文章编号: 0254-5357(2012)01-0178-06

5A 分子筛吸附混合溶剂洗脱 - 气相色谱 - 同位素质谱分析 土壤中正构烷烃单体碳同位素

张逐月^{1,2,3}, 刘美美², 谢曼曼⁴, 王道聪³, 凌 媛², 尚文郁³, 刘舒波³, 岑 况³, 孙 青^{2*} (1. 天津市地质调查研究院, 天津 300191; 2. 国家地质实验测试中心, 北京 100037;

3. 中国地质大学(北京)地球科学与资源学院,北京 100083;

4. 中国科学院地质与地球物理研究所,北京 100029)

摘要:利用5A分子筛吸附,环已烷-正戊烷混合溶剂洗脱分离富集正构烷烃,用气相色谱法测定正构烷烃 含量,气相色谱-气体同位素质谱(GC-C-IRMS)测定土壤样品中正构烷烃单体碳同位素。实验优化了 5A分子筛用量和洗脱剂的比例,需要络合的正构烷烃的量与分子筛加入量呈线性关系,络合 x mg 的正构烷 烃,需加入2.75xg分子筛,络合环已烷-正戊烷最佳比例为9:91。探讨了络合过程中5A分子筛对不同链 长正构烷烃的络合规律,短链正构烷烃被5A分子筛优先吸附,长链正构烷烃的络合相对滞后。正构烷烃的 络合洗脱回收率为44%~72%,精密度(RSD,n=6)为4%~8%;正构烷烃单体碳同位素分析精度为0.04‰ ~0.38‰(1σ)。采用5A分子筛净化混合溶剂洗脱方法,分析加油站附近的实际土壤样品,未分峰基本消 除,获得良好的净化效果,满足正构烷烃单体碳同位素分析的要求。

关键词: 正构烷烃; 单体碳同位素; 气相色谱法; 5A 分子筛

Specific Carbon Isotopic Analysis of *n*-Alkanes in Soils by Gas Chromatography-Isotope Ratio Mass Spectrometry with 5A Molecular Sieve Adsorption and Mixed Solvent Elution

ZHANG Zhu-yue^{1,2,3}, LIU Mei-mei², XIE Man-man⁴, WANG Dao-cong³, LING Yuan², SHANG Wen-yu³, LIU Shu-bo³, CEN Kuang³, SUN Qing²*

(1. Tianjin Institute of Geological Survey, Tianjin 300191, China;

2. National Research Center for Geoanalysis, Beijing 100037, China;

- 3. School of the Earth Sciences and Resources, China University of Geoscience, Beijing 100083, China;
- 4. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China)

Abstract: *n*-alkanes were concentrated after separating by a 5A molecular sieve and extracted by a mixture solvent of cyclohexane and *n*-pentane. In this study, the amount of 5A molecular sieve and the ratios of cyclohexane and *n*-pentane were optimized as 2.76 g and 9:91, respectively. It was discovered that short carbon chain *n*-alkanes were readily absorbed by a 5A molecular sieve, compared to the long carbon chain *n*-alkanes. The complexation efficiency is higher for long carbon chain *n*-alkanes than that of short carbon chain *n*-alkanes with enough 5A molecular material at higher temperature. In this study, *n*-alkanes contents were determined by Gas Chromatography (GC) and compound specific carbon isotope ratios of individual *n*-alkanes in soil were measured by Gas Chromatography-Isotope Ratio Mass Spectrometry (GC-IRMS). The recoveries of *n*-alkanes ranged from

收稿日期: 2010-11-27; 接受日期: 2011-01-26

基金项目:国家自然科学基金项目(40972121);国土资源地质大调查项目(121010816028,1212011120281); 国土资源部公益性行业科研专项经费项目(200911043-29)

作者简介: 张逐月,助理工程师,研究方向为地球化学。E-mail: dayue201007@163.com。

通讯作者:孙青,研究员,研究方向为地球化学。E-mail: sunqingemail@ yahoo. com. cn。

44% to 72% with a precision of 4% – 8%. The accuracies of compound specific carbon isotopes of *n*-alkanes ranged from 0.04% to 0.38% (1σ) . The 5A molecular sieve procedure was used to analyse soil samples around a gas station. The results indicate that almost all of the unseparated and interference peaks were eliminated and the purification of *n*-alkanes met the requirements of stable carbon isotope analysis.

Key words: n-alkanes; specific carbon isotope; gas chromatography; 5A molecular sieve

正构烷烃在植物中主要用来维持叶片表面的水 分平衡^[1]。植物死亡后被保留在土壤、沉积物、石 油和煤等地质体中,保存于地质体中的正构烷烃对 微生物作用具有较强的抵制力,一般不易发生降解, 能够真实地反映生物体贡献的原始正构烷烃分 布^[2],而且沉积后期作用对碳同位素组成影响不 大,因此可以认为单体分子标志物的碳同位素组成 主要是由生物作用过程造成的^[3]。正构烷烃单体 碳同位素为古气候变化以及沉积物中有机质来源、 古植被历史恢复、沉积环境、源区的气候条件分布信 息提供了良好依据^[4]。但是,在气相色谱-气体同 位素质谱(GC - C - IRMS)分析正构烷烃单体碳同 位素之前,需要对饱和烃样品中正构烷烃和异构烷 烃进行预分离处理,目的是减少不同构型的分子化 合物之间的相互影响,提高测定的精密度和准确 度^[5]。

目前,常用的分离饱和烃中正构烷烃和异构烷 烃的方法有尿素络合法和 5A 分子筛吸附法[6-11]。 尿素络合法分离不用 HF 溶解,但分离的正构烷烃 中还包含少量的支链、环烷烃,而且尿素络合法实验 条件难以掌握,人为影响因素大,实验过程易受到污 染^[6-8]。5A分子筛是人工合成沸石,是一种强极性 吸附剂,分子组成为 CaNa₄ [Al₁₂Si₁₂O₄₈] · 29H₂O, 其 Ca²⁺和 Na⁺补偿硅铝酸盐骨架上阴离子部分的 剩余负电荷,控制晶体结构中微孔孔径的大小,骨架 形成的空穴为水分子所占据^[12]。5A 分子筛吸附法 操作简便,人为因素影响少,无污染,分离完全,是通 常采用的一种分离方法。一些研究者利用 5A 分子 筛络合法分离正构烷烃和异构烷烃、环烷烃,消除未 分峰,分析正构烷烃单体碳同位素[13-15]。朱雷 等^[12]的试验中,分子筛的加入量与饱和烃的质量比 约为50:1,但并未探讨不同质量分子筛与正构烷 烃总量的对应关系。常规的 5A 分子筛吸附法需要 使用 HF 溶解 5A 分子筛, 而 HF 毒性较大。Grice 等[13]利用不同比例的环己烷、正戊烷回流提取分子 筛吸附的10 mg 石油饱和烷烃馏分中的正构烷烃, 用于单体碳同位素分析研究,但是在环境研究尤其 是古气候古环境研究中样品量小,正构烷烃含量低,

基体效应不同。本文利用 5A 分子筛吸附法分离正 构烷烃,优化了 5A 分子筛用量和洗脱剂的比例,用 GC - C - IRMS 分析土壤样品中正构烷烃单体碳同 位素,并分析了加油站附近的土壤样品,对实验方法 的可行性进行验证。

1 实验部分

1.1 仪器

气体同位素质谱仪:Trace 2000 气相色谱仪 – GC Combustion Ⅲ接口 – MAT 253 质谱仪(美国热电公司)。

GC - 2010 气相色谱仪(日本岛津公司); KL 512 氮吹仪(北京康林科技有限责任公司)。

EG20A plus 电热板(北京莱伯泰科仪器有限公司);XMTA - C9000 马弗炉(天津市泰斯特仪器有限公司)。

载气:高纯氮气和高纯氦气,含量≥99.999% (北京市北温气体制造厂)。

DB-5MS 色谱柱(30.0 m×0.25 mm×0.25 μm,美国 J&W 公司)。

1.2 主要试剂

正己烷、正戊烷:农残级(Tedia 公司);环己烷: 农残级(Fisher 公司);C₁₄ ~ C₁₆ 正构烷烃混合标准 (国家标准物质研究中心);二氯甲烷:农残级(JT – Baker 公司);甲醇:农残级(百灵威公司);无水乙 醇:优级纯(北京化工厂)。

硅胶:Silica gel 60(40~63 µm),德国 Merck 公司。

1.3 气相色谱和气体同位素质谱分析条件

气相色谱(GC)分析参数:总程序时间为45 min,程序升温条件:柱箱起始温度80℃,以6℃/min 升至320℃,平衡1 min;进样口(SPL)温度300℃, 进样方式为不分流;氢火焰离子检测器(FID)温度 为330℃;采样速度为20 m/s;流量控制程序为尾 吹,尾吹流量30 mL/min。外标法定量,正构烷烃浓 度=正构烷烃的面积×标准中 C_{14} 正构烷烃的浓度/ 标准中 C_{14} 正构烷烃的面积。

气体同位素质谱分析参数:GC Combustion Ⅲ接

口条件:氧化炉温度950℃,还原炉温度640℃,进样 口模式为PTV splitless,分流时间1.5 min,进样口温 度55℃,蒸发温度320℃。色谱柱程序升温条件:初 始温度80℃,以6℃/min 升至320℃,保持10 min, 载气流速为2.0 mL/min;色谱柱分析时间50 min; 进样量为5 μ L。

1.4 样品来源

某加油站附近表层0~5 cm 土壤样品。

1.5 样品分析

1.5.1 正构烷烃含量的测定

利用加速溶剂萃取(ASE)提取土壤样品中类脂 化合物,过硅胶柱获得烷烃馏分,气相色谱法测定正 构烷烃含量^[16]。

1.5.2 5A 分子筛络合

取适量饱和烃馏分于 ASE 接收瓶中,加入不同 量的活化好的 5A 分子筛,往瓶中加入环己烷,至瓶 中液面高度为 2~3 cm(防止分子筛在加热过程中 喷出液面影响分析结果),置于加热板上 80℃加热 24 h,冷却至室温后将溶液用滴管吸出,并且用环己 烷冲洗分子筛表面。分子筛保留在 ASE 接收瓶中 备用,对未络合进入分子筛的物质合并浓缩后进行 气相色谱分析,计算样品中正构烷烃被完全络合时 的 5A 分子筛用量。

1.5.3 5A 分子筛洗脱与分析

在装有络合的正构烷烃的 5A 分子筛的 ASE 接 收瓶中,加入不同比例的正戊烷和环己烷,液面高度 为4 cm,85℃加热 8 h,一次洗脱后将洗脱液浓缩,定 容后用气相色谱测定正构烷烃含量,二次洗脱后将两 次的洗脱液合并浓缩,气相色谱测定正构烷烃含 量^[16],GC - C - IRMS 测定正构烷烃单体碳同位素。

本实验的回收率等于 ASE 提取、柱色谱分离后 获得的烷烃馏分经过 5A 分子筛络合洗脱之后所得 的正构烷烃含量除以 ASE 提取、柱色谱分离后获得 的烷烃中正构烷烃的含量。

2 结果与讨论

2.1 5A 分子筛络合

土壤提取物的烷烃馏分中正构烷烃总量为 0.254 μg,在此烷烃馏分中加入了一系列不同质量 的5A分子筛(0.1、0.2、0.3、0.4、0.5、0.6、0.7、 0.8、0.9、1.0g)。图1是加入不同质量5A分子筛 后未被络合的烷烃气相色谱图。图1(a)为ASE提 取、柱色谱分离获得的饱和烃色谱图,图1(b)至 图 1(k) 依次为加入0.1、0.2、0.3、0.4、0.5、0.6、 0.7、0.8、0.9g和1.0g的5A分子筛后未被络合的 烷烃气相色谱图。从图1可以看出,随着5A分子 筛加入量的增加,未被络合的烷烃中正构烷烃量减 少,短链正构烷烃被5A分子筛优先吸附,长链正构 烷烃的络合相对滞后;当5A分子筛加入量为0.5g 时未被络合的长链正构烷烃才明显减少;当5A分 子筛大于0.7g时,正构烷烃基本被5A分子筛 络合。

图 1 不同质量的分子筛络合正构烷烃效果

不同分子筛加入量与正构烷烃回收率的关系表 明(图2),当5A分子筛的加入量小于0.7g时,正 构烷烃回收率随5A分子筛的加入量增加而增加; 当5A分子筛的加入量大于0.7g时,正构烷烃回收 率基本不变,说明络合0.254 mg正构烷烃的最优分 子筛加入量为0.7g。根据谢曼曼等未发表的数据, 络合0.34 mg正构烷烃需要0.93g的5A分子筛 量,络合正构烷烃的最优分子筛加入量呈线性关系。 络合xmg的正构烷烃,需加入2.75xg分子筛。

图 2 不同加入量分子筛与正构烷烃回收率的关系

Fig. 2 Relationship between amount of molecular sieve and recovery of *n*-alkanes

2.2 正构烷烃洗脱液的选择

小于分子筛孔径的正构烷烃组分被 5A 分子筛 吸附在孔穴中,一般采用 HF 溶解 5A 分子筛释放正 构烷烃。Grice 等^[13]采用 12% 的环己烷与 88% 的 正戊烷混合溶剂洗脱正构烷烃效果最优,在洗脱过 程中,正戊烷将分子筛内的正构烷烃置换出来,加入 一定比例的环己烷来提高洗脱液的沸点^[13],提高洗 脱效率。本文实验采用正戊烷与环己烷的体积比为 0:100、3:97、5:95、8:92、10:90 和 20:80,不同 比例的正戊烷 – 环己烷混合溶剂一次洗脱和二次洗 脱正构烷烃的累加回收率如图 2 所示(图 2 中环己 烷与正戊烷的体积比依次为 0:100、3:97、5:95、 8:92、10:90、20:80)。

由图3可以看出,二次洗脱整体上比一次洗脱 回收率高:碳链长度小于18的正构烷烃回收率低: 碳链长度大于和等于18的正构烷烃回收率较高。 与 Grice 等^[13]实验结果相比,该回收率较低,一方面 可能因为 Grice 等使用的样品量较大,为10 mg 饱和 石油烃,而我们的样品为微量;另一方面可能因为 Grice 等在实验过程中采取冷凝回流方法,避免了蒸 发损失,而本文正构烷烃在加热过程中损失,其他处 理如氮吹浓缩过程可能会降低碳链长度小于18的 正构烷烃的回收率。不同比例的洗脱液条件下的正 构烷烃回收率存在明显差别,当洗脱液为正戊烷,正 构烷烃回收率总体偏低,当混合溶剂中正戊烷与环 己烷体积比大于8:92时,正构烷烃回收率相对较 高且相对稳定,与不同比例的环己烷、正戊烷回流提 取分子筛吸附石油饱和烷烃馏分中的正构烷烃^[13] 的规律一致,但环己烷与正戊烷的最优比例与 Grice 等^[13]的结果略有差别,可能是与实验选用的分子筛 品牌和批次有关。本文选择的混合洗脱液环己烷 -正戊烷体积比为9:91。

优化后的 5A 分子筛络合洗脱正构烷烃方法是根 据饱和烷烃馏分中正构烷烃的量添加 5A 分子筛,加入 5A 分子筛与需络合正构烷烃的质量比是 2.76 g/mg, 80℃加热 24 h 络合正构烷烃后,用环己烷 – 正戊烷混 合溶剂(体积比 9:91)在 85℃下洗脱分子筛中的正构 烷烃 2 次,合并洗脱液,浓缩定容后上机测定。

图 3 正构烷烃在不同比例洗脱液条件下的回收率

Fig. 3 Recoveries of *n*-alkanes with eluting solutions of different proportion

2.3 5A 分子筛络合洗脱正构烷烃方法的精密度

土壤样品平行 6 次分析,正构烷烃的络合洗脱回 收率为 44% ~72%,精密度为 4% ~8%,低于大样量 石油样品的回收率,方法优化后分析正构烷烃单体碳 同位素分析精度为 0.04‰ ~0.38‰(1σ,见表1)。采 用 5A 分子筛络合,环己烷 – 正戊烷混合溶剂洗脱正 构烷烃的回收率与 5A 分子筛络合 – HF 溶解 – 萃取 法的回收率和单体碳同位素分析精度^[11] 相似。

表 1 正构烷烃的络合洗脱回收率、精密度及正构烷烃单体碳同位素分析精度

Table 1 Recoveries and precisions of n-alkanes after complexation and elution, and accuracy of n-alkanes carbon isotope analysis

目标物-	正构烷烃的络合洗脱回收率/%								正构烷烃的δ ¹³ C/‰							
	1	2	3	4	5	6	平均值	RSD	1	2	3	4	5	6	平均值	$\operatorname{RSD}(1\sigma)$
C ₁₇	72	56	56	71	66	55	63	8	-27.94	-28.25	-28.01	-28.41	-28.48	-28.20	-28.22	0.21
C ₁₈	80	67	67	76	74	65	72	6	-28.23	-28.41	-28.15	-28.34	-28.00	-28.35	-28.25	0.15
C ₁₉	79	69	70	74	74	67	72	5	-27.88	-28.24	-28.63	-28.43	-28.29	-28.35	-28.30	0.25
C ₂₀	79	70	71	73	74	67	72	4	-28.00	-28.18	-27.91	-28.22	-28.18	-28.03	-28.09	0.13
C ₂₁	77	68	69	71	72	65	70	4	-28.89	-28.71	-29.43	-29.22	-29.16	-29.32	-29.12	0.27
C ₂₂	61	54	52	55	56	50	55	4	-28.63	-29.19	-28.48	-28.75	-28.75	-28.72	-28.75	0.24
C ₂₃	72	64	62	64	65	58	64	5	-29.81	-29.62	- 30.04	- 29.66	-29.74	-29.65	-29.75	0.16
C ₂₄	68	60	57	60	60	53	60	5	-29.40	-29.17	-29.02	-29.15	-29.25	-29.39	-29.23	0.15
C ₂₅	58	52	48	49	51	45	50	4	- 30.43	- 30.78	- 30.55	- 30.44	-30.78	- 30.54	- 30. 59	0.16
C ₂₆	64	59	53	53	56	49	56	5	-29.78	-29.75	-29.70	- 30.30	-29.11	- 30.02	-29.77	0.40
C ₂₇	59	55	49	50	52	46	52	5	- 30.85	- 30.82	- 30.88	- 30.78	- 30. 81	- 30. 81	- 30. 82	0.04
C ₂₈	63	60	53	52	55	49	55	5	- 30.06	-29.96	-29.78	- 30.86	- 30.30	- 30. 31	- 30. 21	0.38
C ₂₉	54	50	43	44	46	41	46	5	-31.22	-31.08	-31.15	-31.16	-31.11	-31.07	-31.13	0.05
C ₃₀	60	59	52	49	52	46	53	6	-29.98	-29.24	-29.17	-28.99	-29.42	-29.54	- 29.39	0.35
C ₃₁	51	48	42	42	44	39	44	5	-31.44	-31.45	-31.49	-31.68	-31.25	-31.41	-31.45	0.14
C ₃₃	68	66	57	56	59	52	60	6	- 31.24	- 30. 49	- 30. 83	-31.13	- 30. 93	-31.08	- 30.95	0.27

表 2 实际土壤样品中正构烷烃含量及单体的 δ¹³C 分析结果

Table 2 Analytical results of n-alkanes in practical soil samples and specific carbon isotope values

目标物		正构烷烃的	的含量 w _B /($\mu g \cdot g^{-1})$		正构烷烃单体的 δ ¹³ C 分析结果/‰ ^①					
	样品1	样品2	样品3	样品4	样品5	样品1	样品 2	样品3	样品4	样品 5	
C ₁₇	1.0	2.3	1.2	2.4	6.8	- 30.64	-29.70	-36.40	- 33.82	- 30. 33	
C ₁₈	2.2	1.8	1.6	2.2	8.2	- 30. 34	-28.70	-28.63	-27.18	-28.99	
C ₁₉	2.0	1.6	2.1	2.5	8.2	-29.88	- 30.41	- 30.46	-29.41	-29.47	
C ₂₀	2.6	6.1	1.9	2.3	8.1	- 30. 22	-32.49	- 30. 43	-29.31	- 30.45	
C ₂₁	2.4	1.5	2.5	2.5	7.3	-29.59	- 30. 39	-31.55	-28.85	- 29.99	
C ₂₂	2.5	1.5	2.4	2.8	6.4	-31.64	-33.51	-32.71	-31.87	- 30.02	
C ₂₃	3.4	1.7	3.6	3.8	6.2	- 30. 19	-31.32	-31.53	- 30. 43	- 30. 13	
C ₂₄	3.4	1.4	3.8	4.6	6.0	- 30. 19	- 30.62	- 30.85	- 30. 43	-29.79	
C ₂₅	5.9	2.6	6.5	5.1	10.7	-31.48	- 30.77	-31.12	-31.67	-28.71	
C ₂₆	3.6	1.5	5.9	3.6	5.4	-33.07	- 30.76	- 30. 83	- 34.45	-28.25	
C ₂₇	9.8	11.9	11.9	25.8	11.4	-31.35	- 30.50	- 30.88	-32.35	-27.74	
C ₂₈	3.2	1.6	4.5	4.0	4.9	-31.27	-29.72	- 30. 83	- 30. 25	-27.21	
C ₂₉	11.0	4.4	5.3	21.3	16.2	-31.44	-27.96	-29.15	-32.50	-27.96	
C ₃₀	2.8	1.7	2.1	3.4	3.7	-31.24	-28.35	- 30.10	- 30.20	-29.51	
C ₃₁	10.6	3.8	4.0	19.5	14.4	-32.80	-32.21	-22.39	-34.25	- 30. 29	
C ₃₂	2.6	1.4	1.7	2.3	3.5	-29.53	-31.20	-37.14	-40.58	-29.97	
C ₃₃	2.8	1.4	1.7	7.4	4.8	-31.36	-29.07	- 30.05	-34.74	-28.69	
C ₃₄	1.6	1.1	0.4	0.6	2.0	-	-11.87	-28.18	-	-27.57	
C35	1.1	6.0	3.0	10.1	1.4	_	- 30. 59	-29.92	-31.27	- 30.81	

① 样品采集区附近存在槭树和车前草类植物,可能是土壤中某些正构烷烃单体碳同位素偏负[17-18]的原因。

3 加油站附近土壤正构烷烃单体碳同位素分析

按优化后的实验条件,对加油站附近实际土壤 样品经 ASE 萃取 – 硅胶柱色谱分离 5A 分子筛络合 净化,用 GC – FID 测定样品中正构烷烃含量,GC –

C - IRMS 分析样品中正构烷烃单体碳同位素组成。 采自加油站附近的样品由于受到汽油、柴油等物

质的污染,样品中支链烷烃、环烷烃含量非常高,经过 简单的硅胶柱色谱净化,未分峰(UCM 峰)非常显著 (图4),采用5A分子筛净化方法后,获得良好的净化 效果,UCM 峰基本消除,达到了正构烷烃单体碳同位 素分析的要求。实际样品分析结果见表2。

图 4 实际土壤样品用 5A 分子筛络合前后色谱图

Fig. 4 Chromatograms of practical soil samples before and after treated by 5A molecular sieve

4 结语

采用 5A 分子筛络合,环己烷 - 正戊烷混合溶 剂洗脱,用气相色谱法测定正构烷烃含量, GC - C - IRMS法测定土壤样品中正构烷烃单体碳 同位素,正构烷烃的络合洗脱回收率为44% ~ 72%,精密度为4%~8%;正构烷烃单体碳同位素 分析精度为0.04‰~0.38‰(1σ)。该方法省略了 HF 溶解和其后的萃取步骤,易于操作,回收率较高、 稳定,同位素测量精度高,适合实际土壤和高石油烃 污染区土壤中正构烷烃单体的碳同位素分析。

致谢:感谢国家地质实验测试中心李丽、刘艳和王晓 华等同志在工作中给予的帮助。

5 参考文献

- [1] 张杰,贾国东.植物正构烷烃及其单体氢同位素在古环境研究中的应用[J].地球科学进展,2009,24(8): 874-881.
- [2] 郑艳红,程鹏,周卫建.正构烷烃及单体碳同位素的古 植被与古气候意义[J].海洋地质与第四纪地质, 2005,25(1):99-104.
- [3] 王晓华,石丽明,刘美美,孙青,储国强.古气候古环境 研究中类脂化合物单体同位素分析[J].岩矿测试, 2008,27(6):435-440.

- [4] Huang Y, Lockheart M J, Collister J W. Molecular and isotopic biogeochemistry of the Miocene Clarkia Formation: Hydrocarbons and alcohols [J]. Organic Geochemistry, 1995, 23:785-801.
- [5] 李钜源.单分子烃碳同位素分析方法及影响因素探讨 [J].地球学报,2004,25(2):109-113.
- [6] Tolosa I, Ogrinc N. Utility of 5Å molecular sieves to measure carbon isotope ratios in lipid biomarkers [J]. Journal of Chromatography A, 2007, 1165 (1 - 2): 172 -181.
- [7] Ficken K J, Barber K E, Eglinton G. Lipid biomarker, δ¹³ C and plant macrofossil stratigraphy of a Scottish montane peat bog over the last two millennia [J]. Organic Geochemistry, 1998, 28(3-4):217-237.
- [8] Nott C J, Xie S C, Avsejs L A, Maddy D, Chambers F M, Evershed R P. *n*-alkane distributions in ombrotrophic mires as indicators of vegetation change related to climatic variation [J]. Organic Geochemistry, 2000, 31 (2 - 3): 231 - 235.
- [9] Eglinton G, Hamilton R G. Leaf epicuticular waxes[J]. Science, 1967, 156:322 335.
- [10] Cranwell P A. Chain-length distribution of n-alkanes from lake sediments in relation to postglacial environmental change[J]. Freshwater Biology, 1973, 3 (3): 259 - 265.
- [11] O' Leary M H. Biochemical basis of carbon isotope fractionation: Stable isotopes and plant carbon-water relations[M]. San Diego: Academic Press, 1993: 19-28.
- [12] 朱雷,史权.吸附法分离饱和烃组分在石油地球化学中的应用[J].石油大学学报:自然科学版,1999, 23(2):30-34.
- [13] Grice K, de Mesmay R, Glucina A, Wang S. An improved and rapid 5A molecular sieve method for gas chromatography isotope ratio mass spectrometry of *n*-alkanes (C₈-C₃₀₊) [J]. Organic Geochemistry, 2008, 39(3): 284 – 288.
- [14] 杜丽,李立武,孟仟祥,房玄,丁万仁,王广.饱和烃经 5A分子筛络合前后单体烃碳同位素分析对比研究
 [J].沉积学报,2005,23(4):747-752.
- [15] 王传远,车桂美,盛彦清,李延太,秦志江.碳同位素 在溢油鉴定中的应用研究[J].环境污染与防治, 2009,31(7):21-24.
- [16] 石丽明,刘美美,王晓华,孙青,储国强.加速溶剂萃 取提取土壤中正构烷烃的方法研究[J]. 岩矿测试, 2010, 29(2):104-108.
- [17] Chikaraishi Y, Naraoka H. Compound-specific δD-δ¹³C analyses of *n*-alkanes extracted from terrestrial and aquatic plants [J]. *Phytochemistry*, 2003, 63(3): 361 371.
- [18] Chikaraishi Y, Naraoka H. δ¹³C and δD relationships among three *n*-alkyl compound classes (*n*-alkanoic acid, *n*-alkane and *n*-alkanol) of terrestrial higher plants[J]. Organic Geochemistry, 2007,38(2):198-215.