中国自然资源航空物探遥感中心主办
地质出版社出版

应力效应下页岩动静态弹性各向异性特征

边会媛, 臧鑫, 张迪, 张程恩, 聂晓敏, 武银婷. 2024. 应力效应下页岩动静态弹性各向异性特征. 物探与化探, 48(6): 1664-1673. doi: 10.11720/wtyht.2024.0014
引用本文: 边会媛, 臧鑫, 张迪, 张程恩, 聂晓敏, 武银婷. 2024. 应力效应下页岩动静态弹性各向异性特征. 物探与化探, 48(6): 1664-1673. doi: 10.11720/wtyht.2024.0014
BIAN Hui-Yuan, ZANG Xin, ZHANG Di, ZHANG Cheng-En, NIE Xiao-Min, WU Yin-Ting. 2024. Impacts of anisotropy on the dynamic and static elastic characteristics of shales under stress effects. Geophysical and Geochemical Exploration, 48(6): 1664-1673. doi: 10.11720/wtyht.2024.0014
Citation: BIAN Hui-Yuan, ZANG Xin, ZHANG Di, ZHANG Cheng-En, NIE Xiao-Min, WU Yin-Ting. 2024. Impacts of anisotropy on the dynamic and static elastic characteristics of shales under stress effects. Geophysical and Geochemical Exploration, 48(6): 1664-1673. doi: 10.11720/wtyht.2024.0014

应力效应下页岩动静态弹性各向异性特征

  • 基金项目:

    国家自然科学基金项目“基于声力效应的页岩动静态弹性特征响应机理研究”(42304143)

    陕西省自然科学基础研究计划项目“表面及层间多次波反演成像研究”(2022JM-139)

详细信息
    作者简介: 边会媛(1986-), 博士, 副教授, 主要从事岩石物理与复杂储层测井解释方面的研究工作
  • 中图分类号: TE311

Impacts of anisotropy on the dynamic and static elastic characteristics of shales under stress effects

  • 静态弹性力学参数是页岩油开采及注水压裂工程的关键参数, 应力效应下各向异性对页岩动静态弹性特征具有重要的影响, 开展储层动静态弹性特征的主控因素与控制机理研究是页岩油气开采及注水压裂工程中一项亟须解决的关键科学问题。通过不同加压方式下页岩的三轴压缩力学与声学联测实验, 研究各向异性对页岩纵、横波速度及宏观力学性质的影响, 探究页岩动静态弹性特征的响应规律。结果表明:①随压力的增加, 页岩动、静态杨氏模量增大, 且增大速率由快到慢趋于稳定值; ②层理角度一定时, 动态杨氏模量大于静态杨氏模量, 二者呈正相关, 动、静态泊松比关系较差; ③岩石动、静态刚度系数均随围压增大而增大, 与纵波相关的动态刚度系数C11C33比与横波相关的动态刚度系数C44C66变化更明显; ④页岩动、静态各向异性均随围压的增大而增大。研究结果可以揭示页岩动、静态弹性特征响应机理, 并能够为页岩油气储层开采与水力压裂改造提供关键力学参数。
  • 加载中
  • [1]

    Wang Y, Zhao L X, Han D H, et al.Anisotropic dynamic and static mechanical properties of organic-rich shale:The influence of stress[J].Geophysics, 2021, 86(2):C51-C63.

    [2]

    Gong F, Di B R, Zeng L B, et al.Static and dynamic linear compressibility of dry artificial and natural shales under confining pressure[J].Journal of Petroleum Science and Engineering, 2020, 192:107242.

    [3]

    Bustin A M M, Bustin R M.Importance of rock properties on the producibility of gas shales[J].International Journal of Coal Geo-logy, 2012, 103:132-147.

    [4]

    Sone H, Zoback M D.Mechanical properties of shale-gas reservoir rocks:Part 1:Static and dynamic elastic properties and anisotropy[J].Geophysics, 2013, 78(5):D381-D392.

    [5]

    Barree R D, Cox S A, Miskimins J L, et al.Economic optimization of horizontal-well completions in unconventional reservoirs[J].SPE Production & Operations, 2015, 30(4):293-311.

    [6]

    Jin Y, Chen K P, Chen M.Analytical solution and mechanisms of fluid production from hydraulically fractured wells with finite fracture conductivity[J].Journal of Engineering Mathematics, 2015, 92(1):103-122.

    [7]

    Zhang F S, Damjanac B, Maxwell S.Investigating hydraulic fracturing complexity in naturally fractured rock masses using fully coupled multiscale numerical modeling[J].Rock Mechanics and Rock Engineering, 2019, 52(12):5137-5160.

    [8]

    Holt R M, Fjær E, Stenebråten J F, et al.Brittleness of shales:Relevance to borehole collapse and hydraulic fracturing[J].Journal of Petroleum Science and Engineering, 2015, 131:200-209.

    [9]

    Vahid S, Ahmad G.Hydraulic fracture initiation from a wellbore in transversely isotropic rock[C]//45thUS Rock Mechanics/Geomechanics Symposium, OnePetro, 2011.

    [10]

    Bian H Y, Wang F, Zhang C G, et al.A new model between dynamic and static elastic parameters of shale based on experimental studies[J].Arabian Journal of Geosciences, 2019, 12(19):609.

    [11]

    Canady W.A method for full-range Young’s modulus correction[C]// SPE.The Woodlands, Texas, USA, 2011.

    [12]

    Dong Y, Lu N, McCartney J S.Scaling shear modulus from small to finite strain for unsaturated soils[J].Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(2):04017110.

    [13]

    Hornby B E, Schwartz L M, Hudson J A.Anisotropic effective-medium modeling of the elastic properties of shales[J].Geophysics, 1994, 59(10):1570-1583.

    [14]

    Kaarsberg E A.Introductory studies of natural and artificial argillaceous aggregates by sound-propagation and X-ray diffraction methods[J].The Journal of Geology, 1959, 67(4):447-472.

    [15]

    Zhao L X, Qin X, Zhang J Q, et al.An effective reservoir parameter for seismic characterization of organic shale reservoir[J].Surveys in Geophysics, 2018, 39(3):509-541.

    [16]

    Johnston D H.Physical properties of shale at temperature and pressure[J].Geophysics, 1987, 52(10):1391-1401.

    [17]

    Miller D, Plumb R, Boitnott G.Compressive strength and elastic properties of a transversely isotropic calcareous mudstone[J].Geophysical Prospecting, 2013, 61(2):315-328.

    [18]

    Liu Q, Liang B, Sun W J, et al.Experimental study on the difference of shale mechanical properties[J].Advances in Civil Engineering, 2021, (1):1-14.

    [19]

    Li C B, Zou B B, Zhou H W, et al.Experimental investigation on failure behaviors and mechanism of an anisotropic shale in direct tension[J].Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(4):98.

    [20]

    Davarpanah S M, Ván P, Vásárhelyi B.Investigation of the relationship between dynamic and static deformation moduli of rocks[J].Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 6(1):29.

    [21]

    边会媛, 王飞, 张永浩, 等.储层条件下致密砂岩动静态弹性力学参数实验研究[J].岩石力学与工程学报, 2015, 34(S1):3045-3054.

    Bian H Y, Wang F, Zhang Y H, et al.Experimental study of dynamic and static elastic parameters of tight sandstones under reservoir conditions[J].Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1):3045-3054.

    [22]

    王飞, 边会媛, 张永浩, 等.不同温压下页岩动态与静态弹性模量转换研究[J].石油与天然气地质, 2018, 39(5):1048-1055.

    Wang F, Bian H Y, Zhang Y H, et al.Experimental study on dynamic and static elastic modulus conversion forshale under different temperatures and pressures[J].Oil & Geology, 2018, 39(5):1048-1055.

    [23]

    赵贤正, 周立宏, 蒲秀刚, 等.湖相页岩滞留烃形成条件与富集模式--以渤海湾盆地黄骅坳陷古近系为例[J].石油勘探与开发, 2020, 47(5):856-869.

    Zhao X Z, Zhou L H, Pu X G, et al.Formation conditions and enrichment model of retained petroleum in lacustrine shale:A case study of the Paleogene in Huanghua depression, Bohai Bay Basin, China[J].Petroleum Exploration & Development, 2020, 47(5):856-869.

    [24]

    马霄一, 李呈呈, 白俊, 等.基于超声测试的页岩岩石物理特征分析[J].石油地球物理勘探, 2021, 56(4):801-808, 673.

    Ma X Y, Li C C, Bai J, et al.Analysis of physical characteristics of shale rock based on ultrasonic testing[J].Oil Geophysical Prospecting, 2021, 56(4):801-808, 673.

  • 加载中
计量
  • 文章访问数:  39
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2024-01-15
修回日期:  2024-03-05

目录