Multi-scale fault characterization using synchrosqueezing generalized S-transform
-
摘要: 叠后断裂识别一般基于构造类属性, 但该类属性都存在断点刻画不清、断层连续性差等特点; 深度学习对于大、中尺度的断裂有着较好的表征能力, 但是针对小尺度的断裂刻画能力有限。基于此, 提出同步挤压广义S变换的振幅梯度凌乱性多尺度断裂刻画算法:首先, 在时频域内将地震数据分解为不同频带的单频数据体; 其次, 基于不同频带的地震数据体计算振幅梯度向量的凌乱性; 最后, 运用不同频带的地震数据体刻画不同尺度的断裂信息。基于模型及实际资料的研究结果表明, 同步挤压广义S变换振幅梯度凌乱性属性不仅对大、中尺度断裂有较好的刻画能力, 同时对于小尺度断裂也有着很好的表征。Abstract: Post-stack fault recognition is typically performed based on structural attributes, which, however, frequently exhibit unclear characterization of fault contacts and poor fault continuity. Deep learning can characterize middle- to large-scale faults accurately but has a limited capacity to characterize small-scale ones. This study developed a multi-scale fault characterization algorithm using amplitude gradient clutter based on synchrosqueezing generalized S-transform (SSGST). First, seismic data were decomposed into single-frequency data volumes across different frequency bands in the time-frequency domain. Then, the clutter of the amplitude gradient vectors was computed based on the seismic data volumes of different frequency bands. Finally, multi-scale faults were characterized using seismic data volumes of different frequency bands. The results from both model simulations and practical data demonstrate that the amplitude gradient clutter property derived using SSGST provides can effectively characterize small-scale faults besides large-and medium-scale faults.
- ''
-
[1] 郑马嘉, 陈珂磷, 蔡景顺, 等.基于振幅梯度凌乱性检测算法的页岩气裂缝预测在长宁地区的应用[J].地球物理学进展, 2022, 37(5):2110-2117.
Zheng M J, Chen K L, Cai J S, et al.Application of shale gas fracture prediction based on amplitude gradient messy detection algorithm in Changning area[J].Progress in Geophysics, 2022, 37(5):2110-2117.
[2] Bahorich M, Farmer S.3D seismic discontinuity for faults and stratigraphic features:The coherence cube[J].The Leading Edge, 1995, 14(10):1053-1058.
[3] Marfurt K J, Kirlin R L, Farmer S L, et al.3D seismic attributes using a semblance-based coherency algorithm[J].Geophysics, 1998, 63(4):1150-1165.
[4] Gersztenkorn A, Marfurt K J.Eigenstructure-based coherence computations as an aid to 3D structural and stratigraphic mapping[J].Geophysics, 1999, 64(5):1468-1479.
[5] 王西文, 杨孔庆, 周立宏, 等.基于小波变换的地震相干体算法研究[J].地球物理学报, 2002, 45(6):847-852, 908.
Wang X W, Yang K Q, Zhou L H, et al.Methods of calculating coherence cube on the basis of wavelet transform[J].Chinese Journal of Geophysics, 2002, 45(6):847-852, 908.
[6] Hale D.Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3D seismic images[J].Geophysics, 2013, 78(2):33-43.
[7] Wu X M, Hale D.3D seismic image processing for faults[J].Geophysics, 2016, 81(2):IM1-IM11.
[8] Wu X M.Methods to compute salt likelihoods and extract salt boundaries from 3D seismic images[J].Geophysics, 2016, 81(6):IM119-IM126.
[9] Wu X M, Liang L M, Shi Y Z, et al.FaultSeg3D:Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation[J].Geophysics, 2019, 84(3):IM35-IM45.
[10] Wu X M, Geng Z C, Shi Y Z, et al.Building realistic structure models to train convolutional neural networks for seismic structural interpretation[J].Geophysics, 2020, 85(4):WA27-WA39.
[11] Al-Dossary S, Wang Y E, McFarlane M.Estimating randomness using seismic disorder[J].Interpretation, 2014, 2(1):SA93-SA97.
[12] Daubechies I, Lu J F, Wu H T.Synchrosqueezed wavelet transforms:An empirical mode decomposition-like tool[J].Applied and Computational Harmonic Analysis, 2011, 30(2):243-261.
[13] 黄忠来, 张建中.同步挤压S变换[J].中国科学:信息科学, 2016, 46(5):643-650.
Huang Z L, Zhang J Z.Synchrosqueezing S-transform[J].Scientia Sinica:Informationis, 2016, 46(5):643-650.
[14] 黄忠来, 张建中, 邹志辉.二阶同步挤压S变换及其在地震谱分解中的应用[J].地球物理学报, 2017, 60(7):2833-2844.
Huang Z L, Zhang J Z, Zou Z H.A second-order synchrosqueezing S-transform and its application in seismic spectral decomposition[J].Chinese Journal of Geophysics, 2017, 60(7):2833-2844.
[15] 严海滔, 周怀来, 牛聪, 等.同步挤压改进短时傅里叶变换分频相干技术在断裂识别中的应用[J].石油地球物理勘探, 2019, 54(4):860-866, 725-726.
Yan H T, Zhou H L, Niu C, et al.Fault identification with short-time Fourier transform frequency-decomposed coherence improved by synchronous extrusion[J].Oil Geophysical Prospecting, 2019, 54(4):860-866, 725-726.
[16] 严海滔, 黄饶, 周怀来, 等.同步挤压广义S变换在南海油气识别中的应用[J].地球物理学进展, 2019, 34(3):1229-1235.
Yan H T, Huang R, Zhou H L, et al.Application of Nanhai oil and gas identification based on synchrosqueezing generalized S transform[J].Progress in Geophysics, 2019, 34(3):1229-1235.
[17] 严海滔, 龚齐森, 周怀来, 等.基于同步挤压改进短时傅里叶变换的谱分解应用[J].大庆石油地质与开发, 2019, 38(3):122-131.
Yan H T, Gong Q S, Zhou H L, et al.Application of the spectral decomposition based on the improved short-time Fourier transform by synchronous extrusion[J].Petroleum Geology & Oilfield Development in Daqing, 2019, 38(3):122-131.
-
计量
- 文章访问数: 33
- PDF下载数: 3