中国自然资源航空物探遥感中心主办
地质出版社出版

基于深度神经网络的重力异常反演

王蓉, 熊杰, 刘倩, 薛瑞洁. 2022. 基于深度神经网络的重力异常反演. 物探与化探, 46(2): 451-458. doi: 10.11720/wtyht.2022.1341
引用本文: 王蓉, 熊杰, 刘倩, 薛瑞洁. 2022. 基于深度神经网络的重力异常反演. 物探与化探, 46(2): 451-458. doi: 10.11720/wtyht.2022.1341
WANG Rong, XIONG Jie, LIU Qian, XUE Rui-Jie. 2022. Inversion of gravity anomalies based on a deep neural network. Geophysical and Geochemical Exploration, 46(2): 451-458. doi: 10.11720/wtyht.2022.1341
Citation: WANG Rong, XIONG Jie, LIU Qian, XUE Rui-Jie. 2022. Inversion of gravity anomalies based on a deep neural network. Geophysical and Geochemical Exploration, 46(2): 451-458. doi: 10.11720/wtyht.2022.1341

基于深度神经网络的重力异常反演

  • 基金项目:

    国家自然科学基金项目(61673006)

    湖北省教育厅科学技术项目(B2016034)

详细信息
    作者简介: 王蓉(1995-),女,硕士,主要研究方向为地球物理反演理论、人工智能。Email: 201972322@yangtzeu.edu.cn
  • 中图分类号: P631

Inversion of gravity anomalies based on a deep neural network

  • 为解决传统线性反演方法容易陷入局部极小,计算效率低等问题,本文提出了一种基于深度学习的重力异常反演方法。该方法首先构造不同形状的二维密度模型,正演得到重力异常,组成数据集;然后用该数据集训练深度神经网络;最后将重力异常数据输入到训练好的深度神经网络,直接得到反演结果。实验结果表明,该方法能快速、准确地反演出地下异常体的位置和形态,且具有较好的泛化能力和抗噪声能力,可用于重力异常反演。
  • 加载中
  • [1]

    Le C Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.

    [2]

    吴渤. 基于深度神经网络的语音去混响方法研究[D]. 西安: 西安电子科技大学, 2018.

    [3]

    Wu B. Research on speech de-reverberation method based on deep neural network[D]. Xi'an: Xidian University, 2018.

    [4]

    Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[J]. NIPS, 2012, 25(2):1-9.

    [5]

    王逸宸, 柳林涛, 许厚泽. 基于卷积神经网络识别重力异常体[J]. 物探与化探, 2020, 44(2):394-400.

    [6]

    Wang Y C, Liu L T, Xu H Z. Identification of gravity anomalies based on convolutional neural network[J]. Geophysical and Geochemical Exploration, 2020, 44(2): 394-400.

    [7]

    Hu Z L, Liu S, Hu X Y, et al. Inversion of magnetic data using deep neural networks[J]. Physics of the Earth and Planetary Interiors, 2021, 311:106653.

    [8]

    Roy L, Sen M K, Richter T, et al. Inversion and uncertainty estimation of gravity data using simulated annealing: An application over Lake Vostok, East Antarctica[J]. Society of Exploration Geophysicists, 2005, 70(1):J1.

    [9]

    Boschetti F, Dentith M, List R. Inversion of potential field data by genetic algorithms[J]. Geophysical Prospecting, 1997, 45(3):461-478.

    [10]

    Xu H L, Wu X P. 2-D Resistivity inversion using the neural network method[J]. Chinese Journal of Geophysics, 2006, 49(2):507-514.

    [11]

    熊杰, 刘彩云, 邹长春. 基于粒子群优化算法的感应测井反演[J]. 物探与化探, 2013, 37(6):1141-1145.

    [12]

    Xiong J, Liu C Y, Zou C C. Induction logging inversion based on particle swarm optimization algorithm[J]. Geophysical and Geochemical Exploration, 2013, 37(6): 1141-1145.

    [13]

    Liu S, Hu X Y, Liu T Y, et al. Ant colony optimisation inversion of surface and borehole magnetic data under lithological constraints[J]. Journal of Applied Geophysics, 2015, 112:115-128.

    [14]

    Zhang Z, Alkhalifah T. Regularized elastic full-waveform inversion using deep learning[J]. Geophysics, 2019, 84(5): 741-751.

    [15]

    马国庆, 吴琪, 熊盛青, 等. 基于重磁数据梯度比值的深度学习技术实现场源位置反演方法[J]. 地球科学, 2021, 46(9):3365-3375.

    [16]

    Ma G Q, Wu Q, Xiong S Q, et al. Deep learning technology based on the gradient ratio of gravity and magnetic data to realize the field source position inversion method[J]. Earth Science, 2021, 46(9):3365-3375.

    [17]

    梁立锋, 刘秀娟, 张宏兵, 等. 超参数对GRU-CNN混合深度学习弹性阻抗反演影响研究[J]. 物探与化探, 2021, 45(1):133-139.

    [18]

    Liang L F, Liu X J, Zhang H B, et al. Study on the influence of hyperparameters on GRU-CNN hybrid deep learning elastic impedance inversion[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 133-139.

    [19]

    Wu B, Meng D, Wang L, et al. Seismic impedance inversion using fully convolutional residual network and transfer learning[J]. IEEE Geosci. Remote Sens. Lett., 2020, 17(12): 1-5.

    [20]

    付超, 林年添, 张栋, 等. 多波地震深度学习的油气储层分布预测案例[J]. 地球物理学报, 2018, 61(1):293-303.

    [21]

    Fu C, Lin N T, Zhang D, et al. A case of oil and gas reservoir distribution prediction based on multi-wave seismic deep learning[J]. Chinese Journal of Geophysics, 2018, 61(1): 293-303.

    [22]

    黄旭日, 代月, 徐云贵, 等. 基于深度学习算法不同数据集的地震反演实验[J]. 西南石油大学学报, 2020, 42(6):16-25.

    [23]

    Huang X R, Dai Y, Xu Y G, et al. Seismic inversion experiments based on different data sets of deep learning algorithm[J]. Journal of southwest petroleum university, 2020, 42(6):16-25.

    [24]

    Zhao M, Chen S, Yuen D. Waveform classification and seismic recognition by convolution neural network[J]. China University of Geoscience, 2019, 62(1): 374-382.

    [25]

    Wang H, Yan J, Fu G. Current status and application prospect of deep learning in geophysics[J]. Prog. Geophys., 2018, 35(2): 642-655.

    [26]

    Viens L, Van H C. Denoising ambient seismic field correlation functions with convolutional autoencoders[J]. Geophysical Journal International, 2020, 220(3):1521-1535.

    [27]

    杨磊. 基于BP神经网络的重力异常分离[J]. 工程地球物理学报, 2021, 18(1):90-97.

    [28]

    Yang L. Gravity anomaly separation based on BP neural network[J]. Journal of Engineering Geophysics, 2021, 18(1): 90-97.

    [29]

    张志厚, 廖晓龙, 曹云勇, 等. 基于深度学习的重力异常与重力梯度异常联合反演[J]. 地球物理学报, 2021, 64(4):1435-1452.

    [30]

    Zhang Z H, Liao X L, Cao Y Y, et al. Joint inversion of gravity anomaly and gravity gradient anomaly based on deep learning[J]. Chinese Journal of Geophysics, 2021, 64(4): 1435-1452.

    [31]

    Yang Q G, Hu X Y, Liu S, et al. 3D gravity inversion based on deep convolution neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5.

  • 加载中
计量
  • 文章访问数:  1066
  • PDF下载数:  106
  • 施引文献:  0
出版历程
收稿日期:  2021-06-17
刊出日期:  2022-06-28

目录