DOI: 10.16031/j.cnki.issn.1003-8035.2022.02-08

钱法桥,邓亚虹,慕焕东,等. 吕梁山区黄土物理性质力学参数区域分布特征 [J]. 中国地质灾害与防治学报, 2022, 33(2): 61-70. QIAN Faqiao, DENG Yahong, MU Huandong, *et al.* Distributive characteristics of physical and mechaniscal parameters of the loess soils in Lüliang mountainous area[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(2): 61-70.

吕梁山区黄土物理性质力学参数区域分布特征

钱法桥1, 邓亚虹1,2, 慕焕东3, 唐亚明4, 宋焱勋1, 李艳杰1, 山 聪1

(1. 长安大学地质工程与测绘学院,陕西西安 710054; 2. 矿山地质灾害成灾机理与防控重点实验室,陕西西安 710054; 3. 西安理工大学岩土工程研究所,陕西西安 710048; 4. 中国地质调查局西安地质调查中心,陕西西安 710054)

摘要:黄土因其特殊的物理力学性质及工程特性,在外界环境影响下易引发诸如黄土崩塌、滑坡、泥流等地质灾害。因此,研究黄土土性参数区域性分布特征对地质灾害防灾减灾具有重要意义。以吕梁山区L₁黄土地层为研究对象,在野外调查、代表性点位取样的基础上,对研究区内133个取样点340组黄土试样进行黄土土性参数室内试验,获得其土性参数;基于所得数据,通过统计分析及ArcGIS软件平台,分析研究区内L₁黄土地层土性参数分布特征。结果表明:黏粒含量、天然含水率、孔隙比、黏聚力、内摩擦角的分布在南北方向上具有较好的规律性,山脉东西两侧规律略有不同。另外,黏粒含量、天然含水率、黏聚力、湿陷系数的区域分布规律较为明显,内摩擦角区域分布上较为离散。研究结果为从 土性特征方面对地质灾害易发性评价提供基础数据支撑。

关键词:黄土;吕梁山区;土性参数;区域性;分布特征

中图分类号: P642.13⁺1; P694 文献标志码: A

文章编号: 1003-8035(2022)02-0061-10

Distributive characteristics of physical and mechaniscal parameters of the loess soils in Lüliang mountainous area

QIAN Faqiao¹, DENG Yahong^{1,2}, MU Huandong³, TANG Yaming⁴, SONG Yanxun¹, LI Yanjie¹, SHAN Cong¹

(1. College of Geology Engineering and Geomatics, Chang'an University, Xi'an, Shaanxi 710054, China;

2. Key Laboratory of Mine Geological Hazards Mechanism and Control, Xi'an, Shaanxi 710054, China;

3. Institute of Geotechnical Engineering, Xi'an University of Technology, Xi'an, Shaanxi 710048, China;

4. Xi'an Center of China Geological Survey, Xi'an, Shaanxi 710054, China)

Abstract: Loess is prone to geological hazards such as landslide, spalling and mud flow due to its special physical and mechanical properties and engineering characteristics. Therefore, it is of great significance to study regional distributive characteristics of loess parameters for geological hazard prevention and mitigation. The L_1 loess stratum in Lüliang Mountains is taken as the research object. Based on field investigation and sampling at representative points, the soil properties of 340 groups of loess samples from 133 sites in the study area were tested in laboratory. Based on the obtained data, the distributive

收稿日期: 2022-02-22; 修订日期: 2022-03-22 投稿网址: https://www.zgdzzhyfzxb.com/

基金项目:中国地质调查局地质调查项目 (DD20190642);陕西省教育厅科学研究计划专项项目 (20JK0801);陕西省自然科学基础研究 计划一般项目(2022JQ-289)

第一作者: 钱法桥(1997-), 男, 重庆云阳人, 硕士研究生, 主要从事地质灾害防灾减灾及地震工程方面的研究。 E-mail: 2020226080@chd.edu.cn

通讯作者: 唐亚明(1973-), 女, 湖南永州人, 博士, 教授级高级工程师, 主要从事地质灾害调查与研究工作。 E-mail: 272738908@qq.com

characteristics rules of soil properties of L_1 losss strata in the study area were analyzed by statistical analysis and ArcGIS software platform. The results show that the distribution of clay content, natural water content, pore ratio, cohesion and internal friction angle have good regularity in north-south direction, but the regularities are slightly different between the eastern and western of the mountains. In addition, the regional distributive characteristics law of clay content, natural water content, cohesion and collapsibility coefficient is obvious. However, the internal friction angle is relatively discrete in regional distribution. The research results provide basic data for the evaluation of geological hazard susceptibility from the perspective of soil characteristics.

Keywords: loess; Lüliang mountains; soil parameters; regionality; distributive characteristics

0 引言

黄土作为一种大孔隙、松软,且多具有湿陷性 的特殊性质的土,在世界范围内广泛分布。我国黄 土分布面积约 640 000 km²,其中黄土高原总面积约为 380 000 km^{2[1]},黄土广泛分布于甘肃、陕西、山西、内蒙 古、宁夏、青海等地。其中,晋陕黄土高原地区黄土堆 积物厚度大、地层完整,发育典型,是我国第二级阶梯 的重要组成部分。近年来,晋陕黄土高原地区由于强烈 的水土流失、与日俱增的人类工程活动以及极端的气 候条件,诸如黄土崩塌、滑坡、泥流、黄土洞穴、地裂缝 等一系列典型地质灾害频发,已成为我国黄土地区受灾 最为严重的区域之一,制约着当地城镇化建设,危及公 路、铁路、水利等重大工程建设运营。上述地质灾害的 广泛发育受控于两个方面,以岩土特性为代表的自然环 境条件及以人类活动为代表的诱发条件。其中,岩土特 性是根本条件。因此系统研究区域性黄土物理力学参 数变化规律对该地区黄土地质灾害评价具有重要的实 际意义。

黄土物理力学性质比较特殊,学者们一般从黄土微 结构及其沉积环境入手开展研究。高国瑞^[2-3]探讨了兰 州黄土的显微结构和湿陷机理,研究了显微结构分类与 湿陷性的关系,指出黄土的显微结构特征有着明显的区 域性变化规律。雷祥义^[4]指出从黄土高原西北部到东 南部,第四纪黄土的显微结构在区域上呈现出从微胶结 结构向半胶结结构、胶结结构的规律性变化,反映出黄 土形成时期,西北部比较干冷东南部比较湿温的气候状 况。丁仲礼等^[5]通过选取黄土剖面,得出黄土砂粒含量 与空间分布的关系,并且考虑了源区范围变化、风力强 度及风化作用对黄土颗粒含量的影响。李同录等^[6]通 过试验,研究了黄土的孔隙分布和土—水特征曲线与黄 土沉积环境间的关系。随着研究的进一步深入,学者们 尝试从物理力学指标的相互关系和区域性的角度入手 进行研究,包括黄土的物理力学性质、水理性质等。李 萍等「「在分析讨论黄土湿陷性与各个性质指标关系的 基础上,通过基本物理指标与回归模型,得到湿陷性系 数与其他参数间的计算公式。Wen 等^[8]通过比较原状 黄土与重塑黄土的抗剪强度及其它参数,研究了结构性 对兰州市非饱和黄土抗剪强度特性的影响。慕焕东 等¹⁹通过实验研究表明,砂质黄土随砂砾含量增加, 其孔隙比、压缩性、抗剪强度都会有所增大。袁中夏 等^[10]研究了不同含水量下黄土抗剪强度参数值,并分析 四个边坡模型的稳定性系数随含水量的变化,得到黄土 边坡稳定性随天然含水率的变化规律。刘钊钊等[11]以 不同地貌区原状黄土作为研究对象,研究了黄土梁峁 区、塬区和台塬区三类黄土的孔隙特征。鲁拓等[12]通 过试验,揭示了马兰黄土孔隙分形特征与渗透性之间的 关系,从孔隙性的角度评价其渗透性。杨泽等[13]通过野 外取样及室内试验,将所获得的数据与规范进行对比, 得到了陇东地区典型黄土各个参数的分布类型。张卜 平等[14]梳理、总结了黄土潜蚀相关研究成果,阐述了黄 土潜蚀现象成因机理及其致灾效应。张玲玲等[15]研究 了吕梁地区原状马兰黄土在反复冻融作用下,黄土抗剪 强度参数的变化规律及对边坡稳定性的影响。Tang 等[16]以吕梁山区作为研究对象,对试样进行干密度、孔 隙比、液性指数以及 CT 扫描等试验,建立了 CT 图像 扫描与物理指标之间的数学关系。随着吕梁地区经济 的不断发展、工程建设规模的逐步扩大以及国家战略 计划的实施,吕梁地区黄土滑坡、崩塌等地质灾害愈发 严重,越来越多的研究学者开始关注吕梁山区地质灾害 发育特征、分布规律,并获得了宝贵的成果[17-20]。

上述学者对黄土特性及晋陕黄土高原开展了大量 的研究工作,但对区域性黄土物理力学参数的对比分析 以及区域性分布规律研究相对较薄弱。因此,文中以晋 陕黄土高原吕梁山区为研究对象,通过开展室内常规物 理试验、颗粒分析试验、湿陷性试验、直接剪切试验、 压缩试验、渗透试验等一系列试验,得到黄土物理力学 性质参数,在此基础上分析黄土土性参数的南北向及区 域性分布特征,研究结果为从土性参数特征方面对地质 灾害易发性评价提供基础数据支撑。

1 区域环境条件

吕梁山区位于山西省中西部地区,工作区涉及吕梁 全市及临汾市、太原市、晋中市部分区县,共计4市 29县。

在气候方面,四季分明,夏短冬长,属于典型的大陆 性气候。研究区南部温度整体高于北部,年平均降水 量 514.9 mm,最高为 985 mm(1978 年交口县数据),降雨 量主要集中在吕梁山区东部,时间主要集中在夏秋两季。

在地形地貌方面, 吕梁山区地势中部最高, 东侧较 西侧低, 北高南低。区内山脉高低起伏、沟壑纵横, 水 系发育。地形以吕梁山脉为中心可划分为东部平原 区、中西部高原区、西部黄土丘陵区三类。其中, 东部 平原区由一系列断陷盆地及河流冲洪积物沉积所形成 的平原组成, 中西部高原区主要为吕梁山区的基岩山 地, 西部黄土丘陵区覆盖层厚度大, 是吕梁山脉向黄河 谷地的延伸部分。

在地层岩性方面,区内出露地层较为完整且具有一 定规律性,表现为自吕梁山脉中心向两翼方向由老变 新,多为第四系堆积物覆盖。岩性分布有片岩、片麻 岩、斜长闪角岩、泥岩、页岩、石英岩等。东部平原区 覆盖层主要为黄土、冲洪积土、砂卵砾石等第四系堆积 物,中西部高原区及西部黄土丘陵区多为黄土覆盖。在 地质构造方面,区内吕梁山脉东侧发育有汾渭地堑、古 交隆起和宁武向斜三个一级构造单元,西侧发育有晋西 挠褶带,包含吕梁山隆起在内共五个一级构造单元。区 内构造多为南北向分布,并因受鄂尔多斯盆地和汾渭地 堑的影响,呈现出山脉东侧构造复杂多样,西侧地质构 造分布较少的特点。

区内黄土滑坡、崩塌、地面塌陷和地裂缝、泥流等 地质灾害广泛发育。从地质灾害发育数量看,区内4市 均高于全省地质灾害点密度平均值,并以吕梁、临汾两 市为全省前二,分别为0.1185处/km²与0.1027处/km²。 在地质灾害类型方面,区内崩塌(含潜在不稳定斜坡)为 主要地质灾害类型,所占比例为45%~66%,其中以临 汾市最高,达66%,地面塌陷仅次于崩塌,所占比例为 25%~37%。

2 黄土土性参数室内试验数据

通过对研究区内133个取样点(图1)、340组黄

土试样进行黄土土性参数室内试验,获得一系列黄土 土性参数室内试验数据,试验类型及完成情况如表1 所示。

图 1 研究区取样点分布图

Fig. 1 Distribution map of sampling points in the study area

表 1 黄土土性参数室内试验类型一览表 Table 1 List of laboratory test types of loess parameters

试验类型	数量/个	试验类型	数量/个
颗分试验	286	密度试验	289
含水率试验	289	液塑限试验	272
比重试验	270	固结试验	220
直剪试验	241	常规三轴试验	185
渗透试验	209	湿陷性试验	212
动三轴试验	57	环剪试验	36
崩解试验	20	流变试验	50

2.1 常规物理性质指标试验数据

对所取试样进行常规物理性质试验,得到相关试验 数据,在此基础上,计算得到试样孔隙比、饱和度、塑性 指数及液性指数。由于吕梁山脉的阻挡,黄土颗粒在搬 运、沉积的过程中受其影响严重,并且,山脉两侧气候、 地形地貌、风化剥蚀等因素的不同,也会对黄土性质带 来影响。

因此,文中按吕梁山脉东西两侧对研究区常规物理 试验数据进行分类,求取各市县参数平均值(表 2、 表 3),分别研究其参数特征及变化规律。由于黄土地 质灾害如滑坡、崩塌、侵蚀等,受浅层岩土体性质影响 较大,且L₁地层试验数据较其他地层数据完整,更易于 分析其土性参数的规律性,在全部取样点中,含有L₁层 黄土的点位共计113个,占取样点总数84.96%。故本 文选取L₁黄土地层为研究对象,开展物理力学特性试 验并分析其参数特征。

表 2 吕梁山脉东侧 L_1 黄土地层常规物理性质指标数据 Table 2 Data of physical properties of L_1 loess strata in eastern Lüliang mountains

编号	市县名	取样点数	黏粒含量/%	含水率/%	密度/(g·cm ⁻³)	比重	孔隙比/%	饱和度/%	塑限/%	液限/%	塑性指数	液性指数
1	临汾市(尧都区)	1	9.590	2.752	1.384	2.654	0.971	7.524	18.000	29.695	11.695	-1.304
2	洪洞县	2	11.850	8.453	1.483	2.640	0.932	24.197	18.225	28.773	10.548	-1.010
3	汾西县	2	8.830	9.060	1.436	2.663	1.021	23.535	19.750	33.575	13.825	-0.770
4	灵石县	1	11.240	15.890	1.564	2.650	0.964	43.699	18.650	32.280	13.630	-0.202
5	交口县	5	12.366	11.562	1.332	2.718	1.280	24.589	15.880	33.200	17.360	-0.273
6	孝义市	2	7.800	7.336	1.387	2.642	1.046	18.595	18.450	32.133	13.683	-0.827
7	汾阳县	1	9.070	3.615	1.497	2.688	0.860	11.296	14.700	30.425	15.725	-0.705
8	文水县	3	12.555	12.930	1.313	2.663	1.297	25.611	16.720	32.330	15.630	-0.271
9	清徐县	1	5.490	7.770	1.469	2.631	0.930	21.977	15.700	30.590	14.890	-0.533
10	交城县	2	11.930	9.061	1.436	2.672	1.036	23.624	17.210	30.770	13.570	-0.601
11	古交市	1	16.620	15.961	1.432	2.619	1.121	37.296	18.550	46.390	27.840	-0.093
12	娄烦县	2	5.795	11.257	1.673	2.663	0.779	40.650	17.425	30.493	13.068	-0.413
13	岚县	1	6.720	4.970	1.458	2.658	0.913	14.465	15.700	25.720	10.020	-1.071

表 3 吕梁山脉西侧 L₁ 黄土地层常规物理性质指标数据

Table 3 Data of physical properties of L₁ loess strata in western Lüliang mountains

编号	市县名	取样点数	黏粒含量/%	含水率/%	密度/(g·cm ⁻³)	比重	孔隙比/%	饱和度/%	塑限/%	液限/%	塑性指数	液性指数
1	河津市	2	15.735	15.140	1.400	2.695	1.216	33.445	18.610	34.535	15.900	-0.235
2	乡宁县	7	13.162	8.040	1.402	2.681	1.072	20.264	17.403	32.763	15.358	-0.816
3	吉县	11	10.862	10.239	1.490	2.659	0.977	28.154	21.607	32.434	10.826	-1.104
4	蒲县	5	7.394	8.642	1.452	2.669	1.006	22.208	18.978	32.938	13.960	-0.758
5	大宁县	5	8.386	8.543	1.556	2.629	0.837	26.782	20.908	31.666	10.758	-1.201
6	隰县	4	9.118	8.562	1.429	2.646	1.015	22.593	20.728	31.410	10.683	-1.155
7	永和县	7	12.560	7.618	1.403	2.615	1.013	19.919	17.800	31.067	13.300	-0.701
8	石楼县	13	8.923	8.089	1.505	2.626	0.901	24.998	15.357	31.457	16.100	-0.543
9	中阳县	1	14.590	10.440	1.370	2.768	1.231	23.467	25.750	32.620	6.870	-2.229
10	柳林县	6	8.568	10.345	1.518	2.679	0.952	29.520	19.863	30.704	10.841	-0.941
11	离石区	2	8.915	9.031	1.543	2.643	0.867	27.490	17.885	29.835	11.950	-0.764
12	方山县	2	6.700	13.178	1.577	2.678	0.927	38.870	16.700	28.890	12.090	-0.451
13	临县	12	9.059	9.183	1.534	2.665	0.902	27.647	16.924	29.945	13.023	-0.690
14	兴县	8	6.943	8.845	1.394	2.704	1.117	21.150	14.013	31.013	17.005	-0.405
15	岢岚县	1	6.590	8.800	1.430	2.736	1.082	22.259	17.160	29.120	12.000	-0.699
16	保德县	3	5.560	6.640	1.467	2.672	0.943	18.593	14.350	28.712	14.382	-0.578

2.2 其他土性参数试验数据

其他试验分为压缩试验、直剪试验、环剪试验、常 规三轴试验、动三轴试验、湿陷试验、渗透试验等,据 前文所述,按吕梁山脉东西两侧的原则对试验数据进行 分类,求得各市县平均值(表4、表5)。因环剪试验、常 规三轴试验以及动三轴试验数据并未覆盖研究区内所 有市县,故表4、表5中并未列举其数值。

3 黄土土性参数南北向分布特征

在大量黄土土性参数数据的基础上,通过统计分 析,得到研究区黄土土性参数的南北向分布特征。黄土 土性参数选取考虑黄土物质组成、干湿和坚硬程度、压 缩性、结构特性、渗透特性及强度特性,因此,选取黏粒 含量、天然含水率、孔隙比、渗透系数、黏聚力及内摩 擦角作为黄土土性分布特征研究的基本物理力学指标,

编号	市县名	取样点数	压缩系数/MPa ⁻¹	压缩模量/MPa	内摩擦角/(°)	黏聚力/kPa	湿陷系数	渗透系数/(cm·s ⁻¹)
1	临汾市(尧都区)	1	0.157	13.076	37.085	22.711	1.42E-01	3.31E-04
2	洪洞县	2	0.766	2.789	33.350	16.659	2.35E-02	7.60E-05
3	汾西县	2	0.129	16.776	30.648	23.727	5.75E-02	1.90E-04
4	灵石县	1	0.143	13.793	30.192	28.775	1.30E-02	9.97E-05
5	交口县	5	0.167	12.060	27.467	25.533	2.18E-02	9.31E-06
6	孝义市	2	0.618	7.600	30.365	26.840	5.01E-02	3.30E-04
7	汾阳县	1	0.140	13.333	32.810	43.556	7.18E-02	6.80E-04
8	文水县	3	0.607	5.861	29.955	33.096	6.12E-02	1.38E-04
9	清徐县	1	0.224	8.621	27.570	22.962	4.60E-02	-
10	交城县	2	0.129	21.843	31.377	31.607	1.35E-02	9.43E-05
11	古交市	1	1.357	1.580	39.400	4.880	5.72E-02	1.91E-04
12	娄烦县	2	0.152	11.827	30.560	32.800	2.83E-02	8.26E-05
13	岚县	1	0.243	7.874	21.710	24.465	9.78E-02	2.61E-04

表 4 吕梁山脉东侧 L₁ 黄土地层其他土性参数试验数据 Table 4 Data of other parameters of L₁ loess strata in eastern Lüliang mountains

表 5 吕梁山脉西侧 L₁ 黄土地层其他土性参数试验数据

编号	市县名	取样点数	压缩系数/MPa ⁻¹	压缩模量/MPa	内摩擦角/(°)	黏聚力/kPa	湿陷系数	渗透系数/(cm·s ⁻¹)
1	河津市	2	0.476	4.112	28.385	43.915	8.50E-03	5.64E-05
2	乡宁县	7	0.642	7.888	32.585	34.392	5.50E-02	1.14E-04
3	吉县	11	0.262	14.306	29.437	26.666	5.97E-02	7.32E-05
4	蒲县	5	0.168	15.110	29.992	31.055	2.54E-02	1.20E-04
5	大宁县	5	0.224	7.410	31.788	20.716	4.82E-02	1.22E-04
6	隰县	4	0.462	7.377	31.118	18.705	5.14E-02	7.15E-05
7	永和县	7	0.230	17.317	17.405	15.615	3.37E-02	9.96E-05
8	石楼县	13	0.231	14.834	20.020	16.945	2.93E-02	1.32E-04
9	中阳县	1	0.982	1.018	32.930	6.280	7.55E-02	1.07E-04
10	柳林县	6	0.436	8.421	31.032	13.724	3.81E-02	8.63E-05
11	离石区	2	0.398	4.809	20.452	11.310	4.68E-02	1.11E-04
12	方山县	2	0.407	4.938	32.550	6.540	4.86E-02	7.72E-05
13	临县	12	0.240	17.675	30.802	14.543	1.34E-02	8.03E-05
14	兴县	8	0.219	8.938	28.587	40.893	4.70E-03	-
15	岢岚县	1	0.146	13.407	-	_	1.04E-02	-
16	保德县	3	0.125	21.887	27.890	30.040	3.80E-02	-

 Table 5
 Data of other parameters of L1 loess strata in western Lüliang mountains

按照纬度由南到北的原则,对吕梁山脉东西两侧 L₁ 黄 土地层土性参数进行分析。

3.1 黏粒含量南北向分布特征研究

基于颗粒分析试验数据,绘制黏粒含量南北向分布 图(图 2)。结果显示,L₁黄土地层粒径大小集中在 0~ 0.25 mm,以粉粒为主,东侧黏粒含量平均值为 14.11%, 西侧平均值为 12.53%,较东侧略低。吕梁山脉西侧黏 粒含量从南向北整体呈下降趋势,规律性较好;吕梁山 脉东侧黏粒含量呈现先增加后减小的趋势,该区域内黄 土在沉积过程中由于山脉的阻隔、风化剥蚀、气候等因 素,导致其规律性较西侧弱。

3.2 天然含水率南北向分布特征研究

对试样进行含水率平行测定,取平均值,得到各取 样点 L₁ 黄土地层中天然含水率平均值,以百分数进行 表示,并根据其纬度自南向北进行排列(图 3)。实验结 果表明,L₁ 黄土地层中含水率范围在 2.75%~16.1%,平 均值为 9.05%。吕梁山脉西侧天然含水率自南向北整 体呈逐渐减小趋势,南端数据具有一定离散性。吕梁山 脉东侧天然含水率自南向北呈现出先增加后减小,在北 段又逐渐趋于离散的现象,整体规律较西侧差,其原因 可能是与东侧自然降水较多、河流发育较为丰富等因 素有关。

图 2 吕梁山脉东西两侧 L₁ 黄土地层黏粒含量分布

Fig. 2 Distribution of clay content in L₁ loess strata on the east and west sides of Lüliang mountains

图 3 吕梁山脉东西两侧 L₁ 黄土地层天然含水率分布

Fig. 3 Distribution of natural water content in L₁ loess strata on the east and west sides of Lüliang mountains

3.3 孔隙比南北向分布特征研究

根据试验所得数据,计算取样点处土体孔隙比,依据上述原则,得到研究区内孔隙比南北向分布图(图4)。图中显示,在吕梁山脉东侧,L₁黄土地层中孔

隙比整体呈先增加后降低的趋势,并具有较为明显的峰 值。山脉西侧 L₁ 层黄土孔隙比自南向北波动起伏,数 值集中于 0.8~1.2,整体趋势线较为平稳。

3.4 抗剪强度参数南北向分布特征研究

文中抗剪强度参数选取原状土样固结快剪试验成 果,试验采用应变控制式四联直剪仪,根据试验结果求 得试样抗剪强度参数,得到研究区抗剪强度参数南北向 分布图(图 5、图 6)。由图可以看出,在南北方向上,土 体的抗剪强度参数离散性较大,但整体上具有一定规律 性。吕梁山脉东侧黏聚力由南向北整体呈增加趋势,最 大值为 61.52 kPa, 东侧内摩擦角整体由南向北呈递减 趋势。吕梁山脉西侧黏聚力由南向北逐渐减小, 内摩擦 角虽波动起伏, 但趋势线较为平稳, 西侧内摩擦角平均 值 30.3°; 土体抗剪强度参数的离散性反映了吕梁山区 的沉积环境复杂, 西侧土体处于黄土高原, 东侧分布有 太原盆地、临汾盆地, 土体性质受搬运距离长短、土颗 粒物质组成、后期环境改造等因素的影响。但数据结

图 5 吕梁山脉东西两侧 L₁ 黄土地层黏聚力分布

果显示,无论是东侧还是西侧土体,均表现为黏聚力波 动起伏较大,内摩擦角趋势较为平稳。

4 黄土土性参数区域分布特征

根据野外调查发现,黄土地质灾害的诱发因素可 分为自然因素和人为因素两类。例如黄土滑坡,自然 因素有河流下切侵蚀、冻融作用、降雨等,人类工程 活动有削坡堆载、灌溉、水库蓄水等,其中,降雨和人 类工程活动是最为积极的两个诱发因素。这些诱发 因素都会直接或间接地引起黄土土性参数的变化,如 含水量的增加、内摩擦角与黏聚力的变化等。为了更 直观地反映研究区土性参数的变化特征,文中通过 ArcGIS 克里金插值法,对各个取样点所得到的参数数 据进行分析计算,得到研究区不同土性参数的区域分 布规律。

4.1 黏粒含量区域分布特征研究

基于黏粒含量试验数据,分析计算得到研究区 L₁黄土地层中黏粒含量分布图(图 7)。由图 7 可知,黏 粒含量在区域上分布不均匀,规律性较为明显。整体来 看,地层中黏粒含量随纬度增加呈现出逐渐减少的趋 势,与前文黏粒含量南北向分布特征相符。黏粒含量最 高值为 18.7%,位于研究区南端河津市,最低值为

4.58%,位于研究区北端保德县。

4.2 天然含水率区域分布特征研究

根据天然含水率试验数据,可得研究区L₁地层天 然含水率分布图(图 8)。由图 8 可知,吕梁山脉东西两 侧区域分布规律有所不同,山脉东侧由南至北天然含水 率逐渐升高,山脉西侧天然含水率由南至北逐渐降低。 在研究区南部,东侧含水率整体较西侧低;在研究区中 部,东侧含水率整体较西侧略高。

图 8 吕梁山区 L₁黄土地层天然含水率区域分布 Fig. 8 Regional distribution of natural water content of loess in L₁ layer in Lüliang region

4.3 抗剪强度参数区域分布特征研究

文中通过原状土样的直剪试验,获得研究区各个取 样点位的固结快剪强度参数,得到研究区抗剪强度参数 区域分布图 (图 9、图 10)。

从图 9、10 中可以看出, 吕梁地区抗剪强度参数离 散度较大, 其大小与研究区地形地貌、沉积环境、土层 物质组成等因素有关。从区域黏聚力图中分析, 主要表 现为山脉西侧黏聚力从南至北逐渐降低, 于南端取得最 大值, 山脉东侧整体较为离散。将研究区东西两侧黏聚 力进行对比分析可以得知, 吕梁山脉东侧 L₁ 黄土地层 中黏聚力整体高于西侧。由内摩擦角分布图分析可知, 研究区内摩擦角强度参数在区域上呈现不规则的态势, 波动起伏, 无明显规律性, 与前文描述相符。

图 9 吕梁山区 L₁ 黄土地层黏聚力区域分布

Fig. 9 Regional distribution of cohesion of loess in L₁ layer in Lüliang mountains

4.4 湿陷系数(δ_s)区域分布特征研究

根据湿陷试验数据结果进行计算分析,得到吕梁地 区 L₁ 黄土地层湿陷系数区域分布图(图 11),根据图 11 可以看出,研究区由北至南,湿陷性系数逐渐升高,对照 黄土湿陷性分类表(表 6)以及湿陷系数区域分布图得 知,吕梁山区 L₁ 黄土地层大多属于湿陷性黄土,湿陷程 度从无湿陷性至强烈湿陷不等,具有较好规律性。根据 试验结果显示,研究区中北部 L₁ 层黄土多为无湿陷性 至中等湿陷性。强烈湿陷黄土发育较少,多集中于研究 区南部,如东侧临汾市、孝义市、汾阳市,西侧河津市、 乡宁县、吉县、大宁县等部分点位。

Fig. 11 Regional distribution of collapsibility coefficient of L₁ loess strata in Lüliang mountains

	表 6	黄土湿陷性分类
Table 6	Loess	collapsibility classification

分类名称	分类标准	黄土湿陷程度
非湿陷性黄土	$\delta_{ m s}$ < 0.015	无湿陷性
	$0.015 \leqslant \delta_{\rm s} \leqslant 0.03$	湿陷性轻微
湿陷性黄土	$0.03 < \delta_{\rm s} \leqslant 0.07$	湿陷性中等
	$\delta_{\rm s} > 0.07$	湿陷性强烈

4.5 黄土土性参数差异分布原因分析 从研究区取样点分布图(图1)可知,吕梁山脉几乎 纵向穿越整个研究区,将研究区划分为东西两侧。在地 质历史时期过程中,黄土颗粒受到风力搬运的作用,并 在沉积过程中受到吕梁山脉的阻挡,使得山脉两侧黄土 在物质组成、结构性等方面有所区别。并且,由于搬运 距离不同,表现出研究区由南至北土性参数的差异性, 如黏粒含量随纬度的变化。其次,山脉东西两侧地形地 貌的不同、降水量或河流水系的差异及风化作用等因 素也会对黄土土性参数产生影响,从而使得研究区内黄 土土性参数呈现出差异分布的特点。

5 结论

文中通过室内试验、数据分析的手段,以吕梁山区 L₁黄土地层作为研究对象,分析了其土性参数的南北 向分布特征和区域分布特征,取得了如下结论:

(1)通过室内试验,获得了研究区内4市28县 L1黄土地层不同点位的土性参数数据,在一定程度上, 为研究黄土土性参数分布规律研究及研究区地质灾害 易发性评价提供数据支撑。

(2) 吕梁山脉东侧 L₁ 黄土地层黏粒含量、孔隙比由 南至北呈现先增加后降低的趋势, 黏聚力由南至北逐渐 增加; 山脉西侧黏粒含量、天然含水率、黏聚力由南至 北逐渐减少。山脉东西两侧内摩擦角在空间分布上趋 势线较为平稳。

(3) 在土性参数南北向分布特征基础上, 基于 ArcGIS 平台, 得到研究区 L₁ 黄土地层黏粒含量、天然 含水率、抗剪强度参数及湿陷系数的区域分布规律。

参考文献(References):

- [1] 刘东生.黄土与环境[J].西安交通大学学报(社会科学版), 2002, 22(4):7-12. [LIU Dongsheng. Loess and environment [J]. Journal of Xi'an Jiaotong University (Social Sciences Edition), 2002, 22(4):7-12. (in Chinese with English abstract)]
- [2] 高国瑞.兰州黄土显微结构和湿陷机理的探讨[J].兰州大学学报,1979,15(2):123-134.[GAO Guorui. Study of the microstructures and the collapse mechanism in loess soil from Lanzhou [J]. Journal of Lanzhou University,1979, 15(2):123-134. (in Chinese with English abstract)]
- [3] 高国瑞.黄土显微结构分类与湿陷性[J].中国科学, 1980, 10(12): 1203 - 1208. [GAO Guorui. Classification and collapsibility of loess [J]. Scientia Sinica, 1980, 10(12): 1203 - 1208. (in Chinese with English abstract)]
- [4] 雷祥义.黄土的显微结构与古气候的关系[J].地质论 评,1989,35(4):333-341. [LEI Xiangyi. The relations between microfabrics of loess and paleoclimate in China [J].

Geological Review, 1989, 35(4): 333 – 341. (in Chinese with English abstract)]

- [5] 丁仲礼,孙继敏,刘东生.联系沙漠-黄土演变过程中耦合关系的沉积学指标[J].中国科学(D辑:地球科学), 1999, 29(1): 82-87. [DING Zhongli, SUN Jimin, LIU Dongsheng. A sedimentological proxy indicator linking changes in loess and desert in the quaternary [J]. Science in China (Series in D), 1999, 29(1): 82-87. (in Chinese with English abstract)]
- [6] 李同录,张辉,李萍,等.不同沉积环境下马兰黄土孔隙 分布与土水特征的模式分析[J].水文地质工程地质, 2020,47(3):107-114.[LI Tonglu, ZHANG Hui, LI Ping, et al. Mode analysis of pore distribution and soil-water characteristic curve of Malan loess under different depositional environments [J]. Hydrogeology & Engineering Geology, 2020,47(3):107-114. (in Chinese with English abstract)]
- [7] 李萍,李同录. 黄土物理性质与湿陷性的关系及其工程意义[J]. 工程地质学报,2007,15(4):506-512. [LI Ping, LI Tonglu. Relation between loess collapsibility and physical properties and its engineering significance [J]. Journal of Engineering Geology, 2007, 15(4):506-512. (in Chinese with English abstract)]
- [8] WEN B P, YAN Y J. Influence of structure on shear characteristics of the unsaturated loess in Lanzhou, China [J]. Engineering Geology, 2014, 168: 46 58.
- [9] 慕焕东,邓亚虹,李荣建,等.砂粒含量对砂质黄土力学性质影响试验研究[J].水利与建筑工程学报,2018,16(6):36-39. [MU Huandong, DENG Yahong, LI Rongjian, et al. Experimental study on effects of sand content on sandy loess mechanical properties [J]. Journal of Water Resources and Architectural Engineering, 2018, 16(6):36-39. (in Chinese with English abstract)]
- [10] 袁中夏,赵未超,叶帅华,等.含水量对黄土边坡稳定性的影响[J].中国地质灾害与防治学报,2019,30(3):37-43. [YUAN Zhongxia, ZHAO Weichao, YE Shuaihua, et al. Influence of water content on loess slope stability [J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(3):37-43. (in Chinese with English abstract)]
- [11] 刘钊钊,钟秀梅,张洪伟,等.典型地貌区原状黄土孔隙细观特征研究[J].水文地质工程地质,2019,46(2):148-155.
 [LIU Zhaozhao, ZHONG Xiumei, ZHANG Hongwei, et al. Research on pore microscopic characteristics of undisturbed loess in typical geomorphologies [J]. Hydrogeology & Engineering Geology, 2019, 46(2):148-155. (in Chinese with English abstract)]
- [12] 鲁拓,唐亚明,李喜安,等.马兰黄土孔隙分形特征与 渗透性关系[J].科学技术与工程,2021,21(19):8138-8144. [LU Tuo, TANG Yaming, LI Xi'an, et al. Relationship between pore fractal characteristics and permeability of Malan

loess [J]. Science Technology and Engineering, 2021, 21(19): 8138 - 8144. (in Chinese with English abstract)]

- [13] 杨泽, 蔺晓燕, 李同录, 等. 陇东黄土的物理力学性质指标统计分析[J]. 重庆科技学院学报(自然科学版), 2021, 23(1):111-114. [YANG Ze, LIN Xiaoyan, LI Tonglu, et al. Statistical analysis of physical and mechanical properties of longdong loess [J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition), 2021, 23(1):111-114. (in Chinese with English abstract)]
- [14] 张卜平,朱兴华,成玉祥,等.黄土潜蚀机理及其致灾效应研究综述[J].中国地质灾害与防治学报,2021,32(6):41-52. [ZHANG Buping, ZHU Xinghua, CHENG Yuxiang, et al. A review on loess subsurface-erosion mechanism and it's hazard effects [J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6):41-52. (in Chinese with English abstract)]
- [15] 张玲玲,龙建辉,邢鲜丽,等.冻融循环作用下吕梁地区 马兰黄土性质研究[J].太原理工大学学报,2021,52
 (4):557-563. [ZHANG Lingling, LONG Jianhui, XING Xianli, et al. Study on the properties of Malan loess in Lüliang area under freeze-thaw cycles [J]. Journal of Taiyuan University of Technology, 2021, 52(4):557-563. (in Chinese with English abstract)]
- [16] TANG Y M, BI Y Q, GUO Z Z, et al. A novel method for obtaining the loess structural index from computed tomography images: A case study from the Lüliang mountains of the loess plateau (China) [J]. Land, 2021, 10(3): 291.
- [17] 宋拴萍. 吕梁市离石区地质灾害概况及防治建议[J]. 山西建筑, 2014, 40(35): 78-79. [SONG Shuanping. The geological disaster situation and prevention suggestion of Lishi District in Lüliang [J]. Shanxi Architecture, 2014, 40(35): 78-79. (in Chinese with English abstract)]
- [18] 薛强,唐亚明,白轩.吕梁山区大宁县城地质灾害破坏 模式及风险管控[J].山地学报,2021,39(1):151-162.
 [XUE Qiang, TANG Yaming, BAI Xuan. Failure modes and risk control of geohazards in the county town of Daning in the Lüliang mountains, China [J]. Mountain Research, 2021, 39(1):151-162. (in Chinese with English abstract)]
- [19] 黄虎城.山西主要地质灾害分布规律和影响因素研究[J]. 能源与环保, 2020, 42(1): 87-90. [HUANG Hucheng. Study on distribution law and influence factors of main geological disasters in Shanxi Province [J]. China Energy and Environmental Protection, 2020, 42(1): 87-90. (in Chinese with English abstract)]
- [20] 王鹏, 闫治利. 山西省地质灾害总体特征与分布规律研究[J]. 山西煤炭, 2018, 38(1): 20-22. [WANG Peng, YAN Zhili. General features and distribution of geological disasters in Shanxi Province [J]. Shanxi Coal, 2018, 38(1): 20-22. (in Chinese with English abstract)]