文章编号: 0254-5357(2010)05-0535-04

气相色谱 - 质谱联用法测定土壤中 16 种多环芳烃

张小辉, 王晓雁

(陕西省地质矿产实验研究所,陕西 西安 710054)

摘要:应用加速溶剂萃取气相色谱-质谱联用法测定土壤中16种多环芳烃。确定了二氯甲烷-丙酮(体积比1:1)作为提取溶剂,方法检出限为0.10~3.90 ng/g,加标回收率为72.6%~123.5%。方法检出限较低,精密度好,适用于土壤样品中多环芳烃的分析。

关键词: 加速溶剂萃取; 气相色谱 - 质谱法; 土壤; 多环芳烃

中图分类号: 0652.62; 0657.63; S151.93; 0625.1 文献标识码: B

Determination of 16 Polycyclic Aromatic Hydrocarbons in Soils by Gas Chromatography-Mass Spectrometry

ZHANG Xiao-hui, WANG Xiao-yan (Shannxi Institute of Geoanalysis, Xi'an 710054, China)

Abstract: A method for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) in soils by gas chromatography-mass spectrometry (GC-MS) with accelerated solvent extraction (ASE) sample preparation was developed. A mixture solution of methylene chloride/acetone (1:1,V/V) was selected as the optimum extraction solvent through the experiments. The detection limits of the method for PAHs were $0.10 \sim 3.9 \text{ ng/g}$ and the recoveries were $72.6\% \sim 123.5\%$. The method provides the advantages of lower detection limits, good precision and is suitable for the determination of PAHs in soils.

Key words: accelerated solvent extraction; gas chromatography-mass spectrometry; soil; polycyclic aromatic hydrocarbons

多环芳烃(PAHs)是煤、石油、木材、烟草、有机高分子化合物等有机物不完全燃烧时产生的挥发性碳氢化合物,是常见的环境和食品污染物^[1-5]。迄今已发现有 200 多种 PAHs,最常见的有 16 种,其中有相当部分具有致癌性,如苯并[a] 芘、苯并[a] 蔥等。研究发现,PAHs 对生物及人类的毒害主要是参与机体的代谢作用,具有致癌、致畸和致基因突变等特征^[6-8],是对人类健康潜在危害最大的一类有机化合物。此外,因 PAHs 具有脂溶性,可能会在植物中富集,并最终通过食物链影响人体健康。国外研究结果表明 PAHs 在土壤和植物间

的浓度可能有直接的相互关系^[9-10]。因此,对环境中 PAHs 的分析检测就显得尤为重要。

对于大气、饮用水、水产品、油脂、塑料中 PAHs 的检测^[11-18],目前已有较多的分析方法可供选用。 土壤中 PAHs 的分析方法目前有一定研究^[19-21];但 其操作过程复杂,实际中使用不便,需要建立一种方 便、准确测定土壤中 PAHs 的方法。由于 PAHs 易溶 于环己烷、二氯甲烷、正己烷等有机溶剂,本文经过 研究比较,采用二氯甲烷 - 丙酮混合溶剂,快速溶剂 萃取(ASE)提取土壤中 16 种 PAHs,经硅胶或佛罗 里硅土小柱净化后,试样浓缩液进行气相色谱 -质谱(GC - MS)的选择离子检测。

收稿日期: 2010-01-18; 修订日期: 2010-04-27

基金项目: 国土资源地质大调查——地下水污染测试技术研究项目资助(1212010634607)

作者简介: 张小辉(1981-),男,陕西高陵人,工程师,主要从事土壤样品有机分析及检测技术研究。

E-mail: xiaohuiyeah@ 126. com.

1 实验部分

1.1 仪器和主要试剂

Focus GC/DSQ Ⅱ气相色谱 - 质谱联用仪(美国热电公司), ASE 350 快速溶剂萃取仪(美国戴安公司), RE - 52AA 旋转蒸发仪(上海亚荣生化仪器厂), MTN - 2800W 氮吹仪(天津奥特赛恩斯仪器有限公司)。

TR - 5MS 毛细管柱 (30 m × 0.25 mm × 0.5 μm)。

所有玻璃仪器均经洗衣粉刷洗干净后再用重 铬酸钾洗液浸泡,最后用二次蒸馏水清洗干净,于 烘箱中150℃烘干备用。

16 种 PAHs 混合标准溶液: 质量浓度为 200 μg/mL(美国 AccuStandard 公司)。

二氯甲烷、丙酮均为色谱纯。

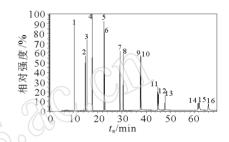
硅藻土(试剂四级,中国医药公司上海化学试剂采购供应站)。

1.2 样品处理

称取 15.0 g 土壤样品,加入约 7.0 g 硅藻土,搅拌混匀后装入 34 mL 萃取池中,然后在 ASE 上进行提取(若萃取池未填满,剩余部分可用硅藻土补足)。提取液用旋转蒸发仪浓缩至约 1 mL,转换溶剂为正己烷。过硅胶净化柱,依次用 20 mL 正己烷洗去杂质,70 mL 二氯甲烷一正己烷混合液(体积比 3:7)洗脱 PAHs。PAHs 洗脱液经旋转蒸发仪浓缩至 1~2 mL,转移到刻度离心管中,再用氮吹仪缓慢浓缩至 1.0 mL,上机测定。

1.3 仪器测定条件

ASE 萃取条件:炉温 100℃,压力 10 MPa,循环次数 2 次,预热平衡时间 5 min,静态提取时间 5 min,淋洗体积为萃取池体积的 60%,15 MPa 下氮气吹扫 2 min,溶剂为二氯甲烷 - 丙酮混合液 (体积比1:1),溶剂体积60 mL。


气相色谱条件:进样口温度 290 $\,^{\circ}$,柱流量 1.0 mL/min,不分流进样,分流阀打开时间 2 min,柱箱 升温程序:50 $\,^{\circ}$ 保持 2 min,以 18 $\,^{\circ}$ /min 升温至 160 $\,^{\circ}$,再以 4 $\,^{\circ}$ /min 升温至 285 $\,^{\circ}$ 保持 28 min。进样量 1.0 $\,^{\circ}$ μL。

质谱条件: 气相色谱 - 质谱传输线温度 250℃, 电子轰击(EI)离子化方式, 电子轰击能量 70 eV, 电子倍增器电压 1.4 kV, 自动调谐, 质谱全扫描(SCAN)质量数扫描范围为 50 ~300 u。

2 结果与讨论

2.1 质谱监测条件的选择

首先用全扫描方式对 16 种 PAHs 混合标准溶液进行全扫描,得到各化合物的总离子流图(见图 1)。然后根据各化合物的保留时间与质谱图建立选择离子监测(SIM)的时间范围与定性、定量离子(表 1)。各化合物的定性条件为:① 保留时间变化范围在±1 s 以内,色谱响应值应≥3 倍噪声信号;② 样品中化合物主要定量离子峰相对丰度应在标准溶液中对应化合物相对离子丰度的±15%以内。同时满足这两个条件,对目标化合物的定性才是较为准确的。

图 1 16 种多环芳烃全扫描色谱图

Fig. 1 The full scan chromatogram of 16 PAHs 1—萘; 2—苊; 3—二氢苊; 4—芴; 5—菲; 6—蒽; 7—芡蒽; 8—芘; 9—苯并[a]蒽; 10—崫; 11—苯并[b]荧蒽; 12—苯并[k] 芡蒽; 13—苯并[a]芘; 14—茚并[1,2,3—cd]芘; 15—二苯并[a,h]蒽; 16—苯并[ghi]芘。

表 1 16 种多环芳烃的定性、定量离子与保留时间

Table 1 The qualitative, quantitative ions and retention time of 16 PAHs

	110 1 /1115			
出峰序号	化合物	定量离子	参考离子	保留时间
山畔厅写		(m/z)	(m/z)	$t_{ m R}/{ m min}$
1	萘	128.10	129.15	10.22
2	苊	152.15	151.15	14.84
3	二氢苊	154.15	153.10	15.44
4	芴	166.15	165.15	17.66
5	菲	178.15	179.15	22.46
6	蒽	178.15	179.15	22.74
7	炭蔥	202.20	203.2	29.16
8	芘	202.20	203.2	30.50
9	苯并[a]蒽	228.20	229.15	37.66
10	蓝	228.20	226.15	37.89
11	苯并[b] 荧蒽	252.20	253.15	44.81
12	苯并[k]荧蒽	252.20	126.15	45.05
13	苯并[a]芘	252.20	253.15	47.72
14	茚并[1,2,3-cd]芘	276.20	138.00	61.49
15	二苯并[a,h]蒽	278.20	139.05	62.04
16	苯并[ghi]菲	276.20	138.15	65.78

2.2 线性范围

将所购买的 PAHs 混合标准溶液用正己烷稀释成 5 个不同浓度的标准系列,进样量 1.0 μL,记录色谱图。用 16 种 PAHs 各自的定量离子峰面积对标准溶液浓度作图,进行线性回归,得到标准曲线。其线性方程及相关系数见表 2。各化合物线性关系良好。

2.3 方法检出限

方法适用范围较广,可以测定 16 种 PAHs 化合物。方法检出限由仪器和操作条件而定,以取 15 g 土壤样品测定,方法检出限为 0.10 ~ 3.90 ng/g(表 3)。

表 2 标准曲线的线性方程与相关系数

Table 2 The linear equations and correlation coefficients of calibration curves for PAHs

出峰					
\ddot{E} \ddot{E} $\ddot{V} = -51255 + 1873.55x$ 1.0000 3 二氢苊 $\ddot{V} = -58948.4 + 2440.96x$ 0.9991 4 \ddot{B} $\ddot{V} = -167194 + 2590.04x$ 0.9997 5 \ddot{E} $\ddot{V} = -209925 + 2737.4x$ 0.9997 6 \ddot{E} $$		化合物	线性方程		
3	1	萘	y = 137955 + 15962.9x	0.9998	
4	2	苊	y = -51255 + 1873.55x	1.0000	
5	3	二氢苊	y = -58948.4 + 2440.96x	0. 9991	
意 $y = -262775 + 2473.14x$ 0.9997 7 荧蒽 $y = -152820 + 1923.55x$ 0.9997 8 芘 $y = -141325 + 1968.03x$ 0.9995 9 苯并[a]蒽 $y = -199245 + 1475.42x$ 0.9999 10	4	芴	y = -167194 + 2590.04x	0. 9997	
7	5	菲	y = -209925 + 2737.4x	0. 9990	
8	6	蒽	y = -262775 + 2473.14x	0.9997	
9	7	荧蒽	y = -152820 + 1923.55x	0. 9997	
10 亩 $y = -202885 + 1622.44x$ 0.9983 11 苯并[b] 荧蒽 $y = 47824.1 + 577.82x$ 0.9999 12 苯并[k] 荧蒽 $y = 69509.4 + 447.128x$ 0.9996 13 苯并[a] 茂 $y = -165292 + 1097.23x$ 0.9995 14 茚并[1,2,3-cd] 茂 $y = -162188 + 732.84x$ 0.9991 15 二苯并[a,h] 蒽 $y = -181022 + 784.176x$ 0.9970	8	芘	y = -141325 + 1968.03x	0.9995	
11 苯并[b] 荧蒽 $y = 47824.1 + 577.82x$ 0.9999 12 苯并[k] 荧蒽 $y = 69509.4 + 447.128x$ 0.9996 13 苯并[a] 茂 $y = -165292 + 1097.23x$ 0.9995 14 茚并[1,2,3-cd] 茂 $y = -162188 + 732.84x$ 0.9991 15 二苯并[a,h] 蒽 $y = -181022 + 784.176x$ 0.9970	9	苯并[a]蒽	y = -199245 + 1475.42x	0.9999	
12 苯并[k] 荧蒽 $y = 69509.4 + 447.128x$ 0.9996 13 苯并[a] 茂 $y = -165292 + 1097.23x$ 0.9995 14 茚并[1,2,3-cd] 茂 $y = -162188 + 732.84x$ 0.9991 15 二苯并[a,h] 蒽 $y = -181022 + 784.176x$ 0.9970	10		y = -202885 + 1622.44x	0.9983	
13 苯并[a]芘 $y = -165292 + 1097.23x$ 0.9995 14 茚并[1,2,3-cd]芘 $y = -162188 + 732.84x$ 0.9991 15 二苯并[a,h]蔥 $y = -181022 + 784.176x$ 0.9970	11	苯并[b] 荧蒽	y = 47824.1 + 577.82x	0.9999	
14 茚并[1,2,3-cd] 芘 $y = -162188 + 732.84x$ 0.9991 15 二苯并[a,h] 蔥 $y = -181022 + 784.176x$ 0.9970	12	苯并[k]荧蒽	y = 69509.4 + 447.128x	0.9996	
15	13	苯并[a]芘	y = -165292 + 1097.23x	0.9995	
7.75.7.3.2	14	茚并[1,2,3-cd]芘	y = -162188 + 732.84x	0.9991	
16 苯并[ghi]	15	二苯并[a,h]蒽	y = -181022 + 784.176x	0.9970	
	16	苯并[ghi] 菲	y = -137311 + 833.875x	0.9998	

表 3 16 种多环芳烃的检出限

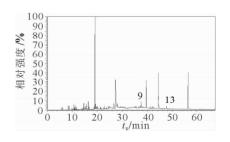
Table 3 The detection limits of 16 PAHs

出峰序号	化合物	方法检出限 $L_{ ext{D}}/(ext{ng}\cdot ext{g}^{-1})$	出峰 序号	化合物	方法检出限 L _D /(ng·g ⁻¹)
1	萘	0.10	9	苯并[a]蒽	0.40
2	苊	0.14	10	崫	0.30
3	二氢苊	0.12	11	苯并[b]荧蒽	0.79
4	芴	0.14	12	苯并[k]荧蒽	1.10
5	菲	0.19	13	苯并[a]芘	1.50
6	蒽	0.28	14	茚并[1,2,3-cd]芘	3.70
7	荧蒽	0.29	15	二苯并[a,h]蒽	3.30
8	芘	0.28	16	苯并[ghi]	3.90

2.4 方法回收率和精密度

本实验采用向空白样品中添加待测物,用于考察土壤样品基体对待测物分析的影响,同时也用来

控制整个实验过程每步操作的准确性。16 种PAHs 回收率在72.6%~123.5%(见表4),可以满足土壤样品有机分析的质量控制要求。本法仪器测定的精密度较好,同一标准溶液连续进样5次,各目标物的峰面积相对标准偏差(RSD)在0.9%~5.4%。


3 实际土壤样品分析

根据上述建立的方法,对实际土壤样品中的 PAHs 进行分析。图 2 为某实际土壤样品的选择离 子色谱图,图中干扰峰较少,表明大部分干扰物已 在净化步骤中被除去,消除了基质影响,从而使待 测化合物的定性和定量信息更为准确。

表 4 方法回收率

Table 4 Recovery tests of the method

II. A blm		回收率	
化合物	测得量	加入量	R/%
萘	783	1000	78.3
でで	798.2	1000	79.8
二氢苊	797.2	1000	79.7
芴	818.6	1000	81.9
菲	1234.8	1000	123.5
蒽	786.5	1000	78.6
荧蒽	848.1	1000	84.8
芘	1118.4	1000	111.8
苯并[a]蒽	889.4	1000	88.9
蓝	852.7	1000	85.3
苯并[b] 荧蒽	762.8	1000	76.3
苯并[k]荧蒽	822.9	1000	82.3
苯并[a]芘	726.3	1000	72.6
茚并[1,2,3 - cd]芘	889.7	1000	89.0
二苯并[a,h]蒽	934.6	1000	93.5
苯并[ghi]菲	857.8	1 000	85.8

图 2 实际土壤样品选择离子色谱图

4 结语

本文通过对土壤中 16 种多环芳烃的提取方法、分析条件进行研究,建立了适合于分析土壤样

品中多环芳烃的气相色谱 - 质谱联用技术。方法 检出限较低(0.10~3.90 ng/g),灵敏度好,加标回 收率和精密度均能满足通常土壤样品中有机分析 的质量控制要求。由于质谱仪检测的定性能力较 强,可以有效减少待测物的假阳性检出,克服了单 纯用保留时间进行定性的不足,因而更适合于基质 比较复杂的样品如土壤中多环芳烃的分析。

5 参考文献

- [1] 刘维立,朱先磊,卢妍妍. 大气中多环芳烃的来源及 采样方式的研究[J]. 城市环境与城市生态,1999,12 (5):58-60.
- [2] 朱先磊,刘维立,卢妍妍,朱坦. 燃煤烟尘多环芳烃成分谱特征的研究[J]. 环境科学研究,2001,14(5):7-11.
- [3] 王淑兰,柴发合,张远航,张元勋,王玮.大气颗粒物中多环芳烃的污染特征及来源识别[J].环境科学研究,2005,18(2):19-22,33.
- [4] 赵文昌,程金平,谢海,马英歌,王文华. 环境中多环 芳烃(PAHs)的来源与监测分析方法[J]. 环境科学 与技术,2006,29(3),105-107.
- [5] 史兵方,杨秀培,刘细祥.土壤中多环芳烃的分布特征及其来源分析[J].农业环境科学学报,2010,29 (5):904-909.
- [6] 王连生,孔令仁,韩朔睽.致癌有机物[M].北京:中国环境科学出版社,1993:439
- [7] 安社娟,陈家堃,陈学敏.多环芳烃致癌的分子毒理 学研究进展[J]. 国外医学:卫生学分册,2005,32 (1):10-13.
- [8] 何丽君,汤艳,何志军,何平中,涂白杰. 多环芳烃类对人群血浆中单胺类神经递质的影响[J]. 重庆医科大学学报, 2010,35(6):819-821.
- [9] Wild S R, Jones K C. Polynuclear aromatic hydro-

- carbons uptake by carrots grown in sludge amended soil [J]. Environmental Quatily, 1992, 21(2):217 225.
- [10] 陈世军,祝贤凌,冯秀珍,黄烈琴,梅运群.多环芳烃对植物的影响[J].生物学通报,2010,45(2):9-11.
- [11] GB 13198—91, 水质; 六种特定多环芳烃的测定; 高效液相色谱法[S].
- [12] SN/T 1877. 2—2007, 塑料原料及其制品中多环芳 烃的测定方法[S].
- [13] SC/T 3042—2008, 水产品中 16 中多环芳烃的测定; 气相色谱 - 质谱法[S].
- [14] GB/T 24893—2010, 动植物油脂; 多环芳烃的测定 [S].
- [15] 张永涛,张莉,李桂香,左海英,桂建业,李晓亚.大体积进样技术结合同位素稀释法测定地表水中多环芳烃的研究[J].中国环境监测,2010,26(3):22-25.
- [16] 罗世霞,朱淮武,张笑一. 固相微萃取 气相色谱法 联用分析饮用水源水中的 16 种多环芳烃[J]. 农业 环境科学学报,2008,27(4):395 - 400.
- [17] 陆封烽,王亚林,贾金平,孙同华. ACF SPME 检测海洋水体中的多环芳烃[J]. 分析试验室,2010,29 (6):19-21.
- [18] 李茉、马继平,朱世文,赵秀华,史本章,肖荣辉. 竹炭固相萃取 高效液相色谱法测定河水中多环芳 烃[J].分析试验室,2010,29(6):89-92.
- [19] 王海娇,王娜,宋丽华,汪寅夫,张志斌. GC MS MS 法测定土壤中的 16 种多环芳烃[J]. 分析试验室,2010,29(Z1);412 414.
- [20] 史兵方,杨秀培,唐婧,蔡铎昌. 荧光法测定土壤中总的多环芳烃含量[J]. 环境科学导刊,2007,26 (4):91-93.
- [21] 倪进治,王军,李小燕,郭涓,杨红玉,魏然.超高效 液相色谱荧光检测器测定土壤中多环芳烃[J]. 分析试验室,2010,29(5):25-28.

仪器信息网"耗材"和"配件"栏目全新上线

仪器信息网的"耗材"和"配件"栏目在紧锣密鼓的筹备工作之后,终于全新上线!这两个栏目汇聚了国内外近600家 仪器常用配件耗材生产商和供应商信息以及50万条产品信息。如实验过程中常用的色谱柱、氘灯、传感器等仪器零配件;玻璃器皿、化学试剂和标准物品等实验耗材,都可以在这两个栏目中找到并询价。

同时,通过本次改版,我们优化了网站搜索功能,用户可通过输入产品名称、厂家名称、型号或者 CAS 号找到所需产品;还可以在产品之间横向对比,查看不同产品的性能和信息。其次,用户可以对感兴趣的产品留言,产品供应商将在第一时间反馈和答复,用户选购产品将非常便捷。

此外,为了让广大用户能够以最优惠的价格买到所需的实验耗材和仪器配件,我们还专门开辟了"促销产品"栏目,让用户第一时间了解厂家的相关促销信息。

仪器信息网最新版块"耗材"和"配件"的更多详情,敬请访问:

http://www.instrument.com.cn/Consumables/和http://www.instrument.com.cn/parts/

(仪器信息网供稿)