Key points of the design of a nodal acquisition system for seismic exploration
-
摘要: 为了对应长期低油价形势,地震勘探采集成本不断降低,同时为了满足越来越严格的环保要求,节点采集设备凭借其低成本、低采集脚印等优势不断推广。节点仪器的设计制造入门门槛偏低。市场上部分产品出于设计或成本等方面的考虑,在一些细节方面的缺失或忽视会造成地震勘探采集作业现场应用的困难。本文结合多年地震勘探设备使用经验,以及当前市场常见节点特性分析,在信号采集、测试功能、电路设计、存储、电池、外形、配套系统、质量控制及配套设备几个方面节点设计需要注意的细节进行阐述。避免由于设计原因出现信号采集的失真、耦合、EMC等问题。节点设备的采集质量完全依靠每一个节点设备在本地的独立工作性能和工作稳定性。而这两方面完全依靠厂家对于地震勘探采集信号和采集作业的理解,进而产生的设计。设计必须考虑为满足新形势下油气勘探开发需要,油气勘探开发重心不断向深层—超深层、强复杂地表更复杂领域转移,当前地震勘探采集更多地关注深层,要求对于信号拾取高精度、高分辨率,因此也就更需要提高对于弱信号、宽频信号的采集能力。Abstract: The requirements for the design and manufacturing of nodal devices are relatively low. The most basic modules of a nodal device include controllers, acquisition circuits, GNSS timing circuits, geophones, batteries, interfaces, downloading cabinets, data downloading & compositing servers, optional testing circuits, signal generators, and QC manuals. As mature supply chains are available for all the above modules, manufacturers pay more attention to organically integrating the above modules into products that can stably work and meet the needs for the signal acquisition of seismic exploration. However, the absence or neglect of some details in some products on the market due to design or cost considerations will cause difficulties in the field application of seismic data acquisition. The data acquisition quality of the nodal devices relies entirely on the independent performance and stability of each nodal device, which further rely entirely on the manufacturers‘ understanding of signal acquisition for seismic exploration and data acquisition operations and the resultant design. The requirements of oil and gas exploration and development in new situations must be considered in the design of nodal devices. The focus of oil and gas exploration and development is constantly shifting to deep and ultra-deep parts with more complex ground surfaces, and thus high precision and resolution are required for signal pickup. As a result, nodal devices should be more capable of acquiring weak signals and broadband signals, which cannot be compromised in the design. This paper elaborates on the fundamental details of signal acquisition, test functions, circuit design, storage, batteries, profile, auxiliary systems, quality control, and auxiliary devices in order to avoid problems such as signal distortion, coupling, and EMC.
-
Key words:
- nodal device /
- EMC /
- circuit design
-
-
[1] 易碧金, 袁宗军, 甘志强, 等. 浅谈节点地震仪器原理及一体化采集站设计要点[J]. 物探装备, 2021, 31(6):351-355,360.
[2] Yi B J, Yuan Z J, Gan Z Q, et al. Introduction to the principle of node seismic instruments and the design points of integrated acquisition stations[J]. Equipment for Geophysical Prospecting, 2021, 31(6):351-355,360.
[3] 施继承, 史子乐, 黄艳林, 等. 全球陆上节点地震数据采集设备现状与市场需求分析[J]. 物探装备 2019, 29(1):5-9.
[4] Shi J C, Shi Z L, Huang Y L, et al. The status and development trend of the global land nodal system[J]. Equipment for Geophysical Prospecting, 2019, 29(1):5-9.
[5] 夏颖, 刘卫平, 甘志强, 等. 节点仪器面临的挑战与发展趋势[J]. 物探装备, 2017, 27(5) :281-284.
[6] Xia Y, Liu W P, Gan Z Q, et al. Challenges and development trend of node instruments[J]. Equipment for Geophysical Prospecting, 2017, 27(5): 281-284.
[7] 易碧金, 穆群英, 王苏华, 等. 无线技术在地震仪器中的应用及展望[J]. 石油管材与仪器, 2015, 1(6):16-20.
[8] Yi B J, Mu Q Y, Wang S H, et al. Application and prospect of wireless technology in seismic instruments[J]. Petroleum Tubular Goods & Instruments, 2015, 1(6):16-20.
[9] 易碧金, 穆群英, 岩巍, 等. 地震勘探仪器发展的机遇、挑战及研发分析与展望[J]. 物探装备, 2016, 26(6): 351-357.
[10] Yi B J, Mu Q Y, Yan W, et al. Looking forward to seismic data acquisition system and it's technologies[J]. Equipment for Geophysical Prospecting, 2016, 26(6): 351-357.
[11] 国家能源局. 石油地震数据采集系统通用技术规范[S]. 中华人民共和国石油天然气行业标准,SY/T 5391—2018.
[12] National Energy Administration. General technical specification of the petroleum seismic data acquisition system[S]. Petroleum and Natural Gas Industry Standards of the People's Republic of China,SY/T 5391—2018.
[13] 岩巍, 李铮铮, 李正冉, 等. AccuSeis SL11数字检波器工作及测试原理[J]. 物探装备, 2019, 29(4):214-217.
[14] Yan W, Li Z Z, Li Z R, et al. Working and testing principle of AccuSeis SL11 digital geophone[J]. Equipment for Geophysical Prospecting, 2019, 29(4) 214-217.
[15] 易碧金, 仲明惟, 郭延伟, 等. 地震仪器性能指标对高精度勘探的影响[J]. 石油管材与仪器, 2020, 3(6):51-54.
[16] Yi B J, Zhong M W, Guo Y W, et al. The influence of seismic instrument performance indices on high precision exploration[J]. Petroleum Tubular Goods & Instruments, 2020, 3(6):51-54.
[17] 陈联青, 贾艳芳, 顾兴莉. GPS授时(网络)地震仪[J]. 物探装备, 2006, 16(S):1-7.
[18] Chen L Q, Jia Y F, Gu X L. GPS clock(network) seismograph[J]. Equipment for Geophysical Prospecting, 2006, 16(S): 1-7.
[19] 中国石油集团东方地球物理勘探有限责任公司. 井炮源激发同步系统的检验、使用与维护[S]. 东方地球物理勘探有限责任公司企业标准,Q/SY BGP K2740-2020.
[20] BGP,CNPC. Tset. Usage and maintenance for dynamite synchronization system[S]. Q/SY BGP K2740-2020
[21] 岩巍, 陈洪斌, 崔红英, 等. 基于时间槽分隔的井炮独立激发节点仪器采集技术及质控方法讨论[J]. 物探装备, 2020, 30(1):1-4.
[22] Yan W, Chen H B, Cui H Y, et al. Acquisition technology of independent source control based on time slot[J]. Equipment for Geophysical Prospecting, 2020, 30(1):1-4.
[23] 岩巍, 夏颖, 朱萍. Hawk节点仪器井炮作业优化[J]. 物探装备, 2016, 26(4) 226-228.
[24] Yan W, Xia Y, Zhu P. Operation optimization for node instrument[J]. Equipment for Geophysical Prospecting, 2016, 26(4) 226-228.
[25] 夏颖, 周德茂, 王艳, 等. GPS技术在地震勘探仪器中的应用及发展[J]. 物探装备 2010, 20(2): 78-82.
[26] Xia Y, Zhou D M, Wang Y, et al. The application and development of GPS technology in seismic exploration instrument[J]. Equipment for Geophysical Prospecting, 2010, 20(2): 78-82.
-
计量
- 文章访问数: 1383
- PDF下载数: 495
- 施引文献: 0