Direct current resistivity method and the transparency of mining face
-
摘要: 通过先进的勘探设备与技术实现综采工作面的透明化,使煤层信息更加全面、准确,可为综采工作面的智能化生产奠定坚实的基础。直流电阻率法是矿井物探常用方法,其稳定性好、抗干扰能力强,对低阻体和高阻体都有灵敏的反映能力,因此直流电阻率法是实现工作面透明化的关键手段之一。为探究直流电阻率法在工作面透明化中的应用效果,对工作面探明含水构造、巷道迎头超前探测等问题,分别使用不同的工作方法对两种问题的响应特征进行三维正、反演。结果表明在对应的工作方法下得到的三维直流反演数据分布规律与初始模型基本一致,有良好的高、低阻体区分能力。对实际工程中直流电阻率法在工作面透明化中的应用有一定指导作用。Abstract: The transparency of the fully mechanized mining face achieved using advanced exploration equipment and technology can make the information on coal seams more comprehensive and accurate and can lay a solid foundation for the intelligent production of the fully mechanized mining face. DC resistivity method is a common method for geophysical exploration. Owing to the high stability, great anti-interference performance, and sensitive responses to low- and high-resistance bodies, the DC resistivity method is one of the key means of achieving the transparency of the mining face. To explore the application effects of the method in the transparency of the mining face, this study used different working methods to conduct three-dimensional forward and inverse modeling of the response characteristics for solving proven water-bearing structures of the mining face and frontal advanced detection of roadways. The results show that the distribution laws of 3D DC inversion data obtained by corresponding working methods were basically consistent with those of the initial model, and the DC resistivity method can well distinguish between high- and low-resistivity bodies. Therefore, this study can guide the application of the DC resistivity method in the transparency of mining face in practical engineering.
-
-
[1] 王峰. 基于透明工作面的智能化开采概念、实现路径及关键技术[J]. 工矿自动化, 2020, 46(5):39-42.
[2] Wang F. Concept, realization path and key technologies of intelligent mining based on transparent long wall face[J]. Industryl and Mine Automation, 2020, 46(5): 39-42.
[3] 郭昌放, 杨真, 武祥, 等. 透明矿山建设与推进的思考[J]. 中国煤炭, 2021, 47(1):83-92.
[4] Guo C F, Yang Z, Wu X, et al. Thinking on the construction and promotion of transparent mine[J]. China Coal, 2021, 47(1): 83-92.
[5] 曹凯. 瞬变电磁法和直流电法在防治水中的应用[J]. 江西煤炭科技, 2020, 42(1):134-135.
[6] Cao K. Application of transient electromagnetic method and direct current method in water control[J]. Jiangxi Coal Technology, 2020, 42(1): 134-135.
[7] 刘玉, 高卫富, 刘明, 等. 矿井高密度电阻率法顶、底板异常响应正演研究[J]. 地球物理学进展, 2018, 33(4):1666-1671.
[8] Liu Y, Gao W F, Liu M, et al. Study on response characteristics of anomalous body in the roof and floor with high-density electrical method[J]. Progress in Geophysics, 2018, 33(4): 1666-1671.
[9] 郝耀军, 朱鲁, 高卫富. 基于矿井直流电法的底板岩层富水性研究[J]. 山东煤炭科技, 2016, 34(5):136-138.
[10] Hao Y J, Zhu L, Gao W F. Study on water abundance of floor strata based on mine direct current method[J]. Shandong Coal Technology, 2016, 34(5): 136-138.
[11] 岳建华, 薛国强. 中国煤炭电法勘探36年发展回顾[J]. 地球物理学进展, 2016, 31(4):1716-1724.
[12] Yue J H, Xue G Q. Review of 36 years' development of coal electrical exploration in China[J]. Progress in Geophysics, 2016, 31(4): 1716-1724.
[13] 刘汉. 矿井直流电阻率法立体布极方式探测能力研究[D]. 徐州: 中国矿业大学(徐州), 2019.
[14] Liu H. Research on the detection capability of the three-dimensional pattern of mine DC resistivity method[D]. Xuzhou: China University of Mining and Technology(Xuzhou), 2019.
[15] 于景邨, 刘志新, 岳建华. 煤矿深部开采中的地球物理技术现状及展望[J]. 地球物理学进展, 2007, 22(2):586-592.
[16] Yu J C, Liu Z X, Yue J H. Present situation and prospect of geophysical technology in deep coal mining[J]. Progress in Geophysics, 2007, 22(2): 586-592.
[17] 鲁晶津. 直流电阻率法在煤层底板水害监测中的应用研究[J]. 工矿自动化, 2021, 47(2):18-25.
[18] Lu J J. Research on the application of direct current resistivity method in coal seam floor water inrush monitoring[J]. Industryl and Mine Automation, 2021, 47(2): 18-25.
[19] 高卫富, 瞿培合, 肖乐乐, 等. 环工作面三维直流电阻率法研究及应用[J]. 地球物理学报, 2020, 63(9):3534-3544.
[20] Gao W F, Qu P H, Xiao L L, et al. Research and application of the 3D DC resistivity method with around working face[J]. Chinese Journal of Geophysics, 2020, 63(9): 3534-3544.
[21] 马炳镇, 李貅. 矿井直流电法超前探中巷道影响的数值模拟[J]. 煤田地质与勘探, 2013, 41(2):78-80.
[22] Ma B Z, Li X. Numerical simulation of the influence of roadway in the advance exploration of mine direct current method[J]. Coal Geology & Exploration, 2013, 41(2): 78-80.
[23] 刘盛东, 刘静, 岳建华. 中国矿井物探技术发展现状和关键问题[J]. 煤炭学报, 2014, 39(1):19-25.
[24] Liu S D, Liu J, Yue J H. Development status and key problems of Chinese mining geophysical technology[J]. Jounal of China Coal Society, 2014, 39(1): 19-25.
[25] 刘树才, 刘志新, 姜志海, 等. 矿井直流电法三维正演计算的若干问题[J]. 物探与化探, 2004, 28(2):170-172.
[26] Liu S C, Liu Z X, Jiang Z H, et al. Some problems in the 3D forward calculation of the direct current method in mine[J]. Geophysical and Geochemical Exploration, 2004, 28(2): 170-172.
[27] 刘志新, 许新刚, 岳建华. 矿井电法三维有限元正演模拟—直流电透视方法技术研究[J]. 物探化探计算技术, 2003, 25(4):302-307.
[28] Liu Z X, Xu X G, Yue J H. Research on 3D finite element forward modeling of mine electrical method DC perspective method technology[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2003, 25(4): 302-307.
[29] 李文喜. 巷道三维电阻率成像技术研究与应用[D]. 泰安: 山东科技大学, 2018.
[30] Li W X. Research and application of 3D resistivity imaging technology in Roadway[D]. Taian: Shandong University of Science and Technology, 2018.
[31] 李忠平. 基于高密度电法温纳装置的三维电阻率反演应用[J]. 地球物理学进展, 2020, 35(3):970-975.
[32] Li Z P. Application of 3-D resistivitv inversion based on winner device of high density electricity method[J]. Progress in Geophysics, 2020, 35(3): 970-975.
-
计量
- 文章访问数: 592
- PDF下载数: 131
- 施引文献: 0