

中国科技核心期刊 《中国科学引用文数据库》来源期刊 Caj-cd规范获奖期刊

THE CHINESE JOURNAL OF GEOLOGICAL HAZARD AND CONTROL

云南维西哈达沟中频泥石流特征及堵溃危险性分析

王翔弘绅, 胡桂胜, 杨志全, 倪化勇

Characteristics of intermediate frequency debris flow and analysis of the hazard of blockage in Hada gully, Weixi County of Yunnan Province

WANG Xianghongshen, HU Guisheng, YANG Zhiquan, and NI Huayong

在线阅读 View online: https://doi.org/10.16031/j.cnki.issn.1003-8035.202112037

您可能感兴趣的其他文章

Articles you may be interested in

基于不同评价单元和灾害熵的泥石流危险性分析

Hazard analysis of debris flows based on different evaluation units and disaster entropy: A case study in Wudu section of the Bailong river basin

李小龙, 宋国虎, 向灵芝, 罗亮, 唐良琴, 沈娜, 梁梦辉 中国地质灾害与防治学报. 2021, 32(6): 107-115

基于数值模拟的群发性泥石流危险性评价

Risk assessment of mass debris flow based on numerical simulation: An example from the Malu River basin in Min County 曹鹏, 侯圣山, 陈亮, 冯振, 王立朝, 李昂, 刘军友 中国地质灾害与防治学报. 2021, 32(2): 100–109

四川省冕宁县华岩子沟火后泥石流成灾机理

Disaster mechanism of post-fire debris flow in Huayanzi gully, Mianning County, Sichuan Province 张绍科, 胡卸文, 王严, 金涛, 杨瀛 中国地质灾害与防治学报. 2021, 32(5): 79-85

基于水槽试验的冰碛土泥石流启动机理分析

Analysis of the start-up mechanism of moraine debris flow based on flume test: A case study of the Aierkuran Gully along the Sino-Pakistan highway

樊圆圆, 宋玲, 魏学利 中国地质灾害与防治学报. 2021, 32(1): 1-9

基于增量加载法的泥石流拦挡坝抗冲击力数值模拟

Numerical simulation of impact resistance of debris flow dam: A case study of the debris flow dam in Sanyanyu Gully, Zhouqu County, Gansu Province

刘兴荣,魏新平,陈豫津,王翔宇 中国地质灾害与防治学报. 2021, 32(2): 78-83

青海省滑坡崩塌泥石流灾害时空分布特征

Temporal and spatial characteristics of landslide, rockfall and debris flow disasters in Qinghai Province during the period 魏正发, 曹小岩, 张俊才, 应忠敏, 严慧, 魏赛拉加 中国地质灾害与防治学报. 2021, 32(6): 134–142

关注微信公众号,获得更多资讯信息

DOI: 10.16031/j.cnki.issn.1003-8035.202112037

王翔弘绅, 胡桂胜, 杨志全, 等. 云南维西哈达沟中频泥石流特征及堵溃危险性分析 [J]. 中国地质灾害与防治学报, 2023, 34(2): 42-52.

WANG Xianghongshen, HU Guisheng, YANG Zhiquan, et al. Characteristics of intermediate frequency debris flow and analysis of the hazard of blockage in Hada gully, Weixi County of Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34(2): 42-52.

云南维西哈达沟中频泥石流特征及堵溃危险性分析

王翔弘绅^{1,2,3}, 胡桂胜^{3,4}, 杨志全^{1,2}, 倪化勇⁵

 (1. 昆明理工大学应急管理部地质灾害风险防控与应急减灾重点实验室/昆明理工大学公共安全与应 急管理学院,云南昆明 650093;2. 云南省高校高烈度地震山区交通走廊工程地质病害早期快速 判识与防控重点实验,云南昆明 650093;3. 中国科学院山地灾害与地表过程重点实验室/中国科 学院水利部成都山地灾害与环境研究所,四川成都 610041;4. 高原科学与可持续发展研究院, 青海西宁 810016;5. 中国地质调查局探矿工艺研究所,四川成都 611734)

摘要:中频泥石流具有较大危险性和暴发周期较长的特点,人类活动会诱发其发生并加剧其成灾严重程度,当沟道不能满 足泄流输水能力时将发生堵溃,危及两岸甚至是主河河道安全。由于目前中频泥石流危险性分析的缺乏,因此以云南省哈 达沟中频泥石流为例,探讨其特征和再次发生泥石流及导致沟道堵溃的危险性,并提出防治建议。结果显示:泥石流重 度1.62 t/m³,泥石流沟口流速4.794 m/s,基于暴发频率10%情况下的沟口峰值流量为54.43 m³/s 以及一次冲出总量为11 072.03 m³; 在下游沟道处修建有涵洞,其过流量为16.5 m³/s,小于20 a一遇泥石流流量,一旦发生大型泥石流,则有堵溃危险。研究 发现哈达沟中频泥石流危险度为高度危险,堵溃历史判断其再次发生沟道堵溃并有泥石流堵塞腊普河的可能性。 关键词:哈达沟;中频泥石流;危险性;堵溃

中图分类号: P642.23 文献标志码: A 文章编号: 1003-8035(2023)02-0042-11

Characteristics of intermediate frequency debris flow and analysis of the hazard of blockage in Hada gully, Weixi County of Yunnan Province

WANG Xianghongshen^{1,2,3}, HU Guisheng^{3,4}, YANG Zhiquan^{1,2}, NI Huayong⁵

 (1. Key Laboratory of Geological Hazard Risk Prevention and Emergency Mitigation, Department of Emergency Management, Kunming University of Science and Technology, School of Public Safety and Emergency Management, Kunming University of Science and Technology, Kunming, Yunnan 650093, China; 2. Key Laboratory of Early Rapid Identification, Prevention and Control of Geological Diseases in Traffic Corridor of High Intensity Earthquake Mountainous Area of Yunnan Province, Kunming, Yunnan 650093, China; 3. Key Lab of Mountain Hazards and Surface Processes, Institute of Mountain Hazards

收稿日期: 2021-12-29; 修订日期: 2022-03-19 投稿网址: https://www.zgdzzhyfzxb.com/

基金项目: 国家自然科学基金项目"国际(地区)合作与交流项目-多尺度滑坡泥石流灾害链发生机制与风险韧性管控"(41861134008); The Youth Innovation Promotion Association CAS (2020367); 云南省阿瑟夫汉院士工作站 (202105AF150076); 云南省重点研 发计划项目(202003AC100002); 云南省基础研究计划面上项目(202001AT070043)

第一作者:王翔弘绅(1996-)男,四川成都人,硕士,安全工程专业,主要从事山地灾害形成机理与工程防治研究。 E-mail: wangxianglaunch@qq.com

通讯作者: 胡桂胜(1984-)男, 江西九江人, 博士, 副研究员, 主要从事山地灾害形成机理与工程防治研究。 E-mail: huguisheng@imde.ac.cn

and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China; 4. Academy of Plateau Science and Sustainability, Xining, Qinghai 810016, China; 5. Institute of Exploration Technology, China Geological Survey, Chengdu, Sichuan 611734, China)

Abstract: Intermediate-frequency debris flows has the characteristics of high danger and long outbreak period. Human activities can trigger its occurrence and aggravate its disaster severity. When the channel cannot meet the capacity for drainage and water transport, it will cause blockage and endanger the safety of both sides of the strait and even the main river channel. Due to the lack of analysis on the danger of intermediate-frequency debris flows, this paper takes the intermediate-frequency debris flow in Hada Gully, Yunnan Province as an example to explore its characteristics and the danger of its recurrence and channel blockage caused by debris flows and proposes prevention and control suggestions. The results show that the debris flow has a density of 1.62 t/m³, a flow velocity of 4.794 m/s at the outlet of the channel, a peak flow rate of 54.43 m³/s at the channel outlet and a total discharge of 11072.03 m³ for a single occurrence based on the 10% burst frequency. A culvert was constructed in the downstream channel, with a flow capacity of 16.5 m³/s, which is less than the flow rate of a debris flow once in 20 years. Once a large debris flow occurs, there is a risk of blockage. The study found that the hazard level of intermediate-frequency debris flows in Hada gully is highly dangerous, and the history of blockage indicates the possibility of its recurrence and the risk of debris flow blocking the Lapu River.

Keywords: Hada gully; intermediate frequency debris flow; hazard analysis; blocking

0 引言

被誉为"世界屋脊"的青藏高原东南缘和横断山系 中段是闻名的"三江并流"带,区内峡谷陡峭,物源丰 富,降水集中,自然环境极易受到内外动力和人类活动 的影响,在耦合下泥石流灾害也相对明显^[1]。"三江并 流"带建筑多依河傍山而建,空间上呈现出坡脚集中修 筑的特点,在以上环境背景下,一旦暴发泥石流灾害,将 对区内经济和居民生命安全造成巨大的威胁和损失[2]。 在泥石流频率上,高、中、低频泥石流灾害在云南省均 有发育,其中高频泥石流频率为1~5a,中频泥石流频 率为 5~20 a, 低频泥石流频率为 20~100 a^[3]。云南省 哈达沟是一条典型的中频泥石流沟,据调查统计,其在 1966年、1976年、2001年及2010年均暴发过较大规模 的泥石流灾害,其中2010年7月28日暴发的泥石流灾 害规模最大,沟道冲出物堵塞腊普河口长达一个小时, 并威胁到香维高速公路的安全,造成的直接经济损失和 潜在经济损失巨大。此次暴发后,之后的几年其活动相 对减弱,未发生明显的大规模泥石流灾害。中频泥石流 存在暴发周期长、潜伏期长、易忽视的特点,在工程防 治中不利于长期监测和精确定位[4-5]。其潜在的危险性 大,为保障区内环境、人文、经济安全,有必要对其进行 研究。

由于泥石流暴发周期长(短则几年,长则几十年), 监测工作困难。在许多重点泥石流研究区设有监测站 (东川、波密等)并配备监测仪器设备,但大多数泥石流 沟依然依凭人力监测,准确度不高,所以在频率的确定 上依然存在一定的困难。目前国内外研究针对泥石流暴发 频率判识方法主要有:基于粗大块石粒径、岩性、岩体 坚固系数特性的判识方法:基于水文计算判识的方法 等^[3]。为更加准确地对泥石流进行分类定性,中频泥 石流这一概念初次在国内提出。但针对中频泥石流的 相关文献相对较少,其常被模糊式地判定为低频泥石 流⁶。目前国内外在中频泥石流的研究都稍显不足,因 此,对其特征和危险定性并没有详细的研究分析和取 证。但在结合前人提出的关于单沟泥石流的危险性评 价模型的基础上,在特定参数条件下也能完成中频泥石 流的危险定性。此外,中频泥石流与高频泥石流共有的 类似特征也是界定的一个难点。没有文献参考和评价 示范做支撑,中频泥石流的危险度定性模糊(高度危险 度—极度危险度),由于其处于低频与高频之间,在人们 的主观认知下,其危险性习惯性地被认为是中度危险或 接近高度危险。危险定性在泥石流灾害的防治中是一 个极其重要的指标,不能妄下定论。

本文针对中频泥石流研究上的不足,以哈达沟中频 泥石流为研究对象,分析中频泥石流发育特征、运动特 征以及其发生堵溃的危害性。在野外调查、理论分析、 模型计算的基础上,比较堵塞隐患点的断面过流最大流 量与中频泥石流流量(以分析暴发频率10%为主),分 析隐患点(以沟口公路涵洞为主要研究对象)是否满足 过流条件,得出哈达沟再次发生堵溃淤埋道路和桥梁的 危险性。基于权重采用层次分析法计算哈达沟中频泥 石流危险度,综合分析中频泥石流灾害的危险性,绘制 危险分区并对其提出相关防治建议。

1 研究区概况

哈达沟为金沙江右岸腊普河右岸二级支流,流经云 南省维西县启别村。哈达沟区域地形属于侵蚀剥蚀高 中山峡谷区,研究区位置如图1所示。哈达沟流域后缘 位于沟源山脊处,高程约3304m,前缘为启别村与腊 普河交界处,约1976m,相对高差1460m,流域面积 8.79km²,主沟道长5.02km,平均纵坡比降约246.5‰, 坡度30°~65°,地貌分割明显,沟谷上部切割强烈,两岸 岸坡地形陡峭,沟谷呈典型深"V"字形^[7]。哈达沟流域 共发育有4条支沟,为泥石流形成提供了充足水源条件 和物源条件。其中:清水区位于2610~3304m段,形 成区位于2170~2610m段,流通区位于2050~2170m 段,堆积区位于2050m至沟口段,特征分布如图2所示。

图 1 哈达沟位置 Fig. 1 Location map of the Hada gully

2 哈达沟泥石流形成条件与特征

2.1 泥石流形成条件

2.1.1 物源条件

根据野外调查,哈达沟流域内共发育 15 处典型滑 坡物源,其中 2 处典型崩滑物源如图 3 所示。这些物源 主要为切坡构成的崩滑体物源和滑坡堆积物源,疏松固 体物源总量为 9.65×10⁴ m³,能参加泥石流运动的动储备 约为 3.05×10⁴ m³。

由于流域周边人类工程活动导致边坡土壤侵蚀和 风化,形成边坡侵蚀物源。不稳定斜坡上表层物源在雨 水冲刷作用下进入沟道,成为沟床堆积物源,沿着整段 沟道,堆积物源从上至下均有分布,支沟内也有分布,哈 达沟沟道堆积物源如图 4 所示。

据调查,该泥石流沟域内两岸上部岸坡陡峻,岸坡

坡度为 40°~60°, 两岸岸坡植被繁茂, 高大树木发育, 植 被覆盖率在 60% 以上, 土体厚度在 1~5 m, 平均厚度 2.5 m, 通过遥感解译, 估算沟道周边侵蚀面积。物源数 据统计见表 1。通过现场勘察分析, 泥石流再次发生 时, 崩塌堆积物源和沟床堆积物源将会是参加哈达沟泥 石流运动的主要物源。崩塌堆积物源是按照实地勘察 现场测量估算的物源总量, 再按照 25% 的冲刷计算可 参与泥石流活动的动储量; 沟道物源动储量是对沟道的 特征段进行现场测量和观察长度、宽度、厚度、颗粒分 布、淤埋情况, 估算而出; 坡面侵蚀物源是根据地形坡 度、植被覆盖率等划分强度、中度及轻度侵蚀区, 估算 出物源和动储量物源。

2.1.2 水源条件

哈达沟泥石流的水源主要来源于大气降水。泥石 流均发生于雨季(图 5),勘查区降雨较丰沛,且雨量集

图 2 哈达沟地形地貌遥感影像特征图 Fig. 2 Remote sensing image feature map of topography and geomorphology in the Hada gully

图 3 崩滑堆积物源 Fig. 3 Source of landslide accumulation

图 4 沟道堆积物源 Fig. 4 Source of gully deposition

中国地质灾害与防治学报

第2期

表 1 哈达沟泥石流物源汇总统计表									
		Table 1	Summary of	source of debris	flow in Hada g	ully			
始海光型	坡面侵蚀	物源/10 ⁴ m ³	崩塌堆积	物源/10 ⁴ m ³	沟床堆积	物源/10 ⁴ m ³	合计。	$/10^4 \text{ m}^3$	
初你失望 -	总量	动储量	总量	动储量	总量	动储量	总量	动储量	
数值	306.7	4.73	9.65	3.05	12.5	3.68	328.85	11.46	

 $H_{24} = 1.1 \times H_{\square} \tag{1}$

中,此外,沟域内地下水匮乏,不构成引发泥石流的主要 水源,沟域内没有水库、湖泊等集中的地表水体,因此 判定暴雨形成的地表径流是引发泥石流的主要水源,暴 雨是泥石流的主要激发因素。

Fig. 5 Average monthly rainfall in Weixi County

2.1.3 气象条件

根据维西县气象局(1955—2014年)60年气象资料 显示,维西县年平均降雨量947.7 mm,最大日降雨量 93.4 mm,年最大降雨量1266.9 mm。根据资料分析, 1986年、1989年、1992年、1994年、1995年、2000年、 2001年、2002年、2010年降雨量偏多且集中,致使腊普 河流域以及周边流域的地质灾害强度增大,频率增高。 维西县月平均降雨量如图5所示^[7]。

不同频率下多年平均24h降雨强度如表2所示。

	表 2 不同频率 H ₂₄ 值表
Table 2	List of parameters and results of 24-hour rainstorm
intensity	of different precipitation frequencies in Hada gully

设计暴雨的频率P	倍比 系数K _p	H _{24p} /mm	备注
100年一遇最大日暴雨量(P=1%)	2.11	116.05	
50年一遇最大日暴雨量(P=2%)	1.92	105.6	
30年一遇最大日暴雨量(P=3.33%)	1.79	98.45	云南省水文 手册香定
20年一遇最大日暴雨量(P=5%)	1.67	91.85	1 /01 E/C
10年一遇最大日暴雨量(P=10%)	1.47	80.85	

采用《云南省水文手册》法计算 10 a、20 a、30 a、50 a、100 a 一遇设计暴雨量^[8-9]。计算公式如下:

*H*_日→→最大→日降雨量/mm, 查《云南省水文手册
 附图 18》, *H*_H=50 mm;

1.1——换算系数。

查《云南省水文手册》附图 19,相关计算结果见表 2。 4 人类工程活动影响

2.1.4 人类工程活动影响

根据现场调查, 勘查区内的人类工程活动主要为居 民耕地、土地恢复整理、房屋修建、道路修建及砍伐树 木等; 其中对该泥石流影响较大的为砍伐树木, 是 3#支 沟的物源成因之一, 为主沟泥石流的形成提供了一定物 源量。其次为居民耕地及土地恢复, 土地恢复势必对部 分林地进行改造, 对部分灌木丛进行梯田整理, 从而减 少了林地的比例, 加剧水土流失, 在暴雨的作用下, 加速 并扩大了哈达沟中频泥石流灾害; 居民房屋修建及道路 修建主要集中在沟口处, 位于泥石流的堆积区, 对泥石 流形成影响较小。

综上所述,沟域内人类工程活动较强烈,对泥石流 灾害的形成扩大和发育影响较大。

2.2 运动参数特征

哈达沟泥石流属中频泥石流(5~20a),最近几年都 未发生过泥石流,因此泥石流流体密度采用配方法和查 表法综合确定^[10],依照《泥石流灾害防治工程勘查规范》 (DZ/T0220—2006)附录 H填写泥石流调查表并按附 录 G 进行易发程度评分^[11],按表 G.2 查表确定哈达沟泥 石流重度和泥沙修正系数,其结果如表 3 所示^[12]。

表 3 哈达沟泥石流流体重度查表法结果统计表 Table 3 List of parameters and results of basic characteristics of the Hada gully debris flow

		- · ·		
易发程度 数量化评分	易发程度 评价	重度 /(t·m ⁻³)	平均重度 /(t·m ⁻³)	$1+\varphi$ ($\gamma_{h}=2.65$)
97	易发	1.669	1.611	1.701

本次设计结合上述两种方法, 泥石流容重最终取 值 1.62 t/m³, 属于黏性泥石流。

根据实际情况采用水文研究所法计算清水洪峰流 量,计算公式为^[13]:

$$Q_{\rm B} = 0.278 kiF/t \tag{2}$$

$$t = 0.278 L/m J^{1/3} Q_m^{-1/4}$$
(3)

k——径流系数, 0.35;

- *i*——平均1h降雨强度/(mm·h⁻¹);
- F——流域面积/km²;
- t——流域汇流时间/h;
- L——沿主河从出口断面至分水岭最长距离/km;

m——汇流参数, *m*=0.5*θ*^{0.36}, *θ*=*L*/*I*^{1/3}*F*^{1/4};

- J——沿流程L的平均比降(计算时以小数计);
- Q_m——各暴雨频率下的清水流量计算统计如表 4 所示。

泥石流流速采用《泥石流灾害防治工程勘查规范》 (DZ/T 0220-2006)^[11]中东川泥石流改进公式进行计算:

$$V_c = K H_c^{2/3} \times I_c^{1/5}$$
 (4)

式中: V_c——泥石流流速/(m·s⁻¹);

*H*c——平均泥深/m;

 Table 4
 List of parameters and results of peak flow discharge calculation at different precipitation frequencies in Hada gully

设计暴雨 频率/%	流域汇流 时间/h	平均1 h降雨强度 /(mm·h ⁻¹)	最大清水流量 /(m ³ ·s ⁻¹)
1	2.74	42.97	35.95
2	2.42	39.15	31.75
3.33	2.21	36.34	28.81
5	1.99	34.13	26.36
10	1.66	30.11	22.22

I_----泥位纵坡率,以沟道纵坡率代替;

K——黏性泥石流流速系数,查规范^[11]中表 I.3 黏 性泥石流参数 K 值表。

通过现场调查选取沟域中12处特征点进行计算, 其中7处堵塞隐患点位置如图6所示,泥石流流速计算 取值统计表如表5所示。泥石流其他估算模型如表6 所示^[14],计算模型均根据实际情况选择。

(a)哈达沟沟口处

(b) 腊普河主河

图 6 哈达沟沟口处盖板桥涵特征图和腊普河主河

Fig. 6 Culvert features and Lapu River at the outlet of Hada gully

表 5 哈达沟泥石流流速计算表 Table 5 List of flow velocity results at different site location of the Hada gully debris flow

序号	平均泥深 /m	泥位纵坡降 /‰	流速系数	泥石流流速 /(m·s ⁻¹)
1(形成区上部)	2.000	461	10	7.857
2(形成区中部)	2.000	416	10	6.633
3(形成区下部)	2.000	387	10	6.538
4(堵塞隐患点7)	2.000	361	10	6.447
5(堵塞隐患点6)	1.800	339	10	6.404
6(堵塞隐患点5)	1.800	332	10	6.340
7(堵塞隐患点4)	1.600	313	10	5.371
8(堵塞隐患点3)	1.600	311	10	5.364
9(堵塞隐患点2)	1.500	306	10	4.901
10(堵塞隐患点1 公路涵洞)	1.500	296	10	4.869
11	1.500	285	10	4.832
12(全流域沟口处)	1.200	274	10	4.794

2.3 泥石流类型特征

按《泥石流防治工程勘查规范》(DZ/T0220—2006)^[7,11] 判断,泥石流基本特征汇总如表7所示。

3 哈达沟泥石流堵溃及其危险性评价

3.1 堵溃危险性分析

3.1.1 沟道调查与分析

哈达沟泥石流流域目前存在沟口处香维线公路涵 洞过流堵塞历史,因泥石流沟道下游冲淤严重,使河床 抬升,严重威胁到沟道两旁的居民人身财产安全,如 图 7 所示为损毁居民房屋泥痕。因为沟口桥涵堵塞,泥 石流翻过路面直接冲进腊普河(图 8)。据资料显示, 2010年泥石流暴发漫过沟口桥面,直接流入腊普河,造 成长达 1 h 的堵塞。

表 6 哈达沟泥石流其他动态参数模型

Table 6 List of dynamic parameter model of the Hada gully debris flow

	估算模型	计算的主要参数	设计暴雨频率/%	参数特征值		
			1.00	88.06		
全沟域不同		$Q_{\rm B}$ 由表4所得,	2.00	77.77		
频率下泥石流	$Q_{\rm c} = Q_{\rm B}(1+\varphi)D_{\rm c}$	$\varphi = (\gamma_{c} - 1)/(\gamma_{h} - \gamma_{c}) = 0.633;$	3.33	70.57		
流量/(m ³ ·s ⁻¹)	附供修止法"	$D_{\rm c}$ 取1.5, $\gamma_{\rm c}$ 取1.62; $\gamma_{\rm h}$ 取2.6 $_{\circ}$	5.00	64.57		
			10.00	54.43		
			1.00	17 906.06		
全沟域不同			2.00	15 818.86		
频率下一次	$Q=0.2647Q_{C}$ 《泥石流灭害防治上桯勘查规范》 ($DT/T0220_{2006}$)附录I担供的计算公式[1]	<i>T</i> =1 800 s	3.33	14 478.68		
泥石流总量/m ³	(D1/10220-2006)附束1提供的计算公式 ^[43]		5.00	13 132.24		
			10.00	11 072.03		
注:表中O.是泥石流流量。						

表 7 泥石流基本特征汇总表

Table 7	Summary	of basic	characteristics	of	debris	flov

特征项目	基本特征	分类
泥石流发生的地形条件	泥石流的发生、运动和堆积过程,在发育完整的沟谷内进行,可划分为形成水源区、流通区及堆积区	沟谷型泥石流
物质组成	主要为碎石土	泥石型
泥石流流体性质	堆积物松散,断面无明显的分选性;流体呈稀浆状, ρ_c =1.62 t/m ³ ,固体物质 ρ_H =2.6 t/m ³ 。	黏性泥石流
固体物质提供方式	上部形成水源区主要为沟道堆积物源,中部流通区主要为崩滑堆积物源及沟道堆积物源	滑坡、崩塌
水体供给	雨量充沛,暴雨激发	暴雨泥石流
暴发频率	现场调查,资料统计,历年不同危害程度发生	中频泥石流
灾害严重程度	哈达村50户222人及启别村64户310人的生命财产安全,以及居民耕地多余0.52km ² 。并且威胁省道S303线香维公路的 安全,总计威胁资产约5000万元,直接经济损失可达1000万元,潜在经济损失巨大。	大型
发展阶段	根据物源、坡度、不良地质现象、主河变形情况判定	发展期
成因	自然因素为主,人类活动影响较小	自然泥石流
规模	根据泥石流一次堆积总量	中型
综合分类	暴雨激发、沟谷泥石型、中型、中频发展期黏性泥石流	

图 7 损毁居民房屋泥痕 Fig. 7 Damaged residential house mud marks

3.1.2 沟域堵溃和堵河危险分析

据现场调查,香维线过沟处为公路桥涵,涵洞尺寸 宽约 2.3 m,高 1.5 m,断面面积为 3.45 m²,如图 8(a)所示 为哈达沟沟口处盖板桥涵特征。该处流速为 4.794 m/s, 过流量为 16.5 m³/s,小于 10 a 一遇泥石流流量(表 6), 如表 8 所示(雨洪修正法计算),因而该处涵洞不能满足

图 8 堵塞隐患点 3 过水路面 Fig. 8 Flooded road in gully

要求。若再次发生大规模泥石流,泥石流大概率堵塞沟 道中隐患点,淤埋沟道桥面或路面(图7),尤其威胁到 沟口处香维线公路,泥石流将冲上沟道两岸,给下游居 民人身财产安全造成危害。

据相关资料显示,2010年暴发泥石流再次证明该 涵洞不能满足过流要求,泥石流堵塞沟道,导致泥石流

表 8 下游涵洞泥石流流量计算成果 Table 8 List of parameters and results of sediment flush-out calculation of the Hada gully debris flow in downstream culverts

	-		
位置	设计暴雨频率 /%	最大清水流量 /(m ³ ·s ⁻¹)	泥石流流量 /(m ³ ·s ⁻¹)
	1	36.71	89.91
	2	32.43	79.43
沟口涵洞	3.33	29.42	72.07
	5	26.92	65.94
	10	22.70	55.59

直接越过路面, 损毁下游沟道两岸居民房屋。哈达沟与 主河腊普河夹角呈直角(图 9), 泥石流直接冲进主河河 道, 堵塞腊普河 1 h, 冲刷深度在 0.3~0.8 m, 如图 6(b) 所示为腊普河主河。

根据往期资料和参数计算结果,哈达沟泥石流一次 固体物质冲出量与主河挟沙能力相差不大(1000 m³ 的 主河水流挟沙能力约 0.3 m³),作为中频泥石流条件下 计算所得一次冲出泥石流总量(表 6),堵塞主河道可能 性较小,危险性较 2010 年 7 月 28 有所下降。

3.2 哈达沟中频泥石流危险性分析

针对中频泥石流的危险性分析采用基于权重的分析方法,依据钟政等^[4]、侯兰功等^[16]提出的方法对哈达 沟中频泥石流不同暴雨频率下进行危险性评价。相关 计算公式如下^[4]:

$$H = \left(\sum G_i D_j\right)^{1/p} \tag{5}$$

式中:H——危险性;

D_i——危险系数,取值0~1;

p——降雨强度级别,哈达沟中频泥石流降雨强度 级别为2。

本文采用刘希林^[17]、杨志全等^[18]提出的分级标准 (表 9)。

危险等级	轻度危险	中度危险	高度危险	极度危险
判别标准	0 ~ 0.35	0.35 ~ 0.6	0.6 ~ 0.85	0.85 ~ 1

选取泥石流评价因子并进行权重计算^[19-20]。本文 结合野外调查和哈达沟实际情况,筛选出以下 8 个评价 因子进行危险度评价:泥石流规模 y_1 、松散物源量 y_2 、 24 h 最大降雨 y_3 (鉴于本文哈达沟为中频泥石流,取频 率 10% 设计暴雨强度值)、泥石流发生频率 y_4 (本文主 要讨论中频泥石流,因此主要分析频率 10% 下泥石流 危险性)、沟谷流域面积 y_5 、主沟长度 y_6 、流域相对高 差 y_7 、不稳定沟床比降 $y_8^{[19,21-22]}$ 。 哈达沟流域雨季降雨主要为7、8月份,雨量大且 集中,发生泥石流的危险性高。因此本文选取24h降 雨量作为评价指标。各评价因子危险度分级和计算结 果如表10所示。权重计算采用层次分析法(AHP),计 算结果如表11所示。

将表 10、11 计算结果带入公式(6)中,计算结果为 H_{10%}=0.736 频泥石流危险度为高度危险,与 2010 年 7 月 28 日当地发生的大规模泥石流灾害危险度评测结果

	Table	to Classificati	on of nazaru factor	s of debris flow			
评价因子	数值 —						
		0	0.4	0.7	1	厄险杀奴	
泥石流规模y1/10 ⁴ m3	2.48	≤1	(1,10)	[10, 100)	≥100	0.4	
松散物源量y2/104m3	328.85	≤10	(10, 100)	[100, 200)	≥200	1	
24 h最大降雨量y ₃ /mm	80.85	≤25	(25, 50)	[50, 100)	≥100	0.7	
泥石流发生频率y4/%	10	10	5	2	1	0	
沟谷流域面积y5/km²	8.79	≤0.5	(0.5, 10)	[10, 35)	≥35	0.4	
主沟长度y ₆ /km	5.02	≤1	(1,5)	[5, 10)	≥10	0.7	
流域相对高差y7/km	1.46	≤1	(1,1.5)	[1.5, 2)	≥2	0.4	
不稳定沟床比降y8	0.461	≤0.1	(0.1, 0.3)	[0.3, 0.6)	≥0.6	0.7	

表 10 泥石流危险因子等级划分 Table 10 Classification of hazard factors of debris flow

表 11 矩阵权重计算结果

Table 11 Summary of matrix weight calculation results of the Hada Gully debris flow

	\mathcal{Y}_1	<i>Y</i> ₂	<i>Y</i> ₃	<i>Y</i> ₄	<i>Y</i> ₅	<i>Y</i> ₆	<i>Y</i> ₇	y_8	权重
<i>y</i> ₁	1	2	3	4	5	6	7	9	0.369 8
y_2	1/2	1	2	3	4	5	6	8	0.184 9
y_3	1/3	1/2	1	2	3	4	5	7	0.123 3
\mathcal{Y}_4	1/4	1/3	1/2	1	2	3	4	6	0.092 5
y_5	1/5	1/4	1/3	1/2	1	2	3	5	0.074 0
y_6	1/6	1/5	1/4	1/3	1/2	1	2	4	0.061 6
y_7	1/7	1/6	1/5	1/4	1/3	1/4	1	3	0.052 8
y_8	1/9	1/8	1/7	1/6	1/5	1/2	1/3	1	0.041 1

相比有所下降。

根据哈达沟泥石流的形成特征、泥石流灾害区域 分布、影响范围和经验公式计算,依据《泥石流灾害防 治工程勘查规范》(DT/T0220—2006)中"泥石流活动危 险区划分"标准^[11],将哈达沟中频泥石流划分为极危险 区、危险区和影响区三个区,各区域特征评述如表 12 所示。哈达沟危险分区如图 9 所示,其中离沟口最近位 置的堵塞隐患点为香维线公路经过沟道所修涵洞(堵塞 隐患点 1)。

表 12 哈达沟泥石流危险分区评述

Table 12	Description	of hazard	zones for	Hada gull	y debris flow
					/

危险等级	区域范围
极危险区	哈达沟中下游段至沟口腊普河河边区域,主要为历史最高泥位线以下地区,面积约0.85 km²
危险区	河沟两岸崩塌、滑坡后缘裂隙以上50~100m的范围, 面积约0.19km ²
影响区	高于危险区与危险区相邻的地区,它不会直接与泥石流遭遇,但却有可能间接受到泥石流危害的 牵连而发生某些级别的灾害的地区,面积约0.27 km ²

综上所述,由于云南西北地区最近几年频发地震等极端灾害,人类工程活动活跃,为泥石流的形成提供了条件。根据现场调查访问,近几年云南6—9月雨水的增加,目前哈达沟泥石流正处于活跃期,沟域内每年均有小规模泥石流或者水石流发生,根据这几年哈达沟泥石流发生频率从时间和空间上推测,哈达沟中频泥石流转化为高频的可能性较高。高频泥石流暴发周期短、规模相对较小,易于监测和防范^[3],哈达沟泥石流的危险性将减少,但依然属于高度危险,对其重视程度不可

减少,沟道的清淤和疏通工作仍需定时进行。

4 结论与建议

4.1 结论

本文通过现场调查、参数计算、泥石流堵溃和堵河 分析以及泥石流危险性评价,针对哈达沟中频泥石流的 特征和危险性取得以下结论和认识:

(1)研究区物源动储量 11.46×10⁴ m²,其中崩塌堆积 物源和沟床堆积物源为参加泥石流运动的主要物源;水 源条件满足暴发大型泥石流条件,区域泥石流发生主要 是集中、大量降雨诱导;沟域内人类工程活动较强烈, 对泥石流灾害的形成和发育影响较大。

(2)在哈达沟流域中下游有7处堵塞隐患点,本次 主要研究沟口处香维线公路与哈达沟交汇处涵洞堵溃 危险性。若发生较大规模(中频泥石流或低频泥石流) 泥石流活动,则会堵塞沟道中各隐患点,尤其是沟口涵 洞,泥石流漫过香维线公路路面,影响周边居民的生命 财产安全以及公路交通安全。针对中频泥石流情况下 (一次冲出泥石流总量 11 042.03 m³,泥石流峰值流量 54.43 m³/s)堵塞腊普河的可能性较 2010 年7月 28 日有 所下降,但依然有堵河的可能性,危险性不易忽视。

(3)基于权重和层次分析法计算得出,哈达沟中频 泥石流危险度为高度危险,较2010年7月28日泥石流 危险度有下降。对研究区进行危险分区,其中极危险区 约0.85 km²,危险区约0.19 km²,影响区约0.27 km²。

(4)根据最近地质灾害发生实例综合分析,哈达沟 流域泥石流频率从中频泥石流转换为高频泥石流的可 能性高,危险性将减少。但哈达沟中频泥石流成灾可能 性大(尤其是在每年7—8月),需同低频泥石流一样重 视,做出相应的防治措施减少或遏制其危害。

4.2 建议

(1)哈达沟中频泥石流虽为中等发生频率,但其危险性已然与低频泥石流相仿,且运动周期低于低频泥石流(哈达沟泥石流频率还有上升的趋势),应当及时针对中频泥石流实施相应的防护治理措施。从表面上看,相较于低频泥石流防治所需的大量投入人力与物力,对于中频泥石流的防治,收益和成效是较高的。

(2)对于减少中频泥石流灾害的危险性,找出隐患 点加以整改,在降雨集中的月份进行沟道清淤,防止物 源堆积减少泥石流的启始能量。若中频泥石流向高频 泥石流发展,泥石流危险性也会相对减少,要做好相应 的监测和防范工作。

(3)泥石流是一种在空间和时间上不断变化的地质 灾害,突发性强,破坏性大,想要详细分析出其中的规律 和特征依然困难,还有许多待挖掘。定义泥石流暴发频 率的准确度还需要提升(许多小型泥石流容易忽视且不 易监测),同时未来还需要研讨出针对特定频率下泥石 流的定性定量方法,以便我们能快速地对特定的泥石流 进行危险评价并迅速采取措施和治理工作。

致谢:对于本次研究工作,感谢四川省煤田地质工 程勘察设计研究院、维西县自然资源局、塔城镇启别村 所提供的资料和在调查中给予的工作帮助。

参考文献(References):

- [1] 韩全芳,骆华松,韩吉全.基于人地关系的地质灾害探 讨——以三江并流带兰坪县为例[J].云南师范大学 学报(自然科学版),2005,25(1):55-59.[HAN Quanfang, LUO Huasong, HAN Jiquan. On study of the geological hazards based on human-land relationship: Lanpin County in three rivers as an example [J]. Journal of Yunnan Normal University (Natural Sciences Edition),2005,25(1):55-59. (in Chinese with English abstract)]
- [2] 王欢,丁明涛,陈廷方.基于GIS的三江并流区泥石流危险性评价[J].水土保持通报,2011,31(5):167-170.
 [WANG Huan, DING Mingtao, CHEN Tingfang. GIS-based risk assessment of debris flows in three-parallel-river area [J]. Bulletin of Soil and Water Conservation, 2011, 31(5):167-170. (in Chinese with English abstract)]
- [3] 高云建,陈宁生,田树峰,等.基于堆积物石块磨圆度的 泥石流暴发频率判识[J].水土保持研究,2018,25(4): 370-374. [GAO Yunjian, CHEN Ningsheng, TIAN Shufeng, et al. Frequency identification of debris flow outbreak based on roundness of debris flow cumulative stones [J]. Research of Soil and Water Conservation, 2018, 25(4): 370-374. (in Chinese with English abstract)]
- [4] 钟政,胡桂胜,杨溢,等.九龙县踏卡河流域乌拉溪沟低频 泥石流特征与危险性[J].成都理工大学学报(自然科学 版),2021,48(1):111-120.[ZHONG Zheng, HU Guisheng, YANG Yi, et al. Characteristics of low frequency debris flow and its risk analysis in Wulaxi Gully of Taka River Basin, Jiulong County, Sichuan, China [J]. Journal of Chengdu University of Technology (Science & Technology Edition),2021,48(1): 111-120. (in Chinese with English abstract)]
- [5] 曲瑞,李仲先,何政伟,等.甘肃天水大沟短时强降水诱发低频泥石流特征及成因[J].山地学报,2018,36(3):488-495. [QU Rui, LI Zhongxian, HE Zhengwei, et al. Characteristics and causes of low frequency debris flow induced by heavy rainfall in Dagou Village, Tianshui city, Gansu Province, China [J]. Mountain Research, 2018, 36(3):488-495. (in Chinese with English abstract)]
- [6] 韩林. 泥石流暴发频率与其形成区颗粒粒径的关系研究
 [D]. 成都: 成都理工大学, 2010. [HAN Lin. Study the relationship between frequency of debris flows and the particles size in channels of debris flows [D]. Chengdu: Chengdu University of Technology, 2010. (in Chinese with English abstract)]
- [7] 刘忠敏.云南省维西县哈达沟泥石流形成条件及动力学参数取值研究[D].成都:成都理工大学,2018.[LIU Zhongmin. Study on formation conditions and dynamic parameters of hadagou debris flow in Weixi County, Yunnan Province [D]. Chengdu: Chengdu University of Technology, 2018. (in Chinese with English abstract)]

- [8] 艾绍周,艾琦森.小流域典型暴雨实测洪水对榆林水文 手册中计算方法的验证[J].山西水土保持科技,2014(2): 16-18. [AI Shaozhou, AI Qisen. Verification of calculation method in Yulin Hydrological Manual by measured flood of typical rainstorm in small watershed [J]. Soil and Water Conservation Science and Technology in Shanxi,2014(2):16-18. (in Chinese with English abstract)]
- [9] 陈志,杨志全,刘传秋.云南省麻栗坡县猛硐河"9·02"泥石流调查[J].山地学报, 2019, 37(4): 631-638. [CHEN Zhi, YANG Zhiquan, LIU Chuanqiu. Investigation of the "9·02" debris flows in Mengdong River, Malipo County, Yunnan, China [J]. Mountain Research, 2019, 37(4): 631-638. (in Chinese with English abstract)]
- [10] 刘丹. 泥石流运动特征参数计算[J]. 四川建材, 2017, 43(5): 82-84. [LIU Dan. Calculation of characteristic parameters of debris flow movement [J]. Sichuan Building Materials, 2017, 43(5): 82-84. (in Chinese with English abstract)]
- [11] 四川省国土资源厅.泥石流灾害防治工程勘查规范: DZT 0220-2006 [S]. 2006 [Sichuan Provincial Department of Land and Resources. Engineering exploration specification for debris flow disaster prevention and control: DZT 0220-2006.
 [S]. 2006. [Sichuan Provincial Department of Land and Resources. Engineering exploration specification for debris flow disaster prevention and control: DZT 0220-2006 [S]. 2006. (in Chinese with English abstract)]
- [12] 胡林,肖进,罗绍强,等.西藏拉萨市城关区格布沟泥石流特征及成灾机理研究[J].地质灾害与环境保护,2021,32(2):27-32.[HU Lin, XIAO Jin, LUO Shaoqiang, et al. Characteristics and study on disaster mechanism of gebugou debris flow in Chengguan district, tibetautonomous region [J]. Journal of Geological Hazards and Environment Preservation, 2021, 32(2):27-32.(in Chinese with English abstract)]
- [13] 高士麟.四川省小流域设计洪水分析及应用[J].四川 建筑, 2021, 41(5): 230-233. [GAO Shilin. Analysis and application of design flood in small watershed of Sichuan Province [J]. Sichuan Architecture, 2021, 41(5): 230-233. (in Chinese with English abstract)]
- [14] 田树峰,陈宁生,高云建,等.九绵高速平武段泥石流运动参数特征与工程危害[J].人民长江,2018,49(11): 64-70.[TIAN Shufeng, CHEN Ningsheng, GAO Yunjian, et al. Characteristics of dynamic parameters and engineering hazard of debris flows in Ping-Wu section of Jiu-Mian highway [J]. Yangtze River, 2018, 49(11): 64-70. (in Chinese with English abstract)]
- [15] 冯磊,冯婷洁,薛会师.黄河茨哈峡桑吉沟泥石流灾害特征及防治措施研究[J].资源环境与工程,2021,35(1): 76-80. [FENG Lei, FENG Tingjie, XUE Huishi. Study on the disaster characteristics and prevention measures of Sangjigou

debris flow in Tshaxia of Yellow River [J]. Resources Environment & Engineering, 2021, 35(1): 76 – 80. (in Chinese with English abstract)]

- [16] 侯兰功,崔鹏.单沟泥石流灾害危险性评价研究[J].水 土保持研究,2004,11(2):125-128.[HOU Langong, CUI Peng. The study on assessment of debris flow hazards in the solo channel [J]. Research of Soil and Water Conservation,2004, 11(2):125-128.(in Chinese with English abstract)]
- [17] 刘希林.区域泥石流风险评价研究[J].自然灾害学报,2000,9(1):54-61.[LIU Xilin. Regional risk assessment on debris flow [J]. Journal of Natural Disasters, 2000,9(1):54-61. (in Chinese with English abstract)]
- [18] 杨志全,张焜,杨溢,等.汶川县麻柳沟泥石流动力学特 征及危险性评价[J].地质科技情报,2016,35(5):214-220. [YANG Zhiquan, ZHANG Kun, YANG Yi, et al. Dynamic characteristics and hazard assessment of debris flows in Maliu gully, Wenchuan County, Sichuan Province [J]. Geological Science and Technology Information, 2016, 35(5): 214-220. (in Chinese with English abstract)]
- [19] 崔志超,王俊豪,崔传峰,等.基于层次分析法和模糊数 学相结合的甘肃东乡八丹沟泥石流易发性评价[J]. 中国地质灾害与防治学报,2020,31(1):44-50.[CUI Zhichao, WANG Junhao, CUI Chuanfeng, et al. Evaluation of the susceptibility of debris flow in Badan Gully of Dongxiang County of Gansu based on AHP and Fuzzy mathematics [J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(1):44-50. (in Chinese with English abstract)]
- [20] 李彩侠,马煜,何元勋.泥石流致灾因子敏感性分析——以四川都江堰龙溪河流域为例[J].中国地质灾害与防治学报,2020,31(5):32-39.[LI Caixia, MA Yu, HE Yuanxun. Sensitivity analysis of debris flow to environmental factors: A case of Longxi River Basin in Dujiangyan, Sichuan Province [J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(5): 32-39. (in Chinese with English abstract)]
- [21] 王长宝,郭凤双.层次分析法模型下的王家沟泥石流危险性评价[J].四川建材,2020,46(8):57-59.[WANG Changbao, GUO Fengshuang. Evaluation of Wangjiagou debris flow risk and catastrophe theory model under AHP[J]. Sichuan Building Materials,2020,46(8):57-59. (in Chinese with English abstract)]
- [22] 侯圣山,曹鹏,陈亮,等.基于数值模拟的耳阳河流域 泥石流灾害危险性评价[J].水文地质工程地质,2021, 48(2):143-151. [HOU Shengshan, CAO Peng, CHEN Liang, et al. Debris flow hazard assessment of the Eryang River watershed based on numerical simulation [J]. Hydrogeology & Engineering Geology, 2021, 48(2): 143-151. (in Chinese with English abstract)]