Moving-footprint-based large-scale model decomposition method for forward modeling of gravity and gravity gradient anomalies
-
摘要: 重力及其梯度异常正演计算效率决定了反演的可行性,也是高效构建足量、多样深度学习样本数据的基础。为了进一步提高重力及其梯度异常正演的计算速度,受航空电磁领域"Moving-footprint"快速正演技术的启发,本文在基于网格点几何格架函数空间域快速正演的基础上,提出了一种"Moving-footprint"大尺度模型分解的重力及其梯度异常正演计算方法。此方法在地下半空间内选择观测点正下方一定有效范围的子空间,该观测点异常近似为其对应子空间内长方体单元的异常和,而忽略子空间外长方体单元产生的异常;当观测点移动,其对应的子空间随之移动,从而可以将地下半空间长方体模型进行大尺度模型分解,为每一个计算点所对应的子空间进行正演计算。模型实验表明,在256x256x15个长方体模型的地下半空间内选取32x32x15的子空间进行计算,重力异常及部分梯度异常的相对平均误差小于10%,计算速度提高19倍;文中方法针对1024x1024x15个长方体模型计算时间约为32min,相比已有算法中存在的超常规计算量的瓶颈问题具有显著的计算优势。
-
关键词:
- 重力异常 /
- Moving-footprint /
- 快速正演 /
- 模型分解
Abstract: The computational efficiency of the forward modeling for gravity and gravity gradient anomalies determines the feasibility of inverse modeling. It also forms the basis for the efficient building of sufficient and diverse deep learning sample data. Inspired by the application of moving-footprint—a fast forward modeling method in the aerospace electromagnetic field and based on the fast space-domain forward modeling of geometric lattice functions of grid points, the authors proposed a computation method for the forward modeling of gravity and gravity gradient anomalies by applying ”moving-footprint“, aiming to further improve the speed of the forward calculation for gravity and gravity gradient anomalies. Specifically, this method selects the subspace in a certain effective range directly below an observation point in the underground half-space. The observation point anomaly approximates the total anomalies of the cuboid units in the corresponding subspace while ignoring the anomalies produced by the cuboid units outside the subspace. When the observation point moves, the corresponding subspace moves accordingly. Therefore, the large-scale underground half-space cuboid model can be decomposed into the subspace corresponding to each calculation point for the forward calculation. As shown by the results of a model test, when 32x32x15 subspace was selected in the underground half-space of a 256x256x15 rectangular parallelepiped model for calculation, the relative average error of gravity anomalies and partial gradient anomalies was less than 10% and the calculation speed was increased by 19 times. Moreover, the calculation time of 1024x1024x15 rectangular parallelepiped model is approximately 32 minutes. Compared with the existing algorithms with a bottleneck in the ultra-conventional calculations, the method proposed in this study has significant advantages regarding computation.-
Key words:
- gravity anomaly /
- moving-footprint /
- fast forward modeling /
- model decomposition
-
-
[1] [2] Hackney R I, Featherstone W E. Geodetic versus geophysical perspectives of the "gravity anomaly"[J]. Geophysical Journal International, 2003, 154(1): 35-43.
[3] 姚长利, 郝天珧, 管志宁, 等. 重磁遗传算法三维反演中高速计算及有效存储方法技术[J]. 地球物理学报, 2003, 46(2):252-258.
[4] Yao C L, Hao T Y, Guan Z N, et al. High-speed computation and efficient storage in 3D gravity and magnetic inversion based on genetic algorithms[J]. Chinese Journal of Geophysics, 2003, 46(2): 252-258.
[5] 陈召曦, 孟小红, 郭良辉. 重磁数据三维物性反演方法进展[J]. 地球物理学进展, 2012, 27(2):503-511.
[6] Chen Z X, Meng X H, Guo L H. Review of 3D property inversion of gravity and magnetic data[J]. Progress in Geophysics, 2012, 27(2): 503-511.
[7] 张志厚, 廖晓龙, 曹云勇, 等. 基于深度学习的重力异常与重力梯度异常联合反演[J]. 地球物理学报, 2021, 64(4):1435-1452.
[8] Zhang Z H, Liao X L, Cao Y Y, et al. Joint gravity and gravity inversion based on deep learning[J]. Chinese Journal of Geophysics, 2021, 64(4): 1435-1452.
[9] 杨文采, 施志, 侯遵泽, 等. 离散小波变换与重力异常多重分解[J]. 地球物理学报, 2001, 44(4):534-541.
[10] Yang W C, Shi Z, Hou Z Z, et al. Discrete wavelet transform and multiple decomposition of gravity anomaly[J]. Chinese Journal of Geophysics, 2001, 44(4): 534-541.
[11] Vajda P, Vanicek P, Novak P, et al. Secondary indirect effects in gravity anomaly data inversion or interpretation[J]. Journal of Geophysical Research, 2007, 112(B6):B06411(1-11).
[12] Li Y, Oldenburg D W. Fast inversion of large-scale magnetic data using wavelet transforms and a logarithmic barrier method[J]. Geophysical Journal International, 2003, 152(2): 251-265.
[13] 秦朋波, 黄大年. 重力和重力梯度数据联合聚焦反演方法[J]. 地球物理学报, 2016, 59(6):2203-2224.
[14] Qin P B, Huang D N. Intergrated gravity and gravity gradient data focusing inversion[J]. Chinese Journal of Geophysics, 2016, 59(6): 2203-2224.
[15] 熊光楚. 重、磁场三维傅里叶变换的若干问题[J]. 地球物理学报, 1984, 27(1):103-109.
[16] Xiong G C. Several problems of three-dimensional Fourier transform of gravity and magnetic field[J]. Chinese Journal of Geophysics, 1984, 27(1): 103-109.
[17] Shin Y H, Choi K, Xu H. Three dimensional forward and inverse models for gravity fields based on the Fast Fourier Transform[J]. Computers & Geosciences, 2006, 32(6):27-738.
[18] Wu L Y, Tian G. High-precision Fourier forward modeling of potential fields[J]. Geophysics, 2014, 79(5): G59-G68.
[19] Ren Z Y, Tang J T, Kalscheuer T, et al. Fast 3-D large-scale gravity and magnetic modeling using unstructured grids and an adaptive multilevel fast multipole method[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(1): 79-109.
[20] 姚长利, 郑元满, 张聿文. 重磁异常三维物性反演随机子域法方法技术[J]. 地球物理学报, 2007, 50(5):1576-1583.
[21] Yao C L, Zheng Y M, Zhang Y W. 3-D gravity and magnetic inversion for physical properties using stochastic subspaces[J]. Chinese Journal of Geophysics, 2007, 50(5): 1576-1583.
[22] 舒晴, 朱晓颖, 周坚鑫, 等. 矩形棱柱体重力梯度张量异常正演计算公式[J]. 物探与化探, 2015, 39(6):1217-1222.
[23] Shu Q, Zhu X Y, Zhou J X, et al. Forward calculation formula for the anomaly of gravity gradient tensor of rectangular prism[J]. Physical and Geochemical Exploration, 2015, 39(6): 1217-1222.
[24] Cox L H, Wilson G A, Zhdanov M S. 3D inversion of airborne electromagnetic data using a moving footprint[J]. Exploration Geophysics, 2010, 41(4): 250-259.
[25] Yin C, Huang X, Liu Y, et al. Footprint for frequency-domain airborne electromagnetic systems[J]. Geophysics, 2014, 79(6): E243-E254.
-
计量
- 文章访问数: 534
- PDF下载数: 110
- 施引文献: 0