Fine Interpretation of the exploration results of diamond-bearing rock masses in Maping area, Guizhou using the 3D AMT forward modeling and inversion technologies
-
摘要: 贵州镇远马坪"东方一号"岩体是我国首次发现的含金刚石原生矿母岩,马坪地区发现的岩体属于金伯利岩浆体系的浅部相,其深部可能存在规模较大的隐伏岩管或岩筒。为揭示马坪地区深部含金刚石隐伏岩管或岩筒的空间展布特征,在区内开展了80 mx40 m高密集网度的音频大地电磁勘探工作;利用三维正演技术模拟研究区纯地形响应并在实测数据中去除,得到的定性解释结果在一定程度上恢复了被静态效应扭曲的AMT阻抗相位不变量分布形态;使用AR-QN拟牛顿反演方法对数据进行三维反演,根据研究区岩性统计结果设定地下单元的电阻率变化区间,获得了可靠的三维电性结构;最后依据地表发现的岩筒、钻孔揭露的多条岩脉等地质资料对该地电模型进行精细解释,勾画出了隐伏岩管(岩筒)的形态,为区内下一步金刚石原生矿找矿方向及预测提供了地球物理依据。Abstract: The "Dongfang No.1" rock mass in the Maping area, Zhenyuan County, Guizhou is the parent rock of a primary diamond-bearing deposit discovered in China for the first time. Studies have shown that the rock mass found in the Maping area is of the shallow facies of the kimberlite magmatic system, and large-scale concealed rock pipes or buckets may exist in the deep part. To reveal the spatial distribution of deep diamond-bearing concealed rock pipes or buckets in the Maping area, this study carried out the audio-magnetotelluric (AMT) data acquisition in the area using a high grid density of 80 m x 40 m. Then it simulated the pure terrain response in the study area using the 3D forward modeling and deducted the pure terrain response from the measured data. The obtained qualitative interpretation results restored the distribution morphology of AMT impedance phase invariants to some extent that was distorted by static effects. Afterward, this study performed the 3D inversion of the data using the AR-QN quasi-Newtonian inversion method. Based on the lithologic statistical results of the study area, the resistivity variation intervals of the underground units were set during the inversion, obtaining a reliable 3D electrical structure. Finally, this study carried out a fine interpretation of the geoelectric model of this area based on geological data such as rock tubes found on the surface and multiple dikes revealed by boreholes, outlining the morphology of concealed rock pipes or buckets. This study will provide a geophysical basis for the future prospecting and prediction of primary diamond deposits in this area.
-
-
[1] 杨光忠. 贵州镇远地区钾镁煌斑岩产出控制因素浅析[J]. 地质与勘探, 2013, 49(4):696-702.
[2] Yang G Z. Controlling factors of lamprophyre's occurrence in the Zhenyuan area of Guizhou Province[J]. Geology and Exploration, 2013, 49(4): 696-702.
[3] 李永刚, 向璐, 黄远成, 等. 贵州镇远地区含金刚石母岩再认识[J]. 地质通报, 2019, 38(1):103-109.
[4] Li Y G, Xiang L, Huang Y C, et al. Re-understanding of diamond-bearing parent rocks in Zhenyuan area, Guizhou Province[J]. Geological Bulletin of China, 2019, 38(1): 103-109.
[5] 李永刚. 贵州镇远地区含金刚石母岩岩石学及含矿性研究[D]. 武汉: 中国地质大学(武汉), 2019.
[6] Li Y G. Petrological and ore-bearingproperties of the diamond-bearing pluton in Zhenyuan Area of Guizhou Province[D]. Wuhan: China University of Geosciences(Wuhan), 2019.
[7] 黄远成, 石睿, 林泽渊, 等. 贵州镇远苍蒲塘钾镁煌斑岩管发现及找矿意义[J]. 贵州地质, 2015, 32(1):32-36.
[8] Huang Y C, Shi R, Lin Z Y, et al. Discovery of lamproite tube and Its prospecting significance in Cangputang of Zhenyuan, Guizhou Province[J]. Guizhou Geology, 2015, 32(1): 32-36.
[9] 张锡贵, 石睿, 吴寿宁, 等. 贵州施秉翁哨地区钾镁煌斑岩的新发现及其金刚石找矿意义[J]. 贵州地质, 2015, 32(1):37-40.
[10] Zhang X G, Shi R, Wu S N, et al. New discovery of lamproite and its significance for diamond exploration in Wengshao Area of Shibing,Guizhou Province[J]. Guizhou Geology, 2015, 32(1): 37-40.
[11] 黄远成, 李志翔, 丘志力, 等. 贵州镇远钾镁煌斑岩原生及砂矿金刚石矿物学特征及其找矿意义[J]. 中山大学学报:自然科学版, 2016, 55(5):108-118.
[12] Huang Y C, Li Z X, Qiu Z L, et al. Mineralogical characteristics oflamproite-hosted and placer diamonds from Zhenyuan, Guizhou and their significance for primary deposit prospecting[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2016, 55(5): 108-118.
[13] 田占峰, 毛星, 罗旭, 等. 音频大地电磁测深法在电性结构研究中的应用——以郯庐断裂带宿迁段为例[J]. 物探与化探, 2016, 40(4):732-736.
[14] Tian Z F, Mao X, Luo X, et al. The application of AMT method to the electrical structure study: A case study of Suqian sector of Tan-Lu Fault Zone[J]. Geophysical and Geochemical Exploration, 2016, 40(4): 732-736.
[15] 何帅, 杨炳南, 李核良, 等. 音频大地电磁法对渝东南Ⅳ级地堑构造的识别及意义[J]. 地质科技情报, 2019, 38(1):270-276.
[16] He S, Yang B N, Li H L, et al. Identification of Ⅳ graben tectionics of southeast Chongqing by AMT method and its significanc[J]. Geological Science and Technology Information, 2019, 38(1): 270-276.
[17] Simpson F, Bahr K. Practical magnetotellurics[M]. Cambridge: Cambridge University Press, 2005.
[18] Saraev A K, Larionov K A. 音频大地电磁测深在金伯利岩勘探中的应用[J]. 石油地球物理勘探, 2004, 39(S1):144-145.
[19] Saraev A K, Larionov K A. Application of audio geomagnetic bathymetry in Kimberley rock exploration[J]. Petroleum Geophysical Exploration, 2004, 39(S1): 144-145.
[20] Saraev A K, Antaschuk K M, Nikiforov A B, 等. AMT测深法在金刚石矿勘探中的应用[J]地球物理学报, 2010, 53(3): 657-676.
[21] Saraev A K, Antaschuk K M, Nikiforov A B, et al. Audiomagnetotelluric soundings for the diamond exploration[J]. Chinese J. Geophys., 2010, 53(3): 657-676.
[22] Zhdanov M S, Fang S, Hursan G. Electromagnetic inversion using quasi-linear approximation[J]. Geophysics, 2000b, 65(5): 1501-1513.
[23] Siripunvaraporn W, Egbert G, Lenbury Y. Numerical accuracy of magnetotelluric modeling:a comparison of finite difference approximations[J]. Earth Planets Space, 2002, 54(6): 721-725.
[24] 梁苗, 刘双, 胡祥云. 基于断层模型的AMT数值模拟及其应用[J]. 地质科技情报, 2016, 35(5):231-237.
[25] Liang M, Liu S, Hu X Y. AMT numerical simulation of fault model and its applications[J]. Geological Science and Technology Information, 2016, 35(5): 231-237.
[26] Zhdanov M S, Tolstaya E. Minimum support nonlinear parametrization in the solution of a 3D magnetotelluric inverse problem[J]. Inverse Problems, 2004, 20(3): 937-952.
[27] 汤井田, 张林成, 王显莹. 庐枞矿集区矾山—将军庙地区AMT三维反演及地质结构解释[J]. 地球物理学报, 2018, 61(4):1576-1587.
[28] Tang J T, Zhang L C, Wang X Y, et al. Subsurface electrical structure of the Fanshan-Jiangjunmiao region in the Lujiang-Zongyang Ore District derived from 3-D inversion of audio-magnetotelluric data[J]. Chinese J. Geophys., 2018, 61(4): 1576-1587.
[29] 孙士军, 杨松平. 贵州金刚石成矿条件初探[J]. 贵州地质, 1998, 15(1):1-8.
[30] Sun S J, Yang S P. A discussion on prerequisites to search for primary diamondsin Guizhou[J]. Guizhou Geology, 1998, 15(1): 1-8.
[31] Hayman P C, Kopylova M G, Kaminsky F V. Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso,Brazil)[J]. Contributions to Mineralogy & Petrology, 2005, 149(4): 430-445.
[32] Tappert R, Stachel T, Harris J W, et al. Diamonds from Jagersfontein (South Africa): Messengers from the sublithospheric mantle[J]. Contributions to Mineralogy & Petrology, 2005, 150(5): 505-522.
[33] Bulanova G P, Walter M J, Smith C B, et al. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism[J]. Contributions to Mineralogy and Petrology, 2010, 160(4): 489-510.
[34] 王亮, 陶平. 贵州东南部含金刚石钾镁煌斑岩找矿远景区预测[J]. 地质与勘探, 2012, 48(4):775-783.
[35] Wang L, Tao P. Ore-search prospecting areas of diamond-bearing lamproite in southeastern Guizhou Province[J]. Geology and Exploration, 2012, 48(4): 775-783.
[36] 王亮, 陶平. 利用区域物探重磁资料圈定黔东金刚石母岩钾镁煌斑岩的尝试[J]. 贵州地质, 2011, 28(4):254-259.
[37] Wang L, Tao P. Determination of Diamond Parent Rock in Eastern Guizhou By Regional Geophysical Prospecting Gravity and Magnetic Information[J]. Guizhou Geology, 2011, 28(4): 254-259.
[38] 樊洪富, 王亮. 黔东南火山构造特征与金刚石找矿前景分析[J]. 工程地球物理学报, 2016, 13(3):389-398.
[39] Fan H F, Wang L. Volcano-tectonic characteristics of diamond ore prospects in southeast Guizhou[J]. Chinese Journal of Engineering Geophysics, 2016, 13(3): 389-398.
[40] 阮帅. 三维大地电磁有限内存拟牛顿反演[D]. 成都: 成都理工大学, 2015.
[41] Ruan S. Three-dimensional geomagnetic finite memory is intended for Newtonian inversion[D]. Chengdu: Chengdu University of Technology, 2015.
[42] 阮帅, 张炯, 孙远彬, 等. 基于三维正演的音频大地电磁阻抗相位不变量校正技术[J]. 地球物理学报, 2015, 58(2):685-696.
[43] Ruan S, Zhang J, Sun Y B, et al. AMT impedance phase invariant correction based on 3D MT modeling technology[J]. Chinese J. Geophy., 2015, 58(2): 685-696.
[44] Mackie R L, Madden T R, Wannamaker P E. Three-dimensional magnetotelluric modeling using difference equations: Theory and comparisons to integral equation solutions[J]. Geophysics, 1993, 58(2): 215-226.
[45] Newman G A, Alumbaugh D L. Three-dimensional magnetotelluric inversion usingnon-linear conjugate gradients[J]. Geophys. J. Int., 2000, 140(2): 410-424.
[46] Byrd R H, Nocedal J, Schnabel R B. Representations of quasi-Newton matrices and their use in limited memory methods[J]. Mathematical Programming, 1994, 63(1-3): 129-156.
[47] 邓琰, 汤吉, 阮帅. 三维大地电磁自适应正则化有限内存拟牛顿反演[J]. 地球物理学报, 2019, 62(9):3601-3614.
[48] Deng Y, Tang J, Ruan S. Adaptive regularized three-dimensional magnetotelluric inversion based on the LBFGS quasi-Newton method[J]. Chinese J. Geophy., 2019, 62(9): 3601-3614.
[49] 阮帅, 汤吉, 陈小斌, 等. 三维大地电磁自适应L1范数正则化反演[J]. 地球物理学报, 2020, 63(10):3896-3911.
[50] Ruan S, Tang J, Chen X B, et al. Three-dimensional magnetotelluric inversion based on adaptive L1-norm regularization[J]. Chinese J Geophy, 2020, 63(10): 3896-3911.
[51] 陈小斌, 赵国泽, 汤吉, 等. 大地电磁自适应正则化反演算法[J]. 地球物理学报, 2005, 48(4):937-946.
[52] Chen X B, Zhao G Z, Tang J, et al. An adaptive regularized inversion algorithm for magnetotelluric data[J]. Chinese J. Geophy., 2005, 48(4): 937-946.
-
计量
- 文章访问数: 552
- PDF下载数: 97
- 施引文献: 0