中国自然资源航空物探遥感中心主办
地质出版社出版

井眼扩径对水平井声波测井响应影响的数值模拟

苏林帅, 蔡明, 郑占树, 徐宝宝, 罗居森, 胡燕杰, 张荆宇. 2022. 井眼扩径对水平井声波测井响应影响的数值模拟. 物探与化探, 46(2): 467-473. doi: 10.11720/wtyht.2022.2447
引用本文: 苏林帅, 蔡明, 郑占树, 徐宝宝, 罗居森, 胡燕杰, 张荆宇. 2022. 井眼扩径对水平井声波测井响应影响的数值模拟. 物探与化探, 46(2): 467-473. doi: 10.11720/wtyht.2022.2447
SU Lin-Shuai, CAI Ming, ZHENG Zhan-Shu, XU Bao-Bao, LUO Ju-Sen, HU Yan-Jie, ZHANG Jing-Yu. 2022. Numerical simulation of the effects of borehole enlargement on sonic logging response of horizontal wells. Geophysical and Geochemical Exploration, 46(2): 467-473. doi: 10.11720/wtyht.2022.2447
Citation: SU Lin-Shuai, CAI Ming, ZHENG Zhan-Shu, XU Bao-Bao, LUO Ju-Sen, HU Yan-Jie, ZHANG Jing-Yu. 2022. Numerical simulation of the effects of borehole enlargement on sonic logging response of horizontal wells. Geophysical and Geochemical Exploration, 46(2): 467-473. doi: 10.11720/wtyht.2022.2447

井眼扩径对水平井声波测井响应影响的数值模拟

  • 基金项目:

    中国石油科技创新基金项目(2019D-5007-0303)

    国家自然科学基金项目(42104126)

    国家自然科学基金项目(41774116)

    湖北省教育厅科技项目(Q20211309)

详细信息
    作者简介: 苏林帅(1997-),男,主要从事地球物理测井方面的研究与钻井地质工程项目的监督工作。Email: 675450484@qq.com
  • 中图分类号: P631.4

Numerical simulation of the effects of borehole enlargement on sonic logging response of horizontal wells

  • 水平钻井得到越来越广泛的应用。作为储层评价最重要手段之一的声波测井在水平井中往往受到井眼状况等因素的影响,从而导致其应用效果明显变差。为此,采用三维有限差分法针对径向扩径尺寸变化、轴向扩径尺寸变化和扩径位置变化三大类情况开展了正演模拟研究,重点研究了井眼扩径对水平井声波测井波形幅度、到时和波速的影响。结果表明,当扩径段位于声源与最近的接收器之间时,扩径属性参数变化对纵横波波速测量结果无影响,但均会导致波形幅度明显降低;纵、横波幅度均随扩径圆筒厚度和长度的增大而减小,但基本不受扩径距的影响;纵波到时随扩径圆筒厚度和长度的增大而增大,但随扩径距的增大而轻微减小。本研究厘清了井眼扩径对水平井声波测井响应的影响规律,可为进一步开展水平井声波测井影响因素校正方法研究提供指导和帮助。
  • 加载中
  • [1]

    吴月先, 钟水清, 徐永高, 等. 中国水平井技术实力现状及发展趋势[J]. 石油矿场机械, 2008, 37(3):33-36.

    [2]

    Wu Y X, Zhong S Q, Xu Y G, et al. Present condition of horizontal well technique strength and its development trend in China[J]. Oil Field Equipment, 2008, 37(3):33-36.

    [3]

    章成广, 江万哲, 潘和平. 声波测井原理与应用[M]. 北京: 石油工业出版社, 2009.

    [4]

    Zhang C G, Jiang W Z, Pan H P. Principle and application of acoustic logging[M]. Beijing: Petroleum Industry Press, 2009.

    [5]

    蔡明, 章成广, 韩闯, 等. 微裂缝对横波衰减影响的实验研究及其在致密砂岩裂缝评价中的应用[J]. 中国石油大学学报:自然科学版, 2020, 44(1):45-52.

    [6]

    Cai M, Zhang C G, Han C, et al. Experimental research of effect of microfracture on shear wave attenuation and its application on fracture evaluation in tight sand formation[J]. Journal of China University of Petroleum:Natural Science Edition, 2020, 44(1):45-52.

    [7]

    蔡明, 章成广, 唐军, 等. 参数估计法声波远探测反射波提取效果影响因素研究[J]. 西安石油大学学报:自然科学版, 2020, 35(1):42-48.

    [8]

    Cai M, Zhang C G, Tang J, et al. Study on factors of influencing extraction effect of reflection wave in acoustic remote detection using parameter estimation method[J]. Journal of Xi'an Shiyou University:Natural Science Edition, 2020, 35(1):42-48.

    [9]

    Cai M, Qiao W, Ju X, et al. Lossless compression method for acoustic waveform data based on wavelet transform and bit-recombination mark coding[J]. Geophysics, 2013, 78(5):V219-V228.

    [10]

    周灿灿, 王昌学. 水平井测井解释技术综述[J]. 地球物理学进展, 2006, 21(1):152-160.

    [11]

    Zhou C C, Wang C X. Technology review on the log interpretation of horizontal well[J]. Progress in Geophysics, 2006, 21(1):152-160.

    [12]

    Stephen R A, Cardo-Casas F, Cheng C H. Finite-difference synthetic acoustic logs[J]. Geophysics, 1985, 50(10):1588-1609.

    [13]

    Randall C J, Scheibner D J, Wu P T. Multipole borehole acoustic waveforms: Synthetic logs with beds and borehole washouts[J]. Geophysics, 1991, 56(11):1757-1769.

    [14]

    Chen N Y. Borehole wave propagation in isotropic and anisotropic media:Three-dimensional finite difference approach[D]. Cambridge: Massachusetts Institute of Technology, 1994.

    [15]

    Mittet R, Renlie L. High-order,finite-difference modeling of multipole logging in formations with anisotropic attenuation and elasticity[J]. Geophysics, 1996, 61(1):21-33.

    [16]

    陶果, 张友生, 张洪娥, 等. 用于声波测井的大型三维有限差分模拟程序[J]. 测井技术, 2001, 25(4):273-277.

    [17]

    Tao G, Zhang Y S, Zhang H E, et al. 3D Finite difference simulating program for acoustic logging[J]. Well Logging Technology, 2001, 25(4):273-277.

    [18]

    陶果, 何峰江, 王兵, 等. 声反射成像测井在地层中的三维波场模拟方法研究[J]. 中国科学D辑:地球科学, 2008, 38(S1):166-173.

    [19]

    Tao G, He F J, Wang B, et al. Study on 3D wave field simulation of acoustic reflection imaging logging in formation[J]. Science of China Series D:Earth Science, 2008, 38(S1):166-173.

    [20]

    陈德华, 丛健生, 徐德龙, 等. 裂缝性地层中的井孔声场模拟[J]. 大庆石油学院学报, 2004, 28(3):4-6.

    [21]

    Chen D H, Cong J S, Xu D L, et al. Borehole acoustic field simulation in fractured formation[J]. Journal of Daqing Petroleum Institute, 2004, 28(3):4-6.

    [22]

    何峰江, 陶果, 王锡莉. 贴井壁声波测井仪的有限差分模拟研究[J]. 地球物理学报, 2006, 49(3):923-928.

    [23]

    He F J, Tao G, Wang X L. Finite difference modeling of the acoustic field by sidewall logging devices[J]. Chinese J. Geophys., 2006, 49(3):923-928.

    [24]

    丛健生, 乔文孝. 水平井地层界面声波测井响应模拟分析[J]. 测井技术, 2008, 32(1):29-32.

    [25]

    Cong J S, Qiao W X. Simulated response of acoustic log in horizontal borehole placing on interface of two formations[J]. Well Logging Technology, 2008, 32(1):29-32.

    [26]

    陈木银, 何西攀, 金小慧. 水平井声波时差测井响应特征研究[J]. 国外测井技术, 2013(4):38-41.

    [27]

    Chen M Y, He X P, Jin X H. Study on the characteristics of acoustic slowness difference logging response in horizontal wells[J]. World Well Logging Technology, 2013(4):38-41.

    [28]

    杨歆. 水平井及大斜度井声波测井时差校正方法研究[D]. 北京: 中国石油大学(北京), 2016.

    [29]

    Yang X. Research on correction method of sonic logging slowness in horizontal wells and high angle deviated wells[D]. Beijing: China University of Petroleum (Beijing), 2016.

    [30]

    张鹏云. 基于声电组合的水平井地层评价方法研究[D]. 青岛: 中国石油大学(华东), 2016.

    [31]

    Zhang P Y. Research on horizontal well formation evaluation method based on acoustic and resistivity logging[D]. Qingdao: China University of Petroleum(East China), 2016.

    [32]

    Liu H, Wang B, Tao G, et al. Study on the simulation of acoustic logging measurements in horizontal and deviated wells[J]. Applied Geophysics, 2017, 14(3):337-350.

    [33]

    刘黎, 章成广, 蔡明, 等. 裂缝对井眼声波的传播影响规律研究[J]. 物探与化探, 2019, 43(6):1333-1340.

    [34]

    Liu L, Zhang C G, Cai M, et al. Studies on the effect of crack on the propagation of acoustic waves in wellbore[J]. Geophysical and Geochemical Exploration, 2019, 43(6):1333-1340.

    [35]

    王秀明, 张海澜, 王东. 利用高阶交错网格有限差分法模拟地震波在非均匀孔隙介质中的传播[J]. 地球物理学报, 2003, 46(6):842-849.

    [36]

    Wang X M, Zhang H L, Wang D. Modelling of seismic wave propagation in heterogeneous poroelastic media using a high-order staggered finite-difference method[J]. Chinese J. Geophys., 2003, 46(6):842-849.

    [37]

    严红勇, 刘洋. Kelvin-Voigt黏弹性介质地震波场数值模拟与衰减特征[J]. 物探与化探, 2012, 36(5):806-812.

    [38]

    Yan H Y, Liu Y. Numerical modeling and attenuation characteristics of seismic wavefield in Kelvin-Voigt viscoelastic media[J]. Geophysical and Geochemical Exploration, 2012, 36(5):806-812.

    [39]

    Komatitsch D, Martin R. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation[J]. Geophysics, 2007, 72(5):SM155-SM167.

    [40]

    Martin R, Komatitsch D, Ezziani A. An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media[J]. Geophysics, 2008, 73(4):T51-T61.

    [41]

    廖扬强, 余庆. 大斜度井水平井井壁力学稳定性技术现状[J]. 钻采工艺, 2003, 26(3):13-16.

    [42]

    Liao Y Q, Yu Q. Technical status of wellbore mechanical stability of horizontal well with large inclination[J]. Drilling Process, 2003, 26(3):13-16.

  • 加载中
计量
  • 文章访问数:  507
  • PDF下载数:  67
  • 施引文献:  0
出版历程
收稿日期:  2020-09-14
刊出日期:  2022-06-28

目录