中国自然资源航空物探遥感中心主办
地质出版社出版

基于MEMS的槽波地震仪的研制

赵朋朋. 2024. 基于MEMS的槽波地震仪的研制. 物探与化探, 48(6): 1684-1692. doi: 10.11720/wtyht.2024.0208
引用本文: 赵朋朋. 2024. 基于MEMS的槽波地震仪的研制. 物探与化探, 48(6): 1684-1692. doi: 10.11720/wtyht.2024.0208
ZHAO Peng-Peng. 2024. Development of a MEMS-based seismograph for in-seam wave seismic exploration. Geophysical and Geochemical Exploration, 48(6): 1684-1692. doi: 10.11720/wtyht.2024.0208
Citation: ZHAO Peng-Peng. 2024. Development of a MEMS-based seismograph for in-seam wave seismic exploration. Geophysical and Geochemical Exploration, 48(6): 1684-1692. doi: 10.11720/wtyht.2024.0208

基于MEMS的槽波地震仪的研制

  • 基金项目:

    国家自然科学基金项目(42074175)

详细信息
    作者简介: 赵朋朋(1983-), 男, 2020年硕士毕业于煤炭科学研究总院, 主要从事煤矿井下地震勘探技术与装备的研究工作。Email:308517775@qq.com
  • 中图分类号: P631.43

Development of a MEMS-based seismograph for in-seam wave seismic exploration

  • 当前, 槽波地震数据采集通常是使用矿用数字地震仪配合动圈检波器来实现的, 但是这种数据采集系统存在频带宽度窄、装备量大的问题。为了提高数据质量和施工效率, 利用MEMS加速度计的微型化、频带宽等优势, 将其集成于槽波地震仪的采集卡钟, 设计得到了槽波地震仪。该地震仪可以实现独立型激发, 分布式采集, 频带宽度达到1~800 Hz, 采集数据的质量得到一定程度的提升; 单个仪器质量仅为0.52 kg, 且集成化的设计使地震仪完全摆脱了线缆的束缚, 100道观测系统配备仪器总质量仅为52 kg, 是分布式地震仪总质量的10%, 是节点式地震仪的25%, 装备总质量的下降降低了运输成本, 提高了施工效率。
  • 加载中
  • [1]

    张帅帅, 张林行, 林君, 等.遥测地震仪发展综述[J].地球物理学进展, 2014, 29(3):1463-1471.

    Zhang S S, Zhang L H, Lin J, et al.Summary of development of telemetry seismometers[J].Progress in Geophysics, 2014, 29(3):1463-1471.

    [2]

    李守才, 王辉明, 马国庆, 等.基于MEMS传感器的分布式数据采集系统的研究[C]//合肥:中国地球物理学会第二十五届年会, 2009.Li S C, Wang H M, Ma G Q, et al.The research of distributed data acquisition system based on MEMS accelerometers[C]//Hefei:Chinese Geophysical Society, 2009.

    [3]

    吴治涛.MEMS加速度计用于地震测量的可行性研究[D].绵阳:西南科技大学, 2011.Wu Z T.MEMS accelerometer feasibility study on earthquake measuring[D].Mianyang: Southwest University of Science and Technology, 2011.

    [4]

    王肃静, 卢川, 游庆瑜, 等.一种低成本无缆地震仪采集站的研制[J].地球物理学报, 2015, 58(4):1425-1433.

    Wang S J, Lu C, You Q Y, et al.Design of a low cost Non-cable seismic acquisition station[J].Chinese Journal of Geophysics, 2015, 58(4):1425-1433.

    [5]

    杨真, 冯涛, Wang Shugang.0.9 m薄煤层SH型槽波频散特征及波形模式[J].地球物理学报, 2010, 53(2):442-449.

    Yang Z, Feng T, Wang S G.Dispersion characteristics and wave shape mode of SH channel wave in a 0.9 m thin coal seam[J].Chinese Journal of Geophysics, 2010, 53(2): 442-449.

    [6]

    胡时岳, 吕刚.地震检波器横向振动特性分析与实验研究[J].西安交通大学学报, 1991, 25(6):45-50, 58.

    Hu S Y, Lyu G.Analytical calculation and experimental study of the horizontal vibration properties of geophones[J].Journal of Xi’an Jiaotong University, 1991, 25(6):45-50, 58.

    [7]

    程建远, 江浩, 姬广忠, 等.基于节点式地震仪的煤矿井下槽波地震勘探技术[J].煤炭科学技术, 2015, 43(2):25-28.

    Cheng J Y, Jiang H, Ji G Z, et al.Channel wave seismic exploration technology based on node digital seismograph in underground mine[J].Coal Science and Technology, 2015, 43(2):25-28.

    [8]

    张平松, 欧元超, 李圣林.我国矿井物探技术及装备的发展现状与思考[J].煤炭科学技术, 2021, 49(7):1-15.

    Zhang P S, Ou Y C, Li S L.Development quo-status and thinking of mine geophysical prospecting technology and equipment in China[J].Coal Science and Technology, 2021, 49(7):1-15.

    [9]

    李渊.新型煤矿井下单分量无缆地震仪研制[J].煤田地质与勘探, 2021, 49(3):219-226.

    Li Y.The development of a single-component non-cable seismograph in underground coal mines[J].Coal Geology & Exploration, 2021, 49(3):219-226.

    [10]

    于浩淼.INOVA三分量数字检波器VectorSeis应用研究[D].西安:西安石油大学, 2014.Yu H M.INOVA 3-component digital sensor vectorseis application study[D].Xi’an:Xi’an Shiyou University, 2014.

    [11]

    赵会彦.MEMS数字检波器结构与原理研究[D].西安:西安石油大学, 2014.Zhao H Y.MEMS structure and principle of digital geophone research[D].Xi’an:Xi’an Shiyou University, 2014.

    [12]

    汪永青.MEMS地震检波器中低压低功耗放大器的研究与设计[D].北京:中国地质大学(北京), 2019.Wang Y Q.Research and design of low voltage and power consumption amplifier in MEMS geophones[D].Beijing:China University of Geosciences(Beijing), 2019.

    [13]

    魏继东.模拟与数字检波器记录精度对比及其对信噪比的影响[J].地球物理学进展, 2018, 33(4):1726-1733.

    Wei J D.Comparison of recording accuracy between analog geophone and MEMS accelerometer and their influence to the S/N ratio[J].Progress in Geophysics, 2018, 33(4):1726-1733.

    [14]

    毕克飞.408ul和428xl地震仪器原理分析及其兼容性的应用[D].西安:西安石油大学, 2014.Bi K F.408ul and 428xl seismic instrument principle analysis and its application in the compatibility[D].Xi’an:Xi’an Shiyou University, 2014.

    [15]

    韩晓泉.MEMS数字检波器简介及指标分析[J].物探装备, 2013, 23(6):351-355.

    Han X Q.Brief introduction on MEMS digital geophone and its specifications[J].Equipment for Geophysical Prospecting, 2013, 23(6):351-355.

    [16]

    王怀秀, 仇帅, 朱国维, 等.基于MEMS与LwIP的煤矿三分量地震数据采集系统[J].煤田地质与勘探, 2021, 49(4):8-14.

    Wang H X, Qiu S, Zhu G W, et al.Three-component seismic data acquisition system of coal mine based on MEMS and LwIP[J].Coal Geology & Exploration, 2021, 49(4):8-14.

    [17]

    张怀榜, 于静, 陈吴金, 等.三分量数字检波器电磁干扰产生的机理研究[J].石油仪器, 2011, 25(1):30-32, 102.

    Zhang H B, Yu J, Chen W J, et al.The principle research of the electromagnetic noise generated by three digital sensor units[J].Petroleum Instruments, 2011, 25(1):30-32, 102.

    [18]

    江浩.MAX14571在矿用本质安全电源中的应用[J].煤炭技术, 2015, 34(1):282-284.

    Jiang H.Application of MAX14571 in mining intrinsically safe power[J].Coal Technology, 2015, 34(1):282-284.

  • 加载中
计量
  • 文章访问数:  36
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2024-05-09
修回日期:  2024-11-07

目录