中国地质科学院岩溶地质研究所主办

滇东高原罗平湾子水库岩溶渗漏机理及库外补漏设想

段乔文, 俞富有, 张天柏, 何伟, 段春林. 滇东高原罗平湾子水库岩溶渗漏机理及库外补漏设想[J]. 中国岩溶, 2022, 41(2): 287-297. doi: 10.11932/karst20220209
引用本文: 段乔文, 俞富有, 张天柏, 何伟, 段春林. 滇东高原罗平湾子水库岩溶渗漏机理及库外补漏设想[J]. 中国岩溶, 2022, 41(2): 287-297. doi: 10.11932/karst20220209
DUAN Qiaowen, YU Fuyou, ZHANG Tianbai, HE Wei, DUAN Chunlin. Karst leakage and its sealing at Wanzi reservoir in Luoping county on the plateau of eastern Yunnan[J]. Carsologica Sinica, 2022, 41(2): 287-297. doi: 10.11932/karst20220209
Citation: DUAN Qiaowen, YU Fuyou, ZHANG Tianbai, HE Wei, DUAN Chunlin. Karst leakage and its sealing at Wanzi reservoir in Luoping county on the plateau of eastern Yunnan[J]. Carsologica Sinica, 2022, 41(2): 287-297. doi: 10.11932/karst20220209

滇东高原罗平湾子水库岩溶渗漏机理及库外补漏设想

详细信息
    作者简介: 段乔文(1967-),男,正高级工程师,主要研究方向:水文地质及环境地质。E-mail:787579281@qq.com
  • 中图分类号: P642.25;TV697.3

Karst leakage and its sealing at Wanzi reservoir in Luoping county on the plateau of eastern Yunnan

  • 在总结和分析前人研究成果的基础上,结合云南省罗平湾子水库地层岩性、地质构造、水文地质工程地质条件、岩溶发育特征、水库汇流条件、多次补漏未遂等因素,对影响水库渗漏的主要因素进行分解,结果表明:岩溶强发育带地层中溶蚀孔、洞发育,土工膜铺盖封闭库底,蓄水后便在土工膜之下、地下水位之上的岩溶空隙中形成真空,在库水位频繁、大幅度波动条件下易发生真空吸蚀作用,充填物部分被淘空;库底以上的蓄水压力与库底以下的真空产生的负压叠加后形成附加应力,当附加应力大于孔洞之上岩土体的抗剪强度,或大于孔、洞充填物与洞壁之间的粘结强度时发生冲切破坏,这是导致水库多次补漏未遂,且同一渗漏片区重复发生岩溶塌陷、出现落水洞的主要原因。在库区内补漏具有很大的局限性,而在库区外适当部位设置防渗帷幕,不仅可根治渗漏,还可明显抬高地下水位,改善蓄水条件,扩大原设计库容数倍。

  • 近年来,西非成为当前油气勘探的热点区,也是国内石油公司进行海外油气勘探的焦点区。西非最南端的奥坦尼瓜盆地,为南非国家所辖。我国与南非有着良好的合作关系,该盆地近几年勘探活动处于低迷状态,其勘探潜力和勘探方向一直是各个石油公司备受关注的。据USGS(2012)预测,奥坦尼瓜盆地仍具有较高的勘探潜力,石油待发现资源量23.4亿bbl,天然气待发现资源量36 Tcf。目前,该盆地油气发现主要集中在西部,东部没有油气发现,什么因素影响盆地的油气分布不均?未来该盆地的勘探方向在哪?笔者利用收集到的部分井和地震资料以及IHS、Tellus数据库和公开网等资料,在对盆地构造演化和油气地质条件分析的基础上,对盆地油气分布差异进行了探讨,并提出了盆地下一步的勘探方向,旨在为关注或者计划开展该盆地油气勘探研究的公司提供勘探建议。

    奥坦尼瓜盆地位于南非南部海上,西侧和南侧为阿古拉斯(Agulhas)走滑带,北靠非洲大陆,南部为印度洋(图 1)。盆地面积8.1万km2。水深0~3 500 m。由5个次盆地构成,以中生界地层为主,处于中—低勘探阶段。

    图 1.  奥坦尼瓜盆地构造单元划分(据文献[1]修改)
    Figure 1.  Tectonic units of Outenique Basin (modified from reference [1])

    奥坦尼瓜盆地由5个次盆地组成,由西向东依次为布雷达斯多普、茵梵塔、普雷特莫斯、冈吐斯和阿尔格次盆地。布雷达斯多普(Bredasdorp),面积21 907 km2,沉积盖层最大厚度6 km;茵梵塔(Infanta),面积7 869 km2,沉积盖层最大厚度2.5 km;普雷特莫斯(Pletmos),面积15 138 km2,沉积盖层最大厚度6 km;冈吐斯(Gamtoos),面积3 772 km2,沉积盖层最大厚度10.2 km;阿尔格(Algoa),面积7 381 km2,沉积盖层最大厚度6 km。

    奥坦尼瓜盆地是冈瓦纳大陆解体的产物,经历了裂谷期、过渡期和漂移期三大构造演化阶段。中—晚侏罗世,东西冈瓦纳大陆开始解体,在盆地范围内广泛发育NW—SE向裂谷半地堑[2]。在白垩纪初期(贝利阿斯期—凡兰吟期),南美与非洲板块的分离引起奥坦尼瓜盆地断陷活动进一步加强。在凡兰吟晚期,盆地由裂谷作用向热沉降作用过渡,该过渡时期持续时间较短。直到巴雷姆—阿普特期,南美与非洲板块逐渐分离,处于盆地南部的NE—SW向阿古拉斯走滑带开始发育,此时盆地进入典型被动大陆边缘阶段。阿古拉斯走滑带的发育造成盆地东部构造抬升相当剧烈[3, 4],裂谷期地层发生大角度抬升,并遭受剥蚀(图 2)。奥坦尼瓜盆地西部受走滑带影响有一定程度构造抬升[5-7],但由于该走滑带呈NE—SW向展布,盆地西部离走滑带距离相对较远,因此, 阿普特期西部构造活动强度相对较弱,地层保存相对较完整(图 3)。晚白垩世至今,奥坦尼瓜盆地所处构造背景稳定,以持续性区域沉降为主。

    图 2.  阿尔格次盆地构造演化(剖面位置见图 1 B-B')
    Figure 2.  Tectonic evolution of Algoa sub-basin (see fig. 1 for location)
    图 3.  过布雷达斯多普次盆地质剖面(剖面位置见图 1 A-A')
    Figure 3.  Geological section across Bredasdorp Sub-basin (see Fig. 1 for location)

    受三大构造演化阶段的控制,盆地发育3套沉积层序,分别为裂谷层序、过渡期层序和漂移期层序。裂谷层序包含一套厚层的盆底扇、河流相、湖相和海湾相沉积,以底砾岩、砂泥岩为主,在顶部出现薄层海相泥岩沉积。过渡期层序以海相泥岩沉积为主,夹薄层砂岩,由于受到后期走滑断层的影响,盆地范围内过渡期地层剥蚀程度不一。在盆地东部冈吐斯和阿尔格次盆地几乎全被剥蚀,仅在冈吐斯次盆地局部有所残留。在盆地西部,布雷达斯多普次盆地北部整体遭受剥蚀,局部发育下切谷,南部发育海相泥岩和少量浊积砂体。漂移期层序为一套河流—三角洲—滨浅海相被动大陆边缘沉积,盆地范围内广泛发育。

    奥坦尼瓜盆地已证实为含油气盆地,具有良好的石油地质条件[8]

    盆地主力烃源岩有2套,分别为漂移期下白垩统欧特里夫阶和巴雷姆—阿普特阶烃源岩,次要烃源岩为上侏罗统和白垩系土伦阶。欧特里夫阶深海相泥岩,Ⅱ2/Ⅲ型干酪根,偏生气,平均厚度80 m。盆地东部阿尔格次盆地钻遇73 m该套烃源岩,TOC为1.3%~ 1.9%,HI为100~120 mg/g,由于埋藏较浅,现今未达到成熟阶段。巴雷姆—阿普特阶深海相泥岩,Ⅱ2/Ⅲ型干酪根,TOC为2.5%~3.5%,平均值3%,HI为160~350mg/g,平均值为250 mg/g,S2为4~12 kg/t,盆地西部3个次盆地已达到成熟排烃阶段[9, 10]

    主要储集层有裂谷期顶部凡兰吟阶浅海相砂岩,分选好,次生孔隙较发育。同时,大套含泥背景下沉积的阿尔比阶深水碎屑流砂岩也是一套重要的储层[11]。2套碎屑岩储层上覆由大套漂移期海相泥岩所封盖,储盖配置良好。

    盆地圈闭的发育受两大期构造演化的影响,具有典型的“上下二分”的特征。裂谷期断裂十分活跃,以断块圈闭为主;漂移期由于断裂活动已经停止,进入稳定的陆架边缘沉积阶段,在“泥包砂”的沉积背景下,以构造—岩性和地层型圈闭为主。

    从现在已发现的油气来看,盆地已证实存在下白垩统—下白垩统一套含油气系统。

    截止到目前,盆地累计发现41个油气田/藏,其中石油可采储量2 042万m3, 凝析油可采储量2 016万m3, 天然气可采储量1 160亿m3

    从平面分布上看,西部布雷达斯多普和茵梵塔次盆地发现最多,二者发现油气当量占盆地90%;布雷达斯多普次盆地,油气并重,石油可采储量1 998万m3,凝析油752万m3,天然气可采储量401亿m3;茵梵塔次盆地以天然气发现为主,天然气可采储量603亿m3(图 4)。从油气发现层系上看,绝大多数已发现可采储量集中在凡兰吟阶,占盆地已发现可采储量的75%,其次为阿尔比阶浊积砂岩中。

    奥坦尼瓜盆地勘探已有50多年,勘探程度西高东低。在钻探的探井数量上,5个次盆地分别为,布雷达斯多普140口、茵梵塔56口、普雷特莫斯38口、冈吐斯12口和阿尔格29口,从目前盆地已发现油气来看,呈现典型西多东少的特点,绝大部分油气发现集中在西部的3个次盆地(图 4)。

    图 4.  奥坦尼瓜盆地各构造单元油气分布
    Figure 4.  Oil and gas distribution pattern related to each tectonic unit of Outenique Basin

    奥坦尼瓜盆地5个次盆地所经历的构造演化阶段相同,而发现的油气却呈现“西多东少”的特点(图 4),为何会形成如此油气分布差异。分析认为,构造活动和有效烃源岩展布控制了盆地油气分布格局。

    (1) 阿古拉斯走滑带控制各次盆过渡期和漂移早期构造演化

    南美与非洲板块的分离,在奥坦尼瓜盆地南部发育一条大规模NEE—SWW向右旋走滑断裂,该断裂向盆地东部逐渐收敛。盆地东部受右旋走滑挤压的影响,裂谷期地层发生强烈掀斜,遭受抬升剥蚀。盆地西部受走滑应力影响较弱,以构造沉降为主。从盆地东部构造演化史来看(图 2),盆地东部受到强烈挤压影响,冈吐斯次盆地和阿尔格次盆地在过渡期和漂移早期遭受抬升剥蚀。从现今残留的地层来看,上侏罗统地层部分剥蚀,下白垩统贝利阿斯阶—凡兰吟阶地层剥蚀严重,仅在局部有所残留早白垩世凡兰吟晚期—阿普特早期的地层在盆地东部完全缺失。而盆地西部在白垩纪早期构造活动相对稳定,地层保存较完整(图 3),钻井也证实下白垩统欧特里夫阶—阿普特阶地层的存在。

    (2) 有效烃源岩展布影响油气的差异聚集

    阿古拉斯走滑带控制了盆地在过渡期和漂移早期的构造演化,而此时期正是盆地下白垩统欧特里夫阶和巴雷姆—阿普特阶2套烃源岩发育的时期。盆地东部发育的次盆地面积本身较小,从前述可知,欧特里夫阶烃源岩缺失,仅发育部分阿普特阶烃源岩。由于埋藏深度较浅,阿普特阶烃源岩现今尚未大规模达到成熟阶段。

    在盆地西部,欧特里夫阶和巴雷姆—阿普特阶2套烃源岩均有所发育,大部分现今已达到成熟—高成熟演化阶段。从已有的资料来看,欧特里夫阶烃源岩主要在布雷达斯多普次盆地、普雷特莫斯和茵梵塔次盆地西部,在布雷达斯多普次盆热演化程度较高,大部分进入高成熟—过成熟演化阶段,局部Ro超过1.8%(图 5),以生天然气为主。巴雷姆—阿普特阶烃源岩在盆地西部3个次盆地均有分布,主要发育在布雷达斯多普次盆地,大部分进入生油窗,局部Ro>1.4%(图 6)。上述2套烃源岩的有机质类型和成熟度决定了盆地油气发现以天然气为主,石油为辅。

    图 5.  下白垩统欧特里夫阶烃源岩顶面现今成熟度(据文献[1]修改)
    Figure 5.  Present maturity of the top of Hauterivian (K1) source rock (modified from reference [1])
    图 6.  下白垩统巴雷姆—阿普特阶烃源岩顶面现今成熟度(据文献[1]修改)
    Figure 6.  Present maturity of the top of Barremian-Aptian (K1) source rock (modified from reference [1])

    正是盆地东西部有效烃源岩分布的差异和构造活动的影响,造成现今油气分布的格局。

    (1) 奥坦尼瓜盆地经历裂谷期、过渡期和漂移期三大构造演化阶段,现今为一典型被动大陆边缘盆地。盆地东部构造活动剧烈,裂谷期地层遭受大规模抬升剥蚀。盆地西部构造活动相对稳定,地层保存较完整。

    (2) 盆地发育漂移期欧特里夫阶和巴雷姆—阿普特阶2套主力烃源岩,2套烃源岩的主力生烃灶主要发育在盆地西部。圈闭发育具有典型的两分特征,裂谷期以构造圈闭为主,漂移期以构造—岩性圈闭为主。

    (3) 从层系上看,绝大多数油气发现集中在裂谷期顶部凡兰吟阶储层中。平面上,油气发现呈现“西多东少”的特点。

    (4) 盆地东西部有效烃源岩分布的差异和构造活动的影响,共同控制了盆地东西部油气分布格局和未来勘探潜力,因此,该盆地下一步的勘探前景区应聚焦盆地西部,重点是茵梵塔次盆地和普雷特莫斯次盆地。

  • 图 1  湾子水库区域水文地质图

    Figure 1. 

    图 2  湾子水库主要渗漏区小渡槽—火莫渗漏带水文地质图

    Figure 2. 

    图 3  库区两岸水位差异剖面图

    Figure 3. 

    图 4  库区岩溶塌陷机理力学分析模型图

    Figure 4. 

    图 5  侧向低邻谷渗漏及补漏设想工程布置剖面图

    Figure 5. 

    表 1  库区岩溶垂向发育分带指标一览表

    Table 1.  Indexes of vertical karst development belts

    岩溶发育强度定量指标定性指标
    溶洞规模/m钻孔单位吸水率/Lu岩组特征地质构造地下水运动
    强烈≥1≥100纯碳酸盐岩各类风化带,
    与非纯碳酸盐岩接触带
    断裂破碎带,
    节理裂隙发育
    垂向径流带、季节波动带
    及水平循环带上部
    中等0.2~110~100非纯碳酸盐岩、纯碳酸
    盐岩强风化带
    断裂影响带,
    节理较发育
    水平循环带下部
    微弱≤0.2≤10非纯碳酸盐岩、纯碳酸
    盐岩中风化带以下
    断裂影响有限,
    节理不发育
    深部循环带
    下载: 导出CSV
  • [1]

    王宇, 张贵. 滇东岩溶石山地区石漠化特征及成因[J]. 地球科学进展, 2003, 18(6):933-938. doi: 10.3321/j.issn:1001-8166.2003.06.015

    WANG Yu, ZHANG Gui. On the desertification and genesis of karst stone mountain area in east Yunnan[J]. Advance in Earth Sciences, 2003, 18(6):933-938. doi: 10.3321/j.issn:1001-8166.2003.06.015

    [2]

    赵瑞, 许模. 水库岩溶渗漏及防渗研究综述[J]. 地下水, 2011, 33(2):20-22. doi: 10.3969/j.issn.1004-1184.2011.02.009

    ZHAO Rui, XU Mo. Summary on reservoir karst seepage and anti-seepage research[J]. Groundwater, 2011, 33(2):20-22. doi: 10.3969/j.issn.1004-1184.2011.02.009

    [3]

    邹成杰. 水库岩溶渗漏地质模型和数学模型的初步研究[J]. 中国岩溶, 1990, 9(3):231-240.

    ZOU Chengjie. A preliminary study on geological model and mathematical model of reservoir leakage in karst areas[J]. Carsologica Sinica, 1990, 9(3):231-240.

    [4]

    莫跃支译. 岩溶发育的垂直分带性[J]. 水文地质工程地质译丛, 1991(6):30-35.

    MO Yuezhi (translator). Vertical zoning of karst development[J]. Hydrogeology&Engineering Geology, 1991(6):30-35.

    [5]

    熊道锟, 傅荣华. 岩溶发育强度垂直分带方法[J]. 岩土工程技术, 2005, 19(3):113-117,122. doi: 10.3969/j.issn.1007-2993.2005.03.002

    XIONG Daokun, FU Ronghua. Vertical zonation method for intensity of karst development[J]. Geotechnical Engineering Technique, 2005, 19(3):113-117,122. doi: 10.3969/j.issn.1007-2993.2005.03.002

    [6]

    王宇. 岩溶高原地下水径流系统垂向分带[J]. 中国岩溶, 2018, 37(1):1-8.

    WANG Yu. Vertical zoning of groundwater runoff system in karst plateau[J]. Carsologica Sinica, 2018, 37(1):1-8.

    [7]

    蒋海飞, 刘东燕, 黄伟, 夏毓超, 刘芳语. 高围压下不同孔隙水压作用时岩石蠕变特性及改进西原模型[J]. 岩土工程学报, 2014, 36(3):443-451. doi: 10.11779/CJGE201403006

    JIANG Haifei, LIU Dongyan, HUANG Wei, XIA Yuchao, LIU Fangyu. Creep properties of rock under high confining pressure and different pore water pressures and a modified Nishihara model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3):443-451. doi: 10.11779/CJGE201403006

    [8]

    郭富利, 张顶立, 苏洁, 肖丛苗. 地下水和围压对软岩力学性质影响的试验研究[J]. 岩石力学与工程学报, 2007, 26(11):2324-2332. doi: 10.3321/j.issn:1000-6915.2007.11.020

    GUO Fuli, ZHANG Dingli, SU Jie, XIAO Congmiao. Experimental study on influences of groundwater and confining pressure on mechanical behaviors of soft rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(11):2324-2332. doi: 10.3321/j.issn:1000-6915.2007.11.020

    [9]

    徐卫国, 赵桂荣. 论岩溶塌陷形成机理[J]. 煤炭学报, 1986(2):1-11.

    XU Weiguo, ZHAO Guirong. On mechanism of karst collapse[J]. Journal of China Coal Society, 1986(2):1-11.

    [10]

    康彦仁. 论岩溶塌陷形成的致塌模式[J]. 水文地质工程地质, 1992, 19(4):32-34,46.

    KANG Yanren. Collapse-causing models in karstic collapse process[J]. Hydrogeology & Engineering Geology, 1992, 19(4):32-34,46.

    [11]

    肖先煊. 覆盖型岩溶区水气相互驱动盖层变形演化及塌陷机理研究[D]. 成都: 成都理工大学, 2018.

    XIAO Xianxuan. Deformation behavior evolution and collapse mechanism of karst covers under water-air interaction in karst area[D]. Chengdu: Chengdu University of Technology, 2018.

    [12]

    贾连杰. 尼山水库岩溶塌陷机理研究[D]. 青岛: 中国海洋大学, 2006.

    JIA Lianjie. Study on karst collapse mechanism in the Nishan reservoir area[D]. Qingdao: Ocean University of China, 2006.

    [13]

    程峰, 苏夏征, 周洁军, 郭尚其. 岩溶区尾矿库渗漏机理与综合防治技术: 以环江北山铅锌矿尾矿库为例[J]. 中国岩溶, 2017, 36(2):242-247. doi: 10.11932/karst20170212

    CHENG Feng, SU Xiazheng, ZHOU Jiejun, GUO Shangqi. Leakage mechanism and comprehensive prevention control technology of tailing pond in karst areas[J]. Carsologica Sinica, 2017, 36(2):242-247. doi: 10.11932/karst20170212

    [14]

    张明远, 段乔文. 罗平县湾子水库小渡槽、火莫村岩溶渗漏带补充勘察报告[R]. 云南地质工程勘察设计研究院, 2003.

    ZHANG Mingyuan, DUAN Qiaowen. Supplementary investigation report on karst leakage zone of Xiaoducao and Huomo village of Wanzi reservoir in Luoping county[R]. Yunnan Geological Engineering Survey and Design Research Institute, 2003.

    [15]

    朱培秋, 杨金山, 王玉龙,石希三,陶钦行,廖忠福,魏家倜,李建元,白声贵. 区域水文地质普查报告罗平幅[R]. 云南省地质局水文地质工程地质大队, 1979.

    ZHU Peiqiu, YANG Jinshan, WANG Yulong,SHI Xisan, TAO Qinxing, LIAO Zhongfu, WEI Jiati, LI Jianyuan, BAI Shenggui. Regional hydrogeological survey report (Luoping map sheet)[R]. Hydrogeology Engineering Geology Brigade of Yunnan Geological Bureau, 1979.

    [16]

    李盛瑜, 端德埠, 尹青, 刘清州,张寿怡,沈廷义,李运寿,周世忠,王理帮,刘帮等, 孙光玉. 区域水文地质普查报告邱北幅[R]. 云南省地质局水文工程地质公司, 1981.

    LI Shengyu, DUAN Debu, YIN Qing,LIU Qingzhou, ZHANG Shouyi, SHEN Tingyi, LI Yunshou, ZHOU Shizhong, WANG Libang, LIU Bangdeng, SUN Guangyu. Regional hydrogeological survey report (Qiubei map sheet)[R]. Hydrological Engineering Geology Company of Yunnan Geological Bureau, 1981.

    [17]

    杜联凡, 杨祖扩. 云南省罗平县湾子水库补漏加固配套工程竣工技术总结[R]. 罗平县湾子水库工程指挥部, 1996.

    DU Lianfan, YANG Zukuo. Technical summary on completion of leakage repair and reinforcement supporting project of Wanzi reservoir in Luoping county, Yunnan Province[R]. Headquarters of Wanzi reservoir project in Luoping county, 1996.

    [18]

    赵勇. 滇东山原区水库岩溶渗漏系统工程地质研究[D]. 成都: 成都理工大学, 2015.

    ZHAO Yong. Systematic engineering geological research of reservoir leakage in karst in mountain plateau of Eastern Yunnan[D]. Chengdu: Chengdu University of Technology, 2015.

    [19]

    尹青, 段乔文, 姚明波, 王懋贤, 李金孟,和书琼,聂可武,代启. 南昆铁路(云南境内)沿线经济开发区水文地质工程地质环境地质综合勘察报告[R]. 云南地质工程第三勘察院, 1995.

    YIN Qing,DUAN Qiaowen, YAO Mingbo, WANG Maoxian,LI Jinmeng, HE Shuqiong, NIE Kewu, DAI Qi. Comprehensive survey report on hydrogeology, engineering geology and environmental geology of economic development zones along Nanning-Kunming railway (within Yunnan) [R]. The Third Survey Institute of Yunnan Geological Engineering, 1995.

    [20]

    中华人民共和国水利部. 中小型水利水电工程地质勘察规范(SL55—2005)[S]. 北京: 中国水利水电出版社, 2005.

    Ministry of Water Resources of the People's Republic of China. Specification of engineering geological investigation for medium-small water conservancy and hydropower development (SL55—2005)[S]. Beijing: China Water & Power Press, 2005.

    [21]

    康彦仁. 岩溶地区建库的先例 溶洞工程处理的典范: 介绍五里冲水库工程及其特征[J]. 中国岩溶, 1997, 16(2):186-188.

    KANG Yanren. Precedent of reservoir construction in karst area Example of karst cave engineering treatment: an introduction to Wulichong reservoir project and its characteristics[J]. Carsologica Sinica, 1997, 16(2):186-188.

    [22]

    张邦仞, 康彦仁. 高压灌浆技术在云南五里冲水库的应用[J]. 中国岩溶, 2002, 21(3):212-220. doi: 10.3969/j.issn.1001-4810.2002.03.011

    ZHANG Bangren, KANG Yanren. Application of high-pressure grouting technique in Wulichong reservoir in Yunnan Province[J]. Carsologica Sinica, 2002, 21(3):212-220. doi: 10.3969/j.issn.1001-4810.2002.03.011

    [23]

    王宇, 张贵, 段乔文, 李继红, 戴文敏. 云南省严重缺水地区地下水勘查示范工程实例[C]. 严重缺水地区地下水勘查论文集, 中国地质调查局, 2003.

    WANG Yu, ZHANG Gui, DUAN Qiaowen, LI Jihong, DAI Wenmin. Example of groundwater exploration demonstration project in severe water shortage area of Yunnan Province [C]. Collection of papers on groundwater exploration in severe water shortage areas , China Geological Survey, 2003.

    [24]

    杨立中, 王建秀. 国外岩溶塌陷研究的发展及我国的研究现状[J]. 中国地质灾害与防治学报, 1997, 8(S1):6-10.

    YANG Lizhong, WANG Jianxiu. Karst collapse study′s development abroad and domestic present studying situation[J]. The Chinese Journal of Geological Hazard and Control, 1997, 8(S1):6-10.

    [25]

    蒙彦, 雷明堂. 岩溶塌陷研究现状及趋势分析[J]. 中国岩溶, 2019, 38(3):411-417.

    MENG Yan, LEI Mingtang. Analysis of situation and trend of sinkhole collapse[J]. Carsologica Sinica, 2019, 38(3):411-417.

    [26]

    孙映霞, 张智浩, 王金安. 岩溶区桩基破坏模式研究及稳定性分析[J]. 工业建筑, 2012, 42(9):96-102.

    SUN Yingxia, ZHANG Zhihao, WANG Jin′an. Failure pattern study and stability analysis of pile foundation in karst area[J]. Industrial Construction, 2012, 42(9):96-102.

    [27]

    赵明华, 雷勇, 张锐. 岩溶区桩基冲切破坏模式及安全厚度研究[J]. 岩土力学筑, 2012, 33(2):524-530.

    ZHAO Minghua, LEI Yong, ZHANG Rui. Study of punching failure mode and safe thickness of pile foundation in karst region[J]. Rock and Soil Mechanics, 2012, 33(2):524-530.

    [28]

    王宇. 岩溶区地表水与地下水资源及环境统一评价的流域边界划分研究[J]. 中国岩溶, 2019, 38(6):823-830.

    WANG Yu. Study on watershed boundary division for unified evaluation of surface water and groundwater resources and environment in karst areas[J]. Carsologica Sinica, 2019, 38(6):823-830.

    [29]

    周洪文, 邹成杰. 马畔塘水库岩溶渗漏研究[J]. 中国岩溶, 1996, 15(4):325-334.

    ZHOU Hongwen, ZOU Chengjie. Study on karst leakage of Mapantang reservoir[J]. Carsologica Sinica, 1996, 15(4):325-334.

    [30]

    田茂中, 叶明. 毛家河水电站库区岩溶发育特征及邻谷渗漏分析[J]. 贵州水力发电, 2006, 20(6):18-23. doi: 10.3969/j.issn.1007-0133.2006.06.005

    TIAN Maozhong, YE Ming. Analysis on karst developing feature & seepage of neighbor valley in reservoir area of Maojiahe hydropower station[J]. Guizhou Water Power, 2006, 20(6):18-23. doi: 10.3969/j.issn.1007-0133.2006.06.005

    [31]

    邹成杰. 水利水电岩溶工程地质[M]. 北京: 中国水利电力出版社, 1994.

    ZOU Chengjie. Karst engineering geology of water conservancy and hydropower [M]. Beijing: China Water & Power Press, 1994

    [32]

    肖万春. 水库岩溶渗漏勘察技术要点与方法研究[J]. 水力发电, 2008, 34(7):52-55. doi: 10.3969/j.issn.0559-9342.2008.07.016

    XIAO Wanchun. Keystones and methods study of karst reservoir leakage investigation[J]. Water Power, 2008, 34(7):52-55. doi: 10.3969/j.issn.0559-9342.2008.07.016

    [33]

    邹成杰. 国内外岩溶地区水库坝址防渗帷幕设计中工程地质问题的综述与分析[J]. 水利水电技术, 1987(1):31-39,57.

    ZOU Chengjie. Summary and analysis of engineering geological problems in seepage control curtain design of reservoir dam sites in karst areas at home and abroad[J]. Water Resources and Hydropower Engineering, 1987(1):31-39,57.

    [34]

    杨欣祥, 罗鲁生. 乌江渡水电站岩溶坝基的高压帷幕灌浆[J]. 水力发电, 1983(3):49-55,10.

    YANG Xinxiang, LUO Lusheng. High pressure curtain grouting for karst dam foundation of Wujiangdu hydropower station[J]. Water Power, 1983(3):49-55,10.

    [35]

    杨忠兴. 岩溶地区复杂地质条件下的堵漏防渗施工技术[J]. 四川水力发电, 2013, 32(2):20-25. doi: 10.3969/j.issn.1001-2184.2013.02.007

    YANG Zhongxing. Construction technology of plugging and seepage prevention under complex geological conditions in karst area[J]. Sichuan Water Power, 2013, 32(2):20-25. doi: 10.3969/j.issn.1001-2184.2013.02.007

  • 加载中

(5)

(1)

计量
  • 文章访问数:  1794
  • PDF下载数:  91
  • 施引文献:  0
出版历程
收稿日期:  2021-03-28
刊出日期:  2022-04-25

目录