Curvelet transform-based denoising of resonance interference induced by electrical poles in seismic exploration
-
摘要: 线杆共振干扰是中浅层地震勘探常见干扰之一,尤其对浅部数据影响较大,由于石油、煤田勘探涉及此类干扰较少,缺乏相关研究内容。Curvelet变换可以获得图像平滑区域和边缘部分的稀疏表达,也能满足时变信号处理的要求,在地震资料处理中取得了较好的效果。本文根据线杆共振干扰在地震数据中表现的特点,提出了一种基于Curvelet变换的线杆共振干扰去除方法,首先通过分析线杆共振干扰与有效信息在Curvelet域的特征差异,借助Curvelet变换的多尺度、多方向特性实现波场分离,然后根据本文设计的非线性阈值函数对干扰系数进一步衰减。通过实际数据的应用分析,发现本文提出的方法可以有效地去除线杆共振干扰,同时可以较好地保护有效信号,去噪后资料的信噪比及分辨率均有不同程度的提高,从而证明了该方法的有效性。
-
关键词:
- Curvelet变换 /
- 地震勘探 /
- 线杆共振干扰 /
- 去噪 /
- 非线性阈值
Abstract: The resonance interference induced by electrical poles is a common type of noise in middle-shallow seismic exploration,especially for shallow data.However,relevant studies are scarce since it is rarely involved in petroleum and coalfield exploration.The Curvelet transform allows for a sparse representation of smooth regions and edges in images and can meet the requirements of time-varying signal processing,thus achieving good effects in the processing of seismic data.Based on the characteristics of the electrical pole-induced resonance interference in seismic data,this paper proposes a new method that utilizes the Curvelet transform to remove the resonance interference in original data and the steps are as follows.First,analyze the differences between the characteristics of the resonance interference induced by electrical poles and effective information in the Curvelet domain.Based on this,conduct wavefield separation according to the multi-scale and multi-direction characteristics of the Curvelet transform.Then,further attenuate the interference factors using the nonlinear threshold function designed in this paper.According to the application and analysis of actual data,this method can effectively remove the resonance interference induced by electrical poles while properly protecting effective signals and can significantly improve the signal-to-noise ratio and resolution of the denoised data.Therefore,the method proposed in this paper is effective. -
[1] 张军华, 吕宁, 田连玉, 等. 地震资料去噪方法、技术综合评述[J]. 地球物理学进展, 2005, 20(4):1083-1091.
[2] Zhang J H, Lyu N, Tian L Y, et al. An overview of the methods and techniques for seismic data noise attenuation[J]. Progress in Geophysics, 2005, 20(4):1083-1091.
[3] 杨会. 基于Curvelet变换的地震资料噪声压制研究[D]. 南昌: 东华理工大学, 2018.
[4] Yang H. Research on noise suppression of seismic data based on curvelet transform[D]. Nanchang: East China University of Technology, 2018.
[5] Deighan A J, Watts D R. Ground-roll suppressing using the wavelet transform[J]. Geophysics, 1997, 62(6): 1896-1903.
[6] 高静怀, 毛剑, 满蔚仕, 等. 叠前地震资料噪声衰减的小波域方法研究[J]. 地球物理学报, 2006, 49(4):1155-1163.
[7] Gao J H, Mao J, Man W S, et al. On the denoising method of prestack seismic data in wavelet domain[J]. Chinese Journal of Geophysics, 2006, 49(4):1155-1163.
[8] Mallat S G. A theory for multiresolution signal decomposition:The wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7):674-693.
[9] Candes E J, Donoho D L. Curvelets—A surprisingly effective nonadaptive representation for objects with edges[J]. Computer Science, 2000:1-10.
[10] Candes E, Demanet L, Donoho D L, et al. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities[J]. Communications on Pure & Applied Mathematics, 2010, 57(2):219-266.
[11] Candes E J, Donoho D L. Continuous curvelet transform:I.Resolution of the wavefront set[J]. Applied & Computational Harmonic Analysis, 2005, 19(2):162-197.
[12] Candes E J, Donoho D L, et al. Fast discrete Curvelet transforms[J]. Multiscale Modeling & Simulation, 2006, 5(3):861-899.
[13] 徐卫, 张华, 张落毅. 基于复值曲波变换的地震数据重建方法[J]. 物探与化探, 2016, 40(4):750-756.
[14] Xu W, Zhang H, Zhang L Y. A study of seismic data reconstruction based on complex-valued curvelet transform[J]. Geophysical and Geochemical Exploration, 2016, 40(4):750-756.
[15] 温睿, 刘国昌, 冉扬. 压缩感知地震数据重建中的三个关键因素分析[J]. 石油地球物理勘探, 2018, 53(4):682-693.
[16] Wen R, Liu G C, Ran Y. Three key factors in seismic data reconstruction based on compressive sensing[J]. Oil Geophysical Prospecting, 2018, 53(4):682-693.
[17] 王汉闯, 陶春辉, 陈生昌, 等. 基于稀疏约束的地震数据高效采集方法理论研究[J]. 地球物理学报, 2016, 59(11):4246-4265.
[18] Wang H C, Tao C H, Chen S C, et al. Study on highly efficient seismic data acquisition method and theory based on sparsity constraint[J]. Chinese Journal of Geophysics, 2016, 59(11):4246-4265.
[19] 白兰淑, 刘伊克, 卢回忆, 等. 基于压缩感知的Curvelet域联合迭代地震数据重建[J]. 地球物理学报, 2014, 57(9):2937-2945.
[20] Bai L S, Liu Y K, Lu H Y, et al. Curvelet-domain joint iterative seismic data reconstruction based on compressed sensing[J]. Chinese Journal of Geophysics, 2014, 57(9):2937-2945.
[21] 薛永安, 王勇, 李红彩, 等. 改进的曲波变换及全变差联合去噪技术[J]. 物探与化探, 2014, 38(1):81-86.
[22] Xue Y A, Wang Y, Li H C, et al. An improved random attenuation method based on curvelet transform and total variation[J]. Geophysical and Geochemical Exploration, 2014, 38(1):81-86.
[23] 孙成禹, 刁俊才, 李文静. 基于曲波噪声估计的三维块匹配地震资料去噪[J]. 石油地球物理勘探, 2019, 54(6):1188-1194.
[24] Sun C Y, Diao J C, Li W J. 3D Block matching seismic data denoising based on Curvelet noise estimation[J]. Oil Geophysical Prospecting, 2019, 54(6):1188-1194.
[25] 张华, 刁塑, 温建亮, 等. 应用二维非均匀曲波变换压制地震随机噪声[J]. 石油地球物理勘探, 2019, 54(1):16-23.
[26] Zhang H, Diao S, Wen J L, et al. A random noise suppression with 2D non-uniform curvelet transform[J]. Oil Geophysical Prospecting, 2019, 54(1):16-23.
[27] 郑静静, 印兴耀, 张广智, 等. 基于第二代Curvelet变换的面波压制[J]. 应用地球物理, 2010, 7(4):325-335.
[28] Zheng J J, Yin X Y, Zhang G Z, et al. The surface wave suppression using the second generation curvelet tracsform[J]. Applied Geophysics, 2010, 7(4):325-335.
[29] 李继伟, 刘晓兵, 周俊骅, 等. 基于能量比的Curvelet阈值迭代面波压制[J]. 石油地球物理勘探, 2019, 54(5):997-1004.
[30] Li J W, Liu X B, Zhou J H, et al. A Curvelet threshold iteration method based on energy ratio for surface-wave suppression[J]. Oil Geophysical Prospecting, 2019, 54(5):997-1004.
[31] 王常波, 田坤, 刘立彬, 等. 基于地震子波支撑和Curvelet域稀疏约束的面波衰减方法[J]. 地球物理学进展, 2020, 35(1):181-187.
[32] Wang C B, Tian K, Liu L B, et al. Ground-roll attenuation method based on the seismic wavelet supported and sparse constraint in Curvelet domain[J]. Progress in Geophysics, 2020, 35(1):181-187.
[33] Donoho D L, Johnstone I M. Ideal spacial adaptation by wavelet shrinkage[J]. Biometrica, 1994, 81(3):425-455.
计量
- 文章访问数: 274
- PDF下载数: 19
- 施引文献: 0