0.65 | 0.93 |
| ZK101TWGS2 | 沙丘 ZK101         | 二长花岗岩 | 25   | 45   | 5.48 | 19.6 | 3.95 | 0.24 | 3.42 | 0.58 | 3.22 | 0.68 | 2.03 | 0.34 | 2.18 | 0.34 | 23.3 | 112.06 | 99.27  | 12.79 | 7.76          | 8.23                            | 0.2  | 0.94 |
| NX-1       | 那陵郭勒<br>河西 ZK1-2 | 二长花岗岩 | 37.6 | 74.2 | 9.13 | 29.2 | 5.34 | 0.28 | 4.84 | 0.74 | 4.66 | 0.98 | 3.07 | 0.5  | 3.56 | 0.52 | 29.4 | 174.62 | 155.75 | 18.87 | 8.25          | 7.58                            | 0.17 | 0.98 |
| NX-2       | 那陵郭勒<br>河西 ZK5-1 | 花岗斑岩  | 34.7 | 69.3 | 7.85 | 26.4 | 4.57 | 0.25 | 4.14 | 0.67 | 4.32 | 0.9  | 2.57 | 0.4  | 2.91 | 0.4  | 25.7 | 159.38 | 143.07 | 16.31 | 8.77          | 8.55                            | 0.18 | 1.03 |

注:资料来源于本次工作实测:测试单位:西安地质矿产研究所实验测试中心,测试仪器为等离子质谱仪 ICP-MS,仪器编号 SX-50。

(1) 辉长闪长岩稀土元素总量较低,为 105.67×10<sup>-6</sup>,轻稀土元素含量为 91.57×10<sup>-6</sup>,重 稀土元素含量为14.1×10<sup>-6</sup>。轻稀土元素富集,轻 重稀土元素比值为 6.49, La<sub>N</sub>/Yb<sub>N</sub>为 6.87, δEu 为 1.14, Eu 富集, &Ce 为 1.00, 无 Ce 异常。球 粒陨石标准化曲线呈平坦型(图 10), Eu 正异常 明显,反映存在幔源物质的贡献。

(2) 花岗闪长岩稀土元素总量为 175.46×10<sup>-6</sup> ~176.10×10<sup>-6</sup>,平均为175.78×10<sup>-6</sup>。轻稀土元 素含量为 165.51×10<sup>-6</sup>~166.90×10<sup>-6</sup>,平均为 166.21×10<sup>-6</sup>。重稀土元素含量为 9.20×10<sup>-6</sup>~ 9.95×10<sup>-6</sup>,平均为 9.58×10<sup>-6</sup>。轻稀土元素富集 明显,轻重稀土元素比值为16.63~18.14,平均 为 17.39。La<sub>N</sub>/Yb<sub>N</sub> 值为 21.70~23.34, 平均为 22.52。 *δ*Eu 为 0.65 ~ 0.86, 平均为 0.76, Eu 中 等亏损或亏损不明显, δCe为 0.93~1.01, 平均为 0.97, Ce 基本无亏损。球粒陨石标准化曲线呈向 右倾斜,但负 Eu 异常不明显,重稀土元素曲线呈 水平状(图10),表明岩浆分异程度不很高。

(3) 二长花岗岩稀土元素总量为 112.06×10<sup>-6</sup> ~174.62×10<sup>-6</sup>。平均为143.34×10<sup>-6</sup>。轻稀土元 素含量为 99.27×10<sup>-6</sup>~155.75×10<sup>-6</sup>,平均为 127.51×10<sup>-6</sup>, 重稀土元素含量为 12.79×10<sup>-6</sup>~ 18.87×10<sup>-6</sup>,平均为15.83×10<sup>-6</sup>,轻稀土元素富 集,轻重稀土元素比值为7.76~8.25,平均为 8.01。La<sub>N</sub>/Yb<sub>N</sub>为7.58~8.23,平均为7.91。δEu



#### 沙丘地区侵入岩稀土元素标准化分布型式图 图 10

Fig. 10 Chondrite-normalized REE patterns of intrusive rocks in Shaqiu area

(球粒陨石数据据 Sun and McDonough, 1989.)

为 0.17~0.20, 平均为 0.19。Eu 强烈亏损, &Ce 为 0.94~0.98, 平均为 0.96, Ce 基本无亏损。球 粒陨石标准化曲线呈向右倾斜,出现明显的 Eu 谷 (图 10)。

(4) 花岗斑岩稀土元素总量为 159.38×10<sup>-6</sup>, 轻稀土元素含量为143.07×10<sup>-6</sup>, 重稀土元素含量 为16.31×10<sup>-6</sup>。轻稀土元素富集,轻重稀土元素 比值为 8.77, La<sub>N</sub>/Yb<sub>N</sub>值为 8.55, \deltaEu 为 0.18, Eu强烈亏损, ∂Ce为1.03。球粒陨石标准化曲线 呈向右倾斜, Eu 谷明显(图 10)。

## 4.3 微量元素地球化学特征

岩石微量元素分析结果见表 3。

| 表 3 | 沙丘地区侵入岩微量元素分析结果表 | $(\times 10^{-6})$ | ) |
|-----|------------------|--------------------|---|
|-----|------------------|--------------------|---|

Tab. 3 Composition results of trace elements of intrusive rocks in Shaqiu area ( $\times 10^{-6}$ )

| 样品号  | 采集地点             | 岩石名称  | Rb  | Ba  | Th   | Ta   | Nb   | Hf   | Zr   | Sr   | Ni   | Cu   | Zn   | Pb   | Mo   | Co   | Cs   | Cr   | Sc   | V    | Ga   |
|------|------------------|-------|-----|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| SQ-1 | 沙丘 ZK4601        | 花岗闪长岩 | 159 | 682 | 18.7 | 0.99 | 11.2 | 5.16 | 235  | 265  | 3.78 | 57.7 | 73.9 | 31.2 | 2.59 | 5.07 | 5.26 | 6.4  | 3.62 | 15.4 | 17.3 |
| SQ-2 | 沙丘 ZK1401        | 辉长闪长岩 | 52  | 335 | 2.16 | 0.66 | 7.3  | 1.68 | 63.7 | 664  | 8.15 | 67.7 | 91.7 | 13.1 | 2.93 | 21.5 | 9.95 | 14.5 | 14.9 | 218  | 21.5 |
| NX-1 | 那陵郭勒<br>河西 ZK1-2 | 二长花岗岩 | 272 | 308 | 33.5 | 1.28 | 15   | 5.38 | 127  | 48.2 | 2.34 | 28.1 | 60.4 | 22.8 | 1.97 | 1.27 | 3.92 | 7.15 | 1.4  | 0.53 | 15.8 |
| NX-2 | 那陵郭勒<br>河西 ZK5-1 | 花岗斑岩  | 208 | 267 | 24.1 | 1.36 | 16.3 | 3.94 | 111  | 55   | 2.15 | 82.2 | 50   | 21.9 | 9.94 | 1.22 | 2.83 | 4.08 | 1.48 | 0.24 | 15.9 |

注:资料来源于本次工作实测:测试单位:西安地质矿产研究所实验测试中心,测试仪器为等离子质谱仪 ICP-MS 和 Xios4.0kWX-荧光光谱仪,仪器编号为 SX-50 和 SX-45。

微量元素标准化蛛网图(图11)显示,辉长 闪长岩 Pb 强烈富集, K、Rb、Th、La、Sr 中等 富集,总体具有壳源的特征,高场强元素 Ta、 Nb、Zr、Hf 具有亏损,可能存在地幔物质的贡献。



图 11

Fig. 11 Chondrite-normalized REE patterns of intrusive rocks in Shaqiu area (原始地幔数据根据 Sun et al., 1989.)

P、Ti 基本无亏损,总体显示辉长闪长岩分异程度 低。花岗闪长岩、二长花岗岩和花岗斑岩具有相似 的微量元素标准化蛛网图曲线特征,K、Rb、Th 和 Pb 强烈富集, 高场强元素 Ta、Nb、Zr、Hf 亏 损不明显或具有富集, La 中等富集, 贫 P 和 Ti, 显示存在钛磁铁矿(或金红石)和磷灰石等矿物的 分离结晶,总体具有壳源的特征。二长花岗岩和花 岗斑岩较花岗闪长岩更加亏损 P 和 Ti, 表明其分 异程度较高。

#### 讨论 5

## 5.1 岩石成因演化

从野外观察, 侵入岩岩石类型以花岗闪长岩和 二长花岗岩为主,其次为辉长闪长岩和花岗斑岩。 由早到晚,岩石类型分别为辉长闪长岩→花岗闪长 岩→二长花岗岩→花岗斑岩。代表性岩石组合为花 岗闪长岩-二长花岗岩,与虎头崖、野马泉和四角

羊沟具有相似的岩石组合特征。虎头崖花岗闪长岩 获得 LA-ICP-MS 锆石 U-Pb 同位素年龄为(235.4 ±1.8) Ma(丰成友等,2011),二长花岗岩获得 SHRIMP U-Pb 同位素年龄为(219.2±1.4) Ma (丰成友等,2011)和(204±2.6) Ma(刘云华 等,2006)。沙丘地区的它温查汉西矿床利用云母 Ar-Ar 法同位素定年技术,获得砂卡岩磁铁矿矿石 中白云母<sup>40</sup> Ar-<sup>39</sup> Ar 坪年龄和等时线年龄分别为 (230.7±2.0) Ma 和(229.9±3.5) Ma(n=6, MSWD=1.8),等时线年龄与坪年龄在误差范围 内完全一致(田承盛等,2013)。总的看来,区内 岩体属于中一晚三叠世。 岩石哈克图解(图 12)显示,由早到晚,向 富 SiO<sub>2</sub>和 K<sub>2</sub>O,贫 TiO<sub>2</sub>、Al<sub>2</sub>O<sub>3</sub>、Fe<sub>2</sub>O<sub>3</sub>、FeO、 MnO、MgO、CaO、P<sub>2</sub>O<sub>5</sub>的方向演化。岩石分异程 度增高,A/CNK 值增大,w(Na<sub>2</sub>O)/w(K<sub>2</sub>O) 值减小,Eu 亏损增强。辉长闪长岩、花岗闪长岩、 二长花岗岩和花岗斑岩 SiO<sub>2</sub>与 TiO<sub>2</sub>、Al<sub>2</sub>O<sub>3</sub>、 Fe<sub>2</sub>O<sub>3</sub>、FeO、MnO、MgO、CaO、P<sub>2</sub>O<sub>5</sub>、K<sub>2</sub>O 具有较明显的线性关系,花岗闪长岩、二长花岗岩 和花岗斑岩更加明显,辉长闪长岩稍有偏离。据此 推断,花岗闪长岩、二长花岗岩和花岗斑岩总体具 有相似的岩浆源区,与辉长闪长岩岩浆源区亦可能 存在一定联系。





从 Q-A-P 图解(图 3), 10000Ga/Al-(K<sub>2</sub>O+ Na<sub>2</sub>O)/CaO、10000Ga/Al-Ce、10000Ga/Al-Nb、 10000Ga/Al-Zr 图解(图 13)、Zr-TiO<sub>2</sub> 图解(图 14)可看出,岩石总体属于 I 型。辉长闪长岩岩石



图 13 沙丘地区侵入岩 10000Ga/Al-(K<sub>2</sub>O+Na<sub>2</sub>O)/CaO、10000Ga/Al-Ce、10000Ga/Al-Nb、10000Ga/Al-Zr 成因图解 Fig. 13 Genesis diagrams showing origin of intrusive rocks (10000Ga/Al- (K2O+Na2O) /CaO, 10000Ga/Al-Ce, 10000Ga/Al-Nb and 10000Ga/Al-Zr) in Shaqiu area

(样品说明同图 9, 底图根据 J B Whalen, K L Currie, B W Chappell, 1987)



化学成分显示为基性岩,但岩石中普遍含石英、角 闪石,而不含辉石,表明岩浆源区富含水(谌宏伟 等,2005,2006),球粒陨石标准化曲线呈平坦型, Eu 正异常明显,高场强元素 Ta、Nb、Zr、Hf 具 有亏损,反映存在幔源物质的贡献。这些特征表 明,辉长闪长岩岩浆源区可能保留有俯冲岛弧物质 的印记,推断与特提斯(昆南洋)的演化有关。花 岗闪长岩、二长花岗岩和花岗斑岩 K、Rb、Th 和 Pb 强烈富集,高场强元素 Ta、Nb、Zr、Hf 亏损 已不明显,球粒陨石标准化曲线呈向右倾斜,出现 Eu 中等亏损-强烈亏损,表明具有较强的地壳物质 贡献。总体来看,由早到晚,地壳物质贡献明显 增强。

## 5.2 构造背景

在 Y-Nb 构造环境判别图解(图 15)中,岩石位 于 VAG(火山弧花岗岩)+syn-COLG(同碰撞花岗 岩)区;在 Nb+Y-Rb、Yb-Ta 图解(图 15)中,岩石 位于 VAG(火山弧花岗岩)区;在 Yb+Ta-Rb 图解 (图 15)中,辉长闪长岩和花岗闪长岩位于 VAG(火 山弧花岗岩)区,二长花岗岩和花岗斑岩位于 syn-COLG(同碰撞花岗岩)区。



(Y-Nb, Nb+Y-Rb, Yb-Ta and Yb+Ta-Rb) in Shaqiu area (样品说明同图 9, 底图据 Pearce J A, Harris N B Wand Tindle A G, 1984)

在 *R*<sub>1</sub>-*R*<sub>2</sub> 构造环境判别图解中(图 16),花岗 闪长岩位于破坏性活动板块边缘(板块碰撞前)花 岗岩区,二长花岗岩位于晚造山期花岗岩区,但二 者均紧紧围绕同碰撞花岗岩区分布。 总的看来,岩石构造背景接近碰撞阶段,辉长 闪长岩和花岗闪长岩具有火山弧花岗岩的特征,可 能是保留有俯冲岛弧物质印记的缘故。二长花岗岩 和花岗斑岩显示同碰撞阶段的构造背景。



图 16 沙丘地区侵入岩 R<sub>1</sub>-R<sub>2</sub> 构造背景图解

Fig. 16 Diagrams for tectonic settings of intrusive rocks (R<sub>1</sub>-R<sub>2</sub>) in Shaqiu area

样品分组及说明同图 9, ①. 地幔斜长花岗岩; ②. 破 坏性活动板块边缘(板块碰撞前)花岗岩; ③. 板块碰 撞后隆起期花岗岩; ④. 晚造山期花岗岩; ⑤. 非造山区 A型花岗岩; ⑥. 同碰撞(S型)花岗岩; ⑦. 造山期后 A型花岗岩; 样品说明同图 10; 底图根据 Batchelor R A and Bowden P. 1985

6 结论

通过对沙丘地区侵入岩岩石学、岩石化学和地 球化学的研究,取得如下主要成果。

(1)区内侵入岩由早到晚,岩石类型分别为辉 长闪长岩→花岗闪长岩→二长花岗岩→花岗斑岩。 与成矿关系密切的代表性侵入岩组合为花岗闪长岩 -二长花岗岩,与虎头崖、野马泉和四角羊沟具有 相似的岩石组合特征。

(2)岩石总体属于I型,构造背景具有接近碰 撞阶段的特征,辉长闪长岩和花岗闪长岩保留有俯 冲岛弧物质的印记,具有地幔物质的贡献。

(3) 由早到晚,侵入岩岩石向富 SiO<sub>2</sub>和 K<sub>2</sub>O,
贫 TiO<sub>2</sub>、Al<sub>2</sub>O<sub>3</sub>、Fe<sub>2</sub>O<sub>3</sub>、FeO、MnO、MgO、CaO、P<sub>2</sub>O<sub>5</sub>,分异程度增高,A/CNK 值增大, w(Na<sub>2</sub>O)/w(K<sub>2</sub>O)值减小,Eu亏损增强的方向演化。

(4)区域中一晚三叠世花岗闪长岩-二长花岗 岩组合具有较强成矿能力,形成众多大中型砂卡岩 型铁多金属矿床,可能与地幔物质的贡献具有密切 关系。沙丘地区辉长闪长岩和花岗闪长岩清晰显 示,其岩浆源区具有较强地幔物质贡献,无疑具有 十分良好的成矿地质条件,随着找矿工作程度的提 高,有望实现找矿重大突破。

致谢:野外工作得到了马永寿、刘军培、陈立 涛等同志的帮助,样品由西安地质矿产研究所实验 测试中心完成,在论文编写过程中审稿人提出了宝 贵意见,在此对他们表示衷心的感谢!

## 参考文献 (References):

- 曹德志,王军,杨伟毅,等.东昆仑它温查汉铁多金属矿 床控矿因素、找矿前景及方向分析[J].西北地质, 2012,(01):56-62.
- Cao Dezhi, Wang Jun, Yang Weiyi, et al. The orecontrolling factors, metallogenic condition and prospecting in west part of Tawenchahan polymetallic ore district, East Kunlun mountains, Qinghai province [J]. Northwestern Geology, 2012, (01): 56-62.
- 谌宏伟,罗照华,莫宣学,等.东昆仑造山带三叠纪岩浆 混合成因花岗岩的岩浆底侵作用机制[J].中国地质, 2005,32(3):386-395.
- Chen Hongwei, Luo Zhaohua, Mo Xuanxue, et al. Underplating of Triassic granite maga mixing origin in the East Kunlun orogenic belt [J]. Geology in China, 2005, 32 (3): 386-395.
- 谌宏伟,罗照华,莫宣学,等.东昆仑喀雅克登塔格杂岩体的 SHRIMP 年龄及其地质意义[J].岩石矿物学杂志,2006,(01):25-32.
- Chen Hongwei, Luo Zhaohua, Mo Xuanxue, et al. SHRIMP ages of Kayakedengtage complex in the East Kunlun Mountains and their geological implications [J]. Acta Petrologica Et Mineralogica, 2006, (01): 25-32.
- 丰成友,李东生,吴正寿,等.东昆仑祁漫塔格成矿带矿 床类型、时空分布及多金属成矿作用[J].西北地质, 2010,(04):10-17.
- Feng Chengyou, Li Dongsheng, Wu Zhengshou, et al. Major types, time-space distibution and metallogeneses of polymetallic Deposits in the Qimantage Metallogenic Belt, Eastern Kunlun Area [J]. Northwestern Geology, 2010, (04): 10-17.
- 丰成友,王雪萍,舒晓峰,等.青海祁漫塔格虎头崖铅锌 多金属矿区年代学研究及地质意义[J].吉林大学学报 (地球科学版),2011,(06):1806-1817.
- Feng Chengyou, Wang Xueping, Shu Xiaofeng, et al. Isotopic Chronology of the Hutouya Skarn Lead-Zinc Polymetallic Ore District in Qimantage Area of Qinghai Province and Its Geological Significance [J]. Journal of Jilin University (Earth Science Edition), 2011, (06): 1806-1817.

- 高永宝,李文渊,马晓光,等.东昆仑尕林格铁矿床成因 年代学及 H f 同位素制约[J].兰州大学学报(自然 科学版),2012,48(2):36-47.
- Gao Yongbao, Li Wenyuan, Ma Xiaoguang, et al. Genesis, geochronology and Hf isoto compositions of the magmatic rocks in Galingge iron deposit, eastern Kunlun [J]. Journ al of Lan zhou University (Natural Seienees), 2012, 48 (2): 36-47.
- 李洪普,曹永亮,关有国,等.青海东昆仑山四角羊地区 铁多金属矿床的成矿地质特征[J].地质通报,2009, 28 (6):787-793.
- Li Hongpu, Cao Yongliang, Guang Youguo, et al. Mineralization characteristics of iron-polymetallic deposits in the Sijiaoyang area, East Kunlun Mountain, Qinghai Province, China [J]. Geological Bulletin of China, 2009, 28 (6): 787-793.
- 刘云华,莫宣学,张雪亭,等.东昆仑野马泉地区矽卡岩 矿床地质特征及控矿条件[J].华南地质与矿产, 2005,(03):18-23.
- Liu Yunhua, Mo Xuanxue, Zhang Xueting, et al. Geological feature and ore-control condition of skarn type deposits in Yemaquan area, eastern Kunlun [J]. Geology and Mineral Resources of South China, 2005,(03):18-23.
- 刘云华,莫宣学,张雪亭,等.东昆仑野马泉地区矽卡岩 矿床地球化学特征及其成因意义[J].华南地质与矿 产,2006,(03):31-36.
- Liu Yunhua, Mo Xuanxue, Zhang Xueting, et al. The Geochemical Characteristics and the Meaning of Skarn-Type Deposits in Yemaquan area, Eastern Kunlun [J]. Geology and Mineral Resources of South China, 2006, (03): 31-36.
- 刘云华,莫宣学,喻学惠,等.东昆仑野马泉地区景忍花 岗岩锆石 SHRIMP U-Pb 定年及其地质意义[J].岩石 学报,2006,22 (10):2457-2463.
- Liu Yunhua, Mo Xuanxue, Yu Xuehui, et al. Zircon SHRIMP U-Pb dating of the Jingren granite, Yemaquan region of the East Kunlun and its geological significance [J]. Acta Petrologica Sinica, 2006, 22 (10): 2457-2463.
- 田承盛,丰成友,李军红,等.青海它温查汉铁多金属矿 床<sup>40</sup> Ar-<sup>39</sup> Ar 年代学研究及意义[J].矿床地质,2013, 32 (1):169-176.
- Tian Chengsheng, Feng Chengyou, Li Junhong, et al. <sup>40</sup> Ar-<sup>39</sup> Ar geochronology of Tawenchahan Fe-polymetallic deposit in Qimantag Mountain of Qinghai province and its geological implications [J]. Mineral Deposits, 2013, 32 (1): 169-176.
- 吴庭祥,李宏录.青海尕林格地区铁多金属矿床的地质特征与地球化学特征[J].矿物岩石地球化学通报,2009,(2):157-161.

- Wu Tingxiang, Li Honglu. Geological and Geochemical Characteristics of the Iron-polymetallic Deposit in the Galinge Area, Qinghai Province [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2009, (2): 157-161.
- 张爱奎,莫宣学,李云平,等.青海西部祁漫塔格成矿带 找矿新进展及其意义[J].地质通报,2010,29(7): 14-26.
- Zhang Aikui, Mo Xuanxue, Li Yunping, et al. New progress and significance in the Qimantage metallogenic belt prospecting, Western Qinghai, China [J]. Geological Bulletin of China, 2010, 29 (7): 14-26.
- 张爱奎,刘光莲,莫宣学,等.青海祁漫塔格晚古生代— 早中生代侵入岩构造背景与成矿关系[J].西北地质, 2012,(01):9-19.
- Zhang Aikui, Liu Guanglian, Mo Xuanxue, et al. Relationship between Tectonic settings ans metallogenesis of late Paleozoic-early Mesozoic intrusive rock in Qimantage, Qinghai province [J]. Northwestern Geology, 2012 (01): 9-19.
- 张雪亭,杨生德,杨站君,等.青海省板块构造研究—— 1:100万青海省大地构造图说明书[M].北京:地质 出版社,2007.
- Zhang Xueting, Yang Shengde, Yang Zhanjun, et al. Study on the plate tectonic framework of Qinhai-Instruction book of Qinghai plate tectonic map [M]. Geological Publishing House, Beijing, 2007.
- Batchelor R A , Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters [J]. Chemical Geology, 1985, (48): 43-55.
- J B Whalen, K L Currie, B W Chappell. A-type granites: geochemical characteristics, discriminatuon and petrogenesis [J]. Contributions to Mineralogy and Petrology, 1987, 95: 407-419.
- Middlemost E A K. Magmas and Magmatic Rocks [M] . London: Longman, 1985.
- Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks [J]. Petrology, 1984, 25 (4): 956-983.
- Peccerillo R, Taylor S R. Geochemistry of eocene calcalkaline volcanic rocks from the Kastamonu area, Northern Turkey Contrib [J]. Mineral Petrol, 1976, 58: 63-81.
- Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes [M]. In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geological Society, London: Special Publications, 1989, 42: 313-345.