中国自然资源航空物探遥感中心主办
地质出版社出版

三维AMT正反演技术对贵州马坪含金刚石岩体探测的精细解释

何帅, 杨炳南, 阮帅, 李永刚, 韩姚飞, 朱大伟. 2022. 三维AMT正反演技术对贵州马坪含金刚石岩体探测的精细解释. 物探与化探, 46(3): 618-627. doi: 10.11720/wtyht.2022.1189
引用本文: 何帅, 杨炳南, 阮帅, 李永刚, 韩姚飞, 朱大伟. 2022. 三维AMT正反演技术对贵州马坪含金刚石岩体探测的精细解释. 物探与化探, 46(3): 618-627. doi: 10.11720/wtyht.2022.1189
HE Shuai, YANG Bing-Nan, RUAN Shuai, LI Yong-Gang, HAN Yao-Fei, ZHU Da-Wei. 2022. Fine Interpretation of the exploration results of diamond-bearing rock masses in Maping area, Guizhou using the 3D AMT forward modeling and inversion technologies. Geophysical and Geochemical Exploration, 46(3): 618-627. doi: 10.11720/wtyht.2022.1189
Citation: HE Shuai, YANG Bing-Nan, RUAN Shuai, LI Yong-Gang, HAN Yao-Fei, ZHU Da-Wei. 2022. Fine Interpretation of the exploration results of diamond-bearing rock masses in Maping area, Guizhou using the 3D AMT forward modeling and inversion technologies. Geophysical and Geochemical Exploration, 46(3): 618-627. doi: 10.11720/wtyht.2022.1189

三维AMT正反演技术对贵州马坪含金刚石岩体探测的精细解释

  • 基金项目:

    贵州省科技计划项目(黔科合支撑[2019]2868号)

    贵州省地质矿产勘查开发局地质科学研究项目(黔地矿科合[2016]07号)

    中国地质调查局项目"华北和扬子地区金刚石矿产调查"(DD20160059)

详细信息
    作者简介: 何帅(1987-),男,高级工程师,主要从事地球物理勘查与应用工作。Email: 307050903@qq.com
  • 中图分类号: P631

Fine Interpretation of the exploration results of diamond-bearing rock masses in Maping area, Guizhou using the 3D AMT forward modeling and inversion technologies

  • 贵州镇远马坪"东方一号"岩体是我国首次发现的含金刚石原生矿母岩,马坪地区发现的岩体属于金伯利岩浆体系的浅部相,其深部可能存在规模较大的隐伏岩管或岩筒。为揭示马坪地区深部含金刚石隐伏岩管或岩筒的空间展布特征,在区内开展了80 mx40 m高密集网度的音频大地电磁勘探工作;利用三维正演技术模拟研究区纯地形响应并在实测数据中去除,得到的定性解释结果在一定程度上恢复了被静态效应扭曲的AMT阻抗相位不变量分布形态;使用AR-QN拟牛顿反演方法对数据进行三维反演,根据研究区岩性统计结果设定地下单元的电阻率变化区间,获得了可靠的三维电性结构;最后依据地表发现的岩筒、钻孔揭露的多条岩脉等地质资料对该地电模型进行精细解释,勾画出了隐伏岩管(岩筒)的形态,为区内下一步金刚石原生矿找矿方向及预测提供了地球物理依据。
  • 加载中
  • [1]

    杨光忠. 贵州镇远地区钾镁煌斑岩产出控制因素浅析[J]. 地质与勘探, 2013, 49(4):696-702.

    [2]

    Yang G Z. Controlling factors of lamprophyre's occurrence in the Zhenyuan area of Guizhou Province[J]. Geology and Exploration, 2013, 49(4): 696-702.

    [3]

    李永刚, 向璐, 黄远成, 等. 贵州镇远地区含金刚石母岩再认识[J]. 地质通报, 2019, 38(1):103-109.

    [4]

    Li Y G, Xiang L, Huang Y C, et al. Re-understanding of diamond-bearing parent rocks in Zhenyuan area, Guizhou Province[J]. Geological Bulletin of China, 2019, 38(1): 103-109.

    [5]

    李永刚. 贵州镇远地区含金刚石母岩岩石学及含矿性研究[D]. 武汉: 中国地质大学(武汉), 2019.

    [6]

    Li Y G. Petrological and ore-bearingproperties of the diamond-bearing pluton in Zhenyuan Area of Guizhou Province[D]. Wuhan: China University of Geosciences(Wuhan), 2019.

    [7]

    黄远成, 石睿, 林泽渊, 等. 贵州镇远苍蒲塘钾镁煌斑岩管发现及找矿意义[J]. 贵州地质, 2015, 32(1):32-36.

    [8]

    Huang Y C, Shi R, Lin Z Y, et al. Discovery of lamproite tube and Its prospecting significance in Cangputang of Zhenyuan, Guizhou Province[J]. Guizhou Geology, 2015, 32(1): 32-36.

    [9]

    张锡贵, 石睿, 吴寿宁, 等. 贵州施秉翁哨地区钾镁煌斑岩的新发现及其金刚石找矿意义[J]. 贵州地质, 2015, 32(1):37-40.

    [10]

    Zhang X G, Shi R, Wu S N, et al. New discovery of lamproite and its significance for diamond exploration in Wengshao Area of Shibing,Guizhou Province[J]. Guizhou Geology, 2015, 32(1): 37-40.

    [11]

    黄远成, 李志翔, 丘志力, 等. 贵州镇远钾镁煌斑岩原生及砂矿金刚石矿物学特征及其找矿意义[J]. 中山大学学报:自然科学版, 2016, 55(5):108-118.

    [12]

    Huang Y C, Li Z X, Qiu Z L, et al. Mineralogical characteristics oflamproite-hosted and placer diamonds from Zhenyuan, Guizhou and their significance for primary deposit prospecting[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2016, 55(5): 108-118.

    [13]

    田占峰, 毛星, 罗旭, 等. 音频大地电磁测深法在电性结构研究中的应用——以郯庐断裂带宿迁段为例[J]. 物探与化探, 2016, 40(4):732-736.

    [14]

    Tian Z F, Mao X, Luo X, et al. The application of AMT method to the electrical structure study: A case study of Suqian sector of Tan-Lu Fault Zone[J]. Geophysical and Geochemical Exploration, 2016, 40(4): 732-736.

    [15]

    何帅, 杨炳南, 李核良, 等. 音频大地电磁法对渝东南Ⅳ级地堑构造的识别及意义[J]. 地质科技情报, 2019, 38(1):270-276.

    [16]

    He S, Yang B N, Li H L, et al. Identification of Ⅳ graben tectionics of southeast Chongqing by AMT method and its significanc[J]. Geological Science and Technology Information, 2019, 38(1): 270-276.

    [17]

    Simpson F, Bahr K. Practical magnetotellurics[M]. Cambridge: Cambridge University Press, 2005.

    [18]

    Saraev A K, Larionov K A. 音频大地电磁测深在金伯利岩勘探中的应用[J]. 石油地球物理勘探, 2004, 39(S1):144-145.

    [19]

    Saraev A K, Larionov K A. Application of audio geomagnetic bathymetry in Kimberley rock exploration[J]. Petroleum Geophysical Exploration, 2004, 39(S1): 144-145.

    [20]

    Saraev A K, Antaschuk K M, Nikiforov A B, 等. AMT测深法在金刚石矿勘探中的应用[J]地球物理学报, 2010, 53(3): 657-676.

    [21]

    Saraev A K, Antaschuk K M, Nikiforov A B, et al. Audiomagnetotelluric soundings for the diamond exploration[J]. Chinese J. Geophys., 2010, 53(3): 657-676.

    [22]

    Zhdanov M S, Fang S, Hursan G. Electromagnetic inversion using quasi-linear approximation[J]. Geophysics, 2000b, 65(5): 1501-1513.

    [23]

    Siripunvaraporn W, Egbert G, Lenbury Y. Numerical accuracy of magnetotelluric modeling:a comparison of finite difference approximations[J]. Earth Planets Space, 2002, 54(6): 721-725.

    [24]

    梁苗, 刘双, 胡祥云. 基于断层模型的AMT数值模拟及其应用[J]. 地质科技情报, 2016, 35(5):231-237.

    [25]

    Liang M, Liu S, Hu X Y. AMT numerical simulation of fault model and its applications[J]. Geological Science and Technology Information, 2016, 35(5): 231-237.

    [26]

    Zhdanov M S, Tolstaya E. Minimum support nonlinear parametrization in the solution of a 3D magnetotelluric inverse problem[J]. Inverse Problems, 2004, 20(3): 937-952.

    [27]

    汤井田, 张林成, 王显莹. 庐枞矿集区矾山—将军庙地区AMT三维反演及地质结构解释[J]. 地球物理学报, 2018, 61(4):1576-1587.

    [28]

    Tang J T, Zhang L C, Wang X Y, et al. Subsurface electrical structure of the Fanshan-Jiangjunmiao region in the Lujiang-Zongyang Ore District derived from 3-D inversion of audio-magnetotelluric data[J]. Chinese J. Geophys., 2018, 61(4): 1576-1587.

    [29]

    孙士军, 杨松平. 贵州金刚石成矿条件初探[J]. 贵州地质, 1998, 15(1):1-8.

    [30]

    Sun S J, Yang S P. A discussion on prerequisites to search for primary diamondsin Guizhou[J]. Guizhou Geology, 1998, 15(1): 1-8.

    [31]

    Hayman P C, Kopylova M G, Kaminsky F V. Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso,Brazil)[J]. Contributions to Mineralogy & Petrology, 2005, 149(4): 430-445.

    [32]

    Tappert R, Stachel T, Harris J W, et al. Diamonds from Jagersfontein (South Africa): Messengers from the sublithospheric mantle[J]. Contributions to Mineralogy & Petrology, 2005, 150(5): 505-522.

    [33]

    Bulanova G P, Walter M J, Smith C B, et al. Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: Subducted protoliths, carbonated melts and primary kimberlite magmatism[J]. Contributions to Mineralogy and Petrology, 2010, 160(4): 489-510.

    [34]

    王亮, 陶平. 贵州东南部含金刚石钾镁煌斑岩找矿远景区预测[J]. 地质与勘探, 2012, 48(4):775-783.

    [35]

    Wang L, Tao P. Ore-search prospecting areas of diamond-bearing lamproite in southeastern Guizhou Province[J]. Geology and Exploration, 2012, 48(4): 775-783.

    [36]

    王亮, 陶平. 利用区域物探重磁资料圈定黔东金刚石母岩钾镁煌斑岩的尝试[J]. 贵州地质, 2011, 28(4):254-259.

    [37]

    Wang L, Tao P. Determination of Diamond Parent Rock in Eastern Guizhou By Regional Geophysical Prospecting Gravity and Magnetic Information[J]. Guizhou Geology, 2011, 28(4): 254-259.

    [38]

    樊洪富, 王亮. 黔东南火山构造特征与金刚石找矿前景分析[J]. 工程地球物理学报, 2016, 13(3):389-398.

    [39]

    Fan H F, Wang L. Volcano-tectonic characteristics of diamond ore prospects in southeast Guizhou[J]. Chinese Journal of Engineering Geophysics, 2016, 13(3): 389-398.

    [40]

    阮帅. 三维大地电磁有限内存拟牛顿反演[D]. 成都: 成都理工大学, 2015.

    [41]

    Ruan S. Three-dimensional geomagnetic finite memory is intended for Newtonian inversion[D]. Chengdu: Chengdu University of Technology, 2015.

    [42]

    阮帅, 张炯, 孙远彬, 等. 基于三维正演的音频大地电磁阻抗相位不变量校正技术[J]. 地球物理学报, 2015, 58(2):685-696.

    [43]

    Ruan S, Zhang J, Sun Y B, et al. AMT impedance phase invariant correction based on 3D MT modeling technology[J]. Chinese J. Geophy., 2015, 58(2): 685-696.

    [44]

    Mackie R L, Madden T R, Wannamaker P E. Three-dimensional magnetotelluric modeling using difference equations: Theory and comparisons to integral equation solutions[J]. Geophysics, 1993, 58(2): 215-226.

    [45]

    Newman G A, Alumbaugh D L. Three-dimensional magnetotelluric inversion usingnon-linear conjugate gradients[J]. Geophys. J. Int., 2000, 140(2): 410-424.

    [46]

    Byrd R H, Nocedal J, Schnabel R B. Representations of quasi-Newton matrices and their use in limited memory methods[J]. Mathematical Programming, 1994, 63(1-3): 129-156.

    [47]

    邓琰, 汤吉, 阮帅. 三维大地电磁自适应正则化有限内存拟牛顿反演[J]. 地球物理学报, 2019, 62(9):3601-3614.

    [48]

    Deng Y, Tang J, Ruan S. Adaptive regularized three-dimensional magnetotelluric inversion based on the LBFGS quasi-Newton method[J]. Chinese J. Geophy., 2019, 62(9): 3601-3614.

    [49]

    阮帅, 汤吉, 陈小斌, 等. 三维大地电磁自适应L1范数正则化反演[J]. 地球物理学报, 2020, 63(10):3896-3911.

    [50]

    Ruan S, Tang J, Chen X B, et al. Three-dimensional magnetotelluric inversion based on adaptive L1-norm regularization[J]. Chinese J Geophy, 2020, 63(10): 3896-3911.

    [51]

    陈小斌, 赵国泽, 汤吉, 等. 大地电磁自适应正则化反演算法[J]. 地球物理学报, 2005, 48(4):937-946.

    [52]

    Chen X B, Zhao G Z, Tang J, et al. An adaptive regularized inversion algorithm for magnetotelluric data[J]. Chinese J. Geophy., 2005, 48(4): 937-946.

  • 加载中
计量
  • 文章访问数:  552
  • PDF下载数:  97
  • 施引文献:  0
出版历程
收稿日期:  2021-04-08
刊出日期:  2022-06-21

目录