初始裂隙对岩溶水紊流形成的影响

焦友军, 黄奇波, 于青春. 初始裂隙对岩溶水紊流形成的影响[J]. 中国岩溶, 2022, 41(4): 501-510. doi: 10.11932/karst20220401
引用本文: 焦友军, 黄奇波, 于青春. 初始裂隙对岩溶水紊流形成的影响[J]. 中国岩溶, 2022, 41(4): 501-510. doi: 10.11932/karst20220401
JIAO Youjun, HUANG Qibo, YU Qingchun. Influence of initial fractures on the occurrence of karst turbulent flow[J]. Carsologica Sinica, 2022, 41(4): 501-510. doi: 10.11932/karst20220401
Citation: JIAO Youjun, HUANG Qibo, YU Qingchun. Influence of initial fractures on the occurrence of karst turbulent flow[J]. Carsologica Sinica, 2022, 41(4): 501-510. doi: 10.11932/karst20220401

初始裂隙对岩溶水紊流形成的影响

  • 基金项目: 国家自然科学基金项目(41877196, U1612441, 41272387);中国地质调查项目(DD20221758)
详细信息
    作者简介: 焦友军(1990-),男,博士研究生,从事岩溶水资源研究。E-mail:jiaoyj@karst.ac.cn
    通讯作者: 于青春(1963-),男,教授,博士研究生导师,从事岩溶水资源研究。E-mail:yuqch@cugb.edu.cn
  • 中图分类号: P641.2

Influence of initial fractures on the occurrence of karst turbulent flow

More Information
  • 岩溶地区地下发育着大量的溶洞和地下河管道,地下水流状态既有层流也有紊流,而紊流是溶洞管道形成的重要条件。紊流的形成受到岩石初始裂隙的影响,初始裂隙的张开度、分布、走向、迹长、密度等因素都影响着裂隙发育过程中水流状态的变化。通过对不同统计特征的初始裂隙网络进行水流和溶蚀的数值模拟发现,以张开度标准差反映的裂隙网络非均匀性越强,模拟紊流出现的时间就越早;主要裂隙的存在使裂隙网络的非均性增强,主要裂隙与水力梯度总方向的角度越小,紊流出现的时间就越早;当裂隙平均迹长过小时会导致裂隙连通性较差,影响裂隙水流和溶蚀作用;裂隙密度,尤其是主要裂隙密度,对岩溶发育的影响较大。相对于次要裂隙,如果主要裂隙密度偏小,紊流形成时间会大大增加,甚至很难形成紊流。当初始裂隙张开度小于0.001 cm,增大水力梯度仍没有紊流发生,岩溶几乎不发育。

  • 加载中
  • 图 1  裂隙含水层模拟500万年的水流状态和张开度分布(含水层长宽单位为m,张开度单位为cm)

    Figure 1. 

    图 2  第1组裂隙张开度增大后的含水层水流状态和张开度分布( 图中含水层长度单位为m, 张开度单位为cm)

    Figure 2. 

    图 3  (a)模拟情形A 在500万年的结果与初始裂隙分布相同,(b) 模拟情形C裂隙网络在18.9万年产生了紊流(图中含水层长度单位为m, 张开度单位为cm)

    Figure 3. 

    图 4  (a)模拟情形E水平裂隙逆时针旋转45度的含水层在82.3万年出现紊流;(b)在图2中将第二组裂隙扩大为主要裂隙的含水层在21.7万年出现紊流, 图中含水层长度单位为m, 张开度单位为cm

    Figure 4. 

    图 5  (a)裂隙迹长减小后含水层在47.1万年出现紊流;(b)主要裂隙密度减小后模拟500万年仍没有出现紊流, 图中含水层长度单位为m, 张开度单位为cm

    Figure 5. 

    图 6  不同水力梯度和张开度条件下紊流形成时间的三维柱状图,其中每个柱体上的数字为紊流出现的时间(万年),500万年表示没有出现紊流

    Figure 6. 

    表 1  随机裂隙网络统计参数

    Table 1.  Statistic parameters of the random fracture network

    裂隙组统计参数服从分布均值标准差最小值最大值
    走向正态分布3051545
    第一组迹长/m对数正态分布13010100160
    张开度/cm正态分布0.0050.0010.0020.008
    走向正态分布1205105135
    第二组迹长/m对数正态分布13010100160
    张开度/cm正态分布0.0050.0010.0020.008
    下载: 导出CSV

    表 2  不同模拟情形的初始裂隙张开度统计参数和紊流出现时间

    Table 2.  Statistic parameters of the initial aperture and the turbulent time in different simulations

    模拟情形均值/cm标准差/cm99.7%置信区间/cm紊流出现时间/万年
    A0.0050.0010.0020.008>500
    B0.0060.000 50.004 5 0.007 5>500
    C0.0060.0010.0030.00918.9
    D0.0060.001 50.001 50.010 512.0
    E0.00842.7
    F0.0080.000 50.006 50.009 520.3
    G0.0080.0010.0050.01114.3
    H0.0080.001 50.003 50.012 59.0
    下载: 导出CSV
  • [1]

    袁道先, 朱德浩, 翁金桃, 朱学稳, 韩行瑞, 汪训一, 蔡桂鸿, 朱远峰, 崔光中, 邓自强. 中国岩溶学[M]. 北京: 地质出版社, 1993

    YUAN Daoxian, ZHU Dehao, WENG Jintao, ZHU Xuewen, HAN Xingrui, WANG Xunyi, CAI Guihong, ZHU Yuanfeng, CUI Guangzhong, DENG Ziqiang. Karst of China[M]. Beijing: Geological Publishing House, 1993.

    [2]

    王大纯, 张人权, 史毅虹, 许绍倬, 于青春, 梁杏. 水文地质学基础[M]. 北京: 地质出版社, 1995

    WANG Dachun, ZHANG Renquan, SHI Yihong, XU Shaozhuo, YU Qingchun, LIANG Xing. Fundamentals of hydrogeology[M]. Beijing: Geological Publishing House, 1995.

    [3]

    Yu Q, Shen J, Wan J, Ohnishi Y. Some investigation on early organization of karst system[J]. Journal of China University of Geosciences, 1999, 10:314-321.

    [4]

    Dreybrodt W. The role of dissolution kinetics in the development of karst aquifers in limestone: A model simulation of karst evolution[J]. The Journal of Geology, 1990, 98(5):639-655. doi: 10.1086/629431

    [5]

    Liu Z, Dreybrodt W. Dissolution kinetics of calcium carbonate minerals in H2O CO2 solutions in turbulent flow: The role of the diffusion boundary layer and the slow reaction H2O+ CO2→ H++ HCO3. Geochimica et Cosmochimica Acta, 1997, 61(14): 2879-2889.

    [6]

    Groves C G, Howard A D. Minimum hydrochemical conditions allowing limestone cave development[J]. Water Resources Research, 1994, 30(3):607-615. doi: 10.1029/93WR02945

    [7]

    Gabrovšek F, Romanov D, Dreybrodt W. Early karstification in a dual-fracture aquifer: The role of exchange flow between prominent fractures and a dense net of fissures[J]. Journal of Hydrology, 2004, 299(1-2):45-66. doi: 10.1016/j.jhydrol.2004.02.005

    [8]

    Kaufmann G. Modelling karst geomorphology on different time scales[J]. Geomorphology, 2009, 106(1):62-77.

    [9]

    Reimann T, Rehrl C, Shoemaker W B, Geyer T, Birk S. The significance of turbulent flow representation in single‐continuum models[J]. Water Resources Research, 2011, 47(9):1-15.

    [10]

    Howard A D, Groves C G. Early development of karst systems: 2. turbulent flow[J]. Water Resources Research, 1995, 31(1):19-26. doi: 10.1029/94WR01964

    [11]

    Gabrovšek F, Peric B, Kaufmann G. Hydraulics of epiphreatic flow of a karst aquifer[J]. Journal of Hydrology, 2018, 560:56-74. doi: 10.1016/j.jhydrol.2018.03.019

    [12]

    Dreybrodt W. Principles of early development of karst conduits under natural and man‐made conditions revealed by mathematical analysis of numerical models[J]. Water Resources Research, 1996, 32(9):2923-2935. doi: 10.1029/96WR01332

    [13]

    于青春, 武雄, 大西有三. 非连续裂隙网络管状渗流模型及其校正[J]. 岩石力学与工程学报, 2006, 25(7):1469-1474.

    YU Qingchun, WU Xiong, Ohnishi Yuzo. Channel model for fluid flow in discrete fracture network and its modification[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(7):1469-1474.

    [14]

    王云, 于青春, 薛亮, 马浩. 裂隙岩溶含水系统溢流泉演化过程的数值模拟[J]. 中国岩溶, 2010, 29(4):378-384. doi: 10.3969/j.issn.1001-4810.2010.04.005

    WANG Yun, YU Qingchun, XUE Liang, MA Hao. Numerical simulation for the evolution of the overflow spring in fracture-karst aquifer system[J]. Carsologica Sinica, 2010, 29(4):378-384. doi: 10.3969/j.issn.1001-4810.2010.04.005

    [15]

    高阳, 邱振忠, 于青春. 层流—紊流共存流场中岩溶裂隙网络演化过程的数值模拟方法[J]. 中国岩溶, 2019, 38(6):831-838.

    GAO Yang, QIU Zhenzhong, YU Qingchun. Numerical simulating method for the karst development of carbonate fracture networks with both laminar and turbulent flow[J]. Carsologica Sinica, 2019, 38(6):831-838.

    [16]

    刘再华, Dreybrodt W. DBL理论模型及方解石溶解沉积速率预报[J]. 中国岩溶, 1998, 17(1):1-7.

    LIU Zaihua, DREYBRODT Wolfgang. The DBL model and prediction of calcite dissolution / precipitation rates[J]. Carsologica Sinica, 1998, 17(1):1-7.

  • 加载中

(6)

(2)

计量
  • 文章访问数:  1129
  • PDF下载数:  20
  • 施引文献:  0
出版历程
收稿日期:  2022-02-10
刊出日期:  2022-08-25

目录