Application of flat spots in detection of hydrocarbons in deep-water clastic reservoirs in West Africa
-
摘要: 针对西非深水碎屑岩储层部分高孔隙度含水砂岩和含油砂岩具有相似振幅亮点和远道振幅增强的三类AVO异常的难题,提出运用平点技术进行储层烃类检测。通过地震反射几何外形、振幅及相位等信息落实研究区发育短轴单平点、短轴双平点、短轴复合单平点和长轴复合单平点4种类型,W目标目的层以短轴双平点为主。在以反射系数和地层倾角为核心参数进行正演模拟的基础上,建立了地震平点反射产生的定量判别模板。运用平点强化技术及共等值线抽道集叠加技术,落实了平点分布。通过烃类平点的判别依据,推测上部平点条带代表气油界面、下部平点条带代表油水界面。结合烃检敏感属性分析,有效预测了含油气面积。平点技术的应用,降低了储层烃检的多解性,提高了预测精度。Abstract: Aiming at the difficulties that some high-porosity water-bearing sandstones and oil-bearing sandstones in deep-water clastic reservoirs in West Africa have similar amplitude bright spots and show Class III AVO anomalies with remote-trace amplitude enhancement,this paper proposes to use flat spots to detect the hydrocarbons in the reservoirs.As revealed by the data on the geometric shapes,amplitude,and phase of seismic reflection,four types of flat spots are have developed in the study area,namely individual flat spots,short-axis double flat spots,short-axis composite individual flat spots,and long-axis composite individual flat spots.The target layer W is dominated by short-axis double flat spots.Based on the forward modeling with reflection coefficients and stratigraphic dip as core parameters,a quantitative discrimination template of seismic reflection of flat spots was established in this study.The flat spot distribution was determined using the flat spot strengthening technology and the common isoline trace gathering stacking technology.It was inferred from the discrimination criteria of hydrocarbon flat spots that the upper flat spot strips represent gas-oil interfaces and the lower flat spot strips represent oil-water interfaces.Based on this and the analysis of sensitive attributes in hydrocarbon detection,the area of oil- and gas-bearing zones was effectively predicted.Therefore,the application of flat spots can reduce the multiplicity of solution in the hydrocarbon detection and improve the prediction accuracy of reservoirs.
-
[1] 赵争光, 杨瑞召, 马彦龙, 等. 共等值线抽道集叠加识别油气水界面方法及其应用[J]. 天然气地球科学, 2013, 24(4):808-814.
[2] Zhao Z G, Yang R Z, Ma Y L, et al. Method for pinpointing the contacts of oil, gas and water by common contour binning stacking and its application[J]. Natural Gas Geoscience, 2013, 24(4):808-814.
[3] 冯鑫, 张树林, 范洪耀, 等. 地震平点技术与应用进展[J]. 海洋地质前沿, 2019, 35(6):1-11.
[4] Feng X, Zhang S L, Fan H Y, et al. Review of progresses in seismic flat spot technology[J]. Marine Geology Frontiers, 2019, 35(6):1-11.
[5] Backus M M, Chen R L. Flat spot exploration[J]. Geophysical Prospecting, 1975, 23(3):533-577.
[6] Rob S, Mike B. 地震振幅解释与应用[M]. 北京: 石油工业出版社, 2014:73-92.
[7] Rob S, Mike B. Seismic amplitude:An interpreter's handbook[M]. Beijing: Petroleum Industry Press, 2014:73-92.
[8] Alistair R Brown. 三维地震数据解释[M]. 北京: 石油工业出版社, 2015:115-138.
[9] Alistair R B. Interpretation of three-dimensional seismic data[M]. Beijing: Petroleum Industry Press, 2015:115-138.
[10] Clark V A. The effect of oil under in-situ conditions on the seismic properties of rocks[J]. Geophysics, 1992, 57(7):894-901.
[11] Cliff D C B, Tye S C, Taylor R. The Thylacine and Ceographe gas discoveries,offshore Eastern Otway Basin[J]. Appea Journal, 2004, 44(1):441-462.
[12] Francis A, Millwood H M, Mulholland P, et al. Real and relict hydrocarbon indicators in the East Irish Sea Basin[J]. Geological Society London Special Publications, 1997, 124(1):185-194.
[13] Greenlee S M, Gaskins G M, Johnson M G. 3-D seismic benefits from exploration through development:An Exxon perspective[J]. The Leading Edge, 1994, 13(7):730-734.
[14] Luchford J. A view of amplitude fit to structure as a hydrocarbon-indicating attribute[J]. First Break, 2001, 19(7):411-417.
[15] 史晓辉, 何亨华. 柴达木盆地一个可能的地震平点异常的解释与分析[J]. 天然气地球科学, 2009, 20(4):586-591.
[16] Shi X H, He H H. Interpretation and analysis of a potential flat spot anomaly[J]. Natural Gas Geoscience, 2009, 20(4):586-591.
[17] 潘光超, 裴健翔, 周家雄, 等. 莺歌海盆地中深层超压带气水界面平点特征分析[J]. 中国海上油气, 2014, 26(5):42-46.
[18] Pan G C, Pei J X, Zhou J X, et al. An analysis of flat spot features on a gas-water interface in the middle-deep overpressure zone,Yinggehai basin[J]. China Offshore Oil and Gas, 2014, 26(5):42-46.
[19] 张德林. 大嘴子气藏“平点“的倾斜产状与成因[J]. 石油地球物理勘探, 2000, 35(5):608-616.
[20] Zhang D L. Dip “flatspot“ and its generating mechanism in Dazuizi gas accumulation[J]. Oil Geophysical Prospecting, 2000, 35(5):608-616.
[21] 王兴谋. 济阳拗陷浅、中层天然气藏地震预测技术[J]. 石油地球物理勘探, 2005, 40(3):322-327.
[22] Wang X M. Seismic prediction of mid-shallow gas reservoirs in Jiyang Depression[J]. Oil Geophysical Prospecting, 2005, 40(3):322-327.
[23] 邓勇, 潘光超, 李明, 等. 莺歌海盆地“平点“叠前AVO特征及识别[J]. 石油地球物理勘探, 2019, 54(5):1123-1130.
[24] Deng Y, Pan G G, Li M, et al. Prestack AVO characteristics and identification of flat spot in Yinggehai Basin[J]. Oil Geophysical Prospecting, 2019, 54(5):1123-1130.
[25] 高少武, 钱忠平, 马玉宁, 等. OBC水陆检数据合并处理技术[J]. 石油地球物理勘探, 2018, 53(4):703-709.
[26] Gao S W, Qian Z P, Ma Y N, et al. OBC dual-sensor data combination processing[J]. Oil Geophysical Prospecting, 2018, 53(4):703-709.
[27] 龚明平, 张军华, 王延光, 等. 分方位地震勘探研究现状及进展[J]. 石油地球物理勘探, 2018, 53(3):642-658.
[28] Gong M P, Zhang J H, Wang Y G, et al. Current situations and recent progress in different azimuths seismic exploration[J]. Oil Geophysical Prospecting, 2018, 53(3):642-658.
[29] 冯鑫, 韩文明, 范洪耀. 西非深水目标高密度三维地震勘探效果[J]. 石油物探, 2020, 59(1):150-157.
[30] Feng X, Han W M, Fan H Y. High density 3D seismic exploration of deep water targets in West Africa[J]. Geophysical Prospecting for Petroleum, 2020, 59(1):150-157.
[31] 徐磊, 汪思源, 张建清, 等. 近垂直反射正演模拟及其地下工程应用[J]. 物探与化探, 2020, 44(3):635-642.
[32] Xu L, Wang S Y, Zhang J Q, et al. Forward simulation of approximate vertical reflection method and its application to underground engineering[J]. Geophysical and Geochemical Exploration, 2020, 44(3):635-642.
[33] 谭磊, 刘宏, 唐昱哲, 等. 四川盆地龙女寺构造龙王庙组储层特征及地震响应[J]. 天然气地球科学, 2020, 31(12):1802-1813.
[34] Tan L, Liu H, Tang Y Z, et al. Reservoir characteristics and seismic response of Longwangmiao Formation of Longnvsi structure in Sichuan Basin[J]. Natural Gas Geoscience, 2020, 31(12):1802-1813.
计量
- 文章访问数: 231
- PDF下载数: 15
- 施引文献: 0