煤矿酸性“老窑水”低Ca/Mg成因机制

石维芝, 赵春红, 梁永平, 韩占涛, 谢浩, 唐春雷. 煤矿酸性“老窑水”低Ca/Mg成因机制[J]. 中国岩溶, 2022, 41(4): 511-521. doi: 10.11932/karst2022y10
引用本文: 石维芝, 赵春红, 梁永平, 韩占涛, 谢浩, 唐春雷. 煤矿酸性“老窑水”低Ca/Mg成因机制[J]. 中国岩溶, 2022, 41(4): 511-521. doi: 10.11932/karst2022y10
SHI Weizhi, ZHAO Chunhong, LIANG Yongping, HAN Zhantao, XIE Hao, TANG Chunlei. Genetic mechanism analysis of low Ca/Mg value of acid goaf water in coal mine drainage[J]. Carsologica Sinica, 2022, 41(4): 511-521. doi: 10.11932/karst2022y10
Citation: SHI Weizhi, ZHAO Chunhong, LIANG Yongping, HAN Zhantao, XIE Hao, TANG Chunlei. Genetic mechanism analysis of low Ca/Mg value of acid goaf water in coal mine drainage[J]. Carsologica Sinica, 2022, 41(4): 511-521. doi: 10.11932/karst2022y10

煤矿酸性“老窑水”低Ca/Mg成因机制

  • 基金项目: 中国地质调查局地质调查项目 (DD20190334, DD20221758);国家自然科学基金项目(41902256)
详细信息
    作者简介: 石维芝(1996-),女,硕士研究生,研究方向:水文地质学。E-mail:1786908274@ qq.com
    通讯作者: 梁永平( 1962-),男,研究员,从事北方岩溶水调查研究。E-mail:lyp0261@ karst.ac.cn
  • 中图分类号: P641.1;X752

Genetic mechanism analysis of low Ca/Mg value of acid goaf water in coal mine drainage

More Information
  • 山西省阳泉市山底河煤矿“老窑水”循环系统多年水质监测数据计算结果显示,煤矿酸性“老窑水”的Ca/Mg值普遍偏低,且存在Ca/Mg值随酸化程度的增强(SO42−含量增加或pH减小)而减小的规律。针对这一问题,结合研究区的地球化学物源条件,通过室内试验以及野外监测水样的石膏、方解石、白云石矿物饱和指数与pH变化关系,分析煤矿酸性“老窑水”低Ca/Mg值的成因机制。研究表明:区内石炭系-二叠系的煤系地层中碳酸盐岩夹层、分散状态分布的菱镁矿、黄铁矿是“老窑水”中Ca2+、Mg2+、SO42−的物质来源;在黄铁矿氧化水解形成的以硫酸根为主导的酸性溶液中(pH为2.0~4.5),代表硫酸对石膏、方解石、白云石可溶解性的饱和指数排序为石膏>方解石>白云石,受石膏在高浓度硫酸活性降低并发生沉淀、方解石溶解受Ca2+同离子效应抑制和饱和状态的平衡调节的综合影响,使Ca2+相对含量减少,由于MgSO4溶度积大于CaSO4,故Mg2+含量未受上述约束(或较低),脱白云岩化反应可因Ca2+含量随石膏沉淀而继续进行,加之区内有菱镁矿的溶解,使得Mg2+相对含量增加,最终出现了镁矿酸性“老窑水” Ca/Mg值低的结果。Ca/Mg值可作为煤矿酸性“老窑水”的污染特征指标,应用于环境影响评价。

  • 加载中
  • 图 1  各监测点Ca/Mg值动态

    Figure 1. 

    图 2  各监测点Ca/Mg值与酸化程度关系

    Figure 2. 

    图 3  山底河流域地质略图与监测点分布图

    Figure 3. 

    图 4  碳酸盐矿物在不同pH硫酸溶液中Ca2+、Mg2+含量变化曲线

    Figure 4. 

    图 5  水质监测样品的石膏、方解石、白云石饱和指数与pH关系图

    Figure 5. 

    图 6  野外样品的pH与SO42-、HCO3、Ca2+、Mg2+的含量关系图

    Figure 6. 

    图 7  河底镇、跃进煤矿岩溶井Ca/Mg动态曲线

    Figure 7. 

    表 1  研究区煤矿“老窑水”及岩溶水相关水化学特征组分含量绘制表

    Table 1.  Relevant hydrochemical characteristic components of goaf water in acid mine drainage and karst water in the study area

    样品类型样品数/组特征项pHCa2+Mg2+SO42−HCO3Ca/Mg
    /mg·L−1
    煤矿“老窑水”257平均3.64394.51592.287 707.6486.291.14
    最大8.021 817.002340.0033 248.001 283.004.12
    最小2.0320.5024.1059.900.000.14
    现采煤矿排水69平均7.43326.8989.851 549.09222.753.73
    最大8.73545.00187.002 476.00388.005.31
    最小3.38163.0048.10717.000.002.14
    岩溶水206平均7.44290.9259.56729.26269.955.30
    最大8.29517.00115.001 248.00316.0019.19
    最小6.5179.1018.50140.00172.002.14
    下载: 导出CSV

    表 2  试验结束时各组合的Ca2+、Mg2+含量(单位:mg·L−1)及Ca/Mg值

    Table 2.  Ca2+ and Mg2+ content (unit:mg·L−1) and Ca/Mg value in each group at the end of the test

    项目菱镁矿菱镁矿+方解石+白云石菱镁矿+白云石
    pH=2pH=4pH=6pH=2pH=4pH=6pH=2pH=4pH=6
    Mg 71.66 8.75 3.35 123.25 5.84 3.67 154.52 8.37 2.17
    Ca 0.00 10.75 8.95 6.03 6.43 5.63 0.00 8.64 5.23
    Ca-Mg 71.66 −2.00 −5.60 117.22 −0.59 −1.96 154.52 −0.27 −3.06
    Ca/Mg 0.00 1.23 2.67 0.05 1.10 1.54 0.00 1.03 2.41
    下载: 导出CSV
  • [1]

    李凤明, 王儒军, 王存煜. 资源枯竭型矿区综合治理与可持续发展[J]. 煤矿开采, 2004, 9(3):7-10. doi: 10.3969/j.issn.1006-6225.2004.03.003

    LI Fengming, WANG Rujun, WANG Cunyu. Synthetically control and continuable development of resource exhausted mine area[J]. Coal Mining Technology, 2004, 9(3):7-10. doi: 10.3969/j.issn.1006-6225.2004.03.003

    [2]

    武强, 董东林, 傅耀军, 白喜庆, 孙占起. 煤矿开采诱发的水环境问题研究[J]. 中国矿业大学学报, 2002, 31(1):22-25.

    WU Qiang, DONG Donglin, FU Yaojun, BAI Xiqing, SUN Zhanqi. Research on water pollution induced by coal mining[J]. Journal of China University of Mining & Technology, 2002, 31(1):22-25.

    [3]

    梁永平, 韩行瑞, 等. 中国北方岩溶地下水环境问题与保护[M]. 北京: 地质出版社, 2013: 166-68

    LIANG Yongping, HAN Xingrui, et al. The karst groundwater environmental and protection of Northern China[M]. Beijing: Geological Publishing House, 2013: 166-168.

    [4]

    梁永平, 赵春红, 唐春雷, 申豪勇, 王志恒, 郭芳芳. 山西娘子关泉水及污染成因再分析[J]. 中国岩溶, 2017, 36(5):633-640.

    LIANG Yongping, ZHAO Chunhong, TANG Chunlei, SHEN Haoyong, WANG Zhiheng, GUO Fangfang. Reanalysis of spring water and its pollution causes of the Niangziguan spring in Shanxi[J]. Carsologica Sinica, 2017, 36(5):633-640.

    [5]

    赵春红, 梁永平, 卢海平, 唐春雷, 申豪勇, 王志恒. 娘子关泉域岩溶水SO42−、δ34S特征及其环境意义[J]. 中国岩溶, 2019, 38(6):867-875.

    ZHAO Chunhong, LIANG Yongping, LU Haiping, TANG Chunlei, SHEN Haoyong, WANG Zhiheng. Chemical characteristics and environmental significance of SO42−and sulfur isotope in the karst watershed of the Niangziguan spring, Shanxi Province[J]. Carsologica Sinica, 2019, 38(6):867-875.

    [6]

    高旭波, 王万洲, 侯保俊, 高列波, 张建友, 张松涛, 李成城, 姜春芳. 中国北方岩溶地下水污染分析[J]. 中国岩溶, 2020, 39(3):287-298.

    GAO Xubo, WANG Wanzhou, HOU Baojun, GAO Liebo, ZHANG Jianyou, ZHANG Songtao, LI Chengcheng, JIANG Chunfang. Analysis of karst groundwater pollution in northern China[J]. Carsologica Sinica, 2020, 39(3):287-298.

    [7]

    梁永平, 赵春红, 申豪勇, 等. 废弃煤矿区典型地下水系统硫产出机制与岩溶水环境效应[R]. 桂林: 中国地质科学院岩溶地质研究所, 2021

    LIANG Yongping, ZHAO Chunhong, SHEN Haoyong, et al. Sulfur-output mechanism and effect of karst water environment in a typical groundwater system situated on abandoned coal mining area[R]. Guilin: Institute of Karst Geology, Chinese Academy of Geological Sciences, 2021.

    [8]

    肖有权. 试谈酸性矿坑水的污染与防治[J]. 水文地质工程地质, 1982(3):7-9.

    XIAO Youquan. Pollution and prevention of acid mine water[J]. Hydrogeology & Engineering Geology, 1982(3):7-9.

    [9]

    Lines G C. The ground-water system and possible effects of underground coal mining in the Trail Mountain area, central Utah[J]. Geological Survey water-supply paper (USA), 1985, 22(59):5-30.

    [10]

    Booth C J. Strata-Movement Concepts and the Hydrogeological Impact of Underground Coal Mining[J]. Ground Water, 1986, 24(4):507-515. doi: 10.1111/j.1745-6584.1986.tb01030.x

    [11]

    Britton L J, Anderson C L, Goolsby D A, et al. Summary of the U. S. Geological Survey and U. S. Bureau of Land Management national coal-hydrology program, 1974-84[J]. Professional Paper, 1989, 1464.

    [12]

    Powell J D. Origin and influence of coal mine drainage on streams of the United States[J]. Environmental Geology, 1988, 11(2):141-152.

    [13]

    谭鹤翔. 煤矿矿坑水的水质特征[J]. 煤矿环境保护, 1990(04):75-81.

    TAN Hexiang. Water quality characteristics of coal mine pit water[J]. Coal Mine Environmental Protection, 1990(04):75-81.

    [14]

    Evangelou V. Pyrite Oxidation and Its Control[M]. Florida: Crc Press,1995.

    [15]

    钟佐燊, 汤鸣皋, 张建立. 淄博煤矿矿坑排水对地表水体的污染及对地下水水质影响的研究[J]. 地学前缘, 1999, 6(S1):238-244.

    ZHONG Zuoshen, TANG Minggao, ZHANG Jianli. Influence of mining drainage of Zibo coal mines on quality of surface water and groundwater[J]. Earth Science Frontiers, 1999, 6(S1):238-244.

    [16]

    吴耀国, 沈照理, 钟佐燊, 李广贺. 淄博煤矿区矿井水的化学形成及其模拟[J]. 环境科学学报, 2000, 20(4):401-405. doi: 10.3321/j.issn:0253-2468.2000.04.004

    WU Yaoguo, SHEN Zhaoli, ZHONG Zuoshen, LI Guanghe. Chemical origin of mine drainage and its simulation for Zibo coal mining district[J]. Acta Scientiae Circumstantiae, 2000, 20(4):401-405. doi: 10.3321/j.issn:0253-2468.2000.04.004

    [17]

    Hollings P, Hendry M J, Nicholson R V, et al. Quantification of oxygen consumption and sulphate release rates for waste rock piles using kinetic cells: Cluff lake uranium mine, northern Saskatchewan, Canada[J]. Applied Geochemistry, 2001, 16(9):1215-1230.

    [18]

    赵峰华. 煤矿酸性水地球化学[M]. 北京: 煤炭工业出版社, 2005

    ZHAO Fenghua. Geochemistry of acid water in coal mine[M]. Beijing: China Coal Industry Publishing House, 2005.

    [19]

    岳梅, 赵峰华, 孙红福, 任德贻. 煤系黄铁矿氧化溶解地球化学动力学研究[J]. 煤炭学报, 2005(1):75-79. doi: 10.3321/j.issn:0253-9993.2005.01.017

    YUE Mei, ZHAO Fenghua, SUN Hongfu, REN Deyi. The kinetics of oxidation reaction of pyrites from coal-bearing measure[J]. Journal of China Coal Society, 2005(1):75-79. doi: 10.3321/j.issn:0253-9993.2005.01.017

    [20]

    Watten B J, P L Sibrell, M F Schwartz. Acid neutralization within limestone sand reactors receiving coal mine drainage[J]. Environmental Pollution, 2005, 137(2):295-304. doi: 10.1016/j.envpol.2005.01.026

    [21]

    Mohan D, S Chander. Removal and recovery of metal ions from acid mine drainage using lignite: A low cost sorbent[J]. Journal of Hazardous Materials, 2006, 137(3):1545-1553. doi: 10.1016/j.jhazmat.2006.04.053

    [22]

    孙红福, 赵峰华, 李文生, 李荣杰, 葛祥坤. 煤矿酸性矿井水及其沉积物的地球化学性质[J]. 中国矿业大学学报, 2007, 36(2):221-226. doi: 10.3321/j.issn:1000-1964.2007.02.017

    SUN Hongfu, ZHAO Fenghua, LI wensheng, LI Rongjie, GE Xiangkun. Geochemical characteristics of acid mine draiange and sediments from coal mines[J]. Journal of China University of Mining & Technology, 2007, 36(2):221-226. doi: 10.3321/j.issn:1000-1964.2007.02.017

    [23]

    郑仲, 蔡昌凤. 煤矿酸性矿井水形成机理的研究进展[J]. 资源环境与工程, 2007, 21(3):323-327. doi: 10.3969/j.issn.1671-1211.2007.03.026

    ZHENG Zhong, CAI Changfeng. A discussion on the formation mechanism of acid mine drainage[J]. Resources Environment & Engineering, 2007, 21(3):323-327. doi: 10.3969/j.issn.1671-1211.2007.03.026

    [24]

    Mapanda F, Nyamadzawo G, Nyamangara J, et al. Effects of discharging acid-mine drainage into evaporation ponds lined with clay on chemical quality of the surrounding soil and water[J]. Physics & Chemistry of the Earth Parts A/b/c, 2007, 32(15-18):1366-1375.

    [25]

    C. A. Ríos a b, B C D W, B C L R. Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites[J]. Journal of Hazardous Materials, 2008, 156(1-3):23-35. doi: 10.1016/j.jhazmat.2007.11.123

    [26]

    Stoner J D. Probable hydrologic effects of subsurface mining[J]. Groundwater Monitoring & Remediation, 2010, 3(1):128-137.

    [27]

    BIAN Zhengfu, INYANG Hilary I, DANIELS John L, OTTO Frank, STRUTHERS Sue. Environmental issues from coal mining and their solutions[J]. Mining Science & Technology, 2010, 20(2):215-223.

    [28]

    孙红福, 赵峰华, 李静琴, 张梦, 石磊. 混合煤矿酸性水中金属元素的迁移行为[J]. 环境科学与技术, 2010, 33(S2):111-114, 152.

    SUN Hongfu, ZHAO Fenghua, LI Jingqin, ZHANG Meng, SHI Lei. Migration of metal elements in mixed acid mine drainage[J]. Environmental Science & Technology, 2010, 33(S2):111-114, 152.

    [29]

    赵峰华, 孙红福, 李文生. 煤矿酸性水中有害元素的迁移特性[J]. 煤炭学报, 2007, 32(3):261-266. doi: 10.3321/j.issn:0253-9993.2007.03.009

    ZHAO Fenghua, SUN Hongfu, LI Wensheng. Migration of hazardous elements in acid coal mine drainage[J]. Journal of China Coal Society, 2007, 32(3):261-266. doi: 10.3321/j.issn:0253-9993.2007.03.009

    [30]

    王瑞, 李潇瀚. 百泉泉域岩溶地下水水化学演化特征及成因[J]. 中国岩溶, 2021, 40(3):398-408.

    WANG Rui, LI Xiaohan. Hydrochemical characteristics and genesis of karst groundwater in the Baiquan spring catchment[J]. Carsologica Sinica, 2021, 40(3):398-408.

    [31]

    李庭, 冯启言, 周来, 朱雪强. 废弃矿井地下水污染风险评价系统开发[J]. 能源环境保护, 2014, 28(2):13-16, 8. doi: 10.3969/j.issn.1006-8759.2014.02.004

    LI Ting, FENG Qiyan, ZHOU Lai, ZHU Xueqiang. Design and development of groundwater contamination risk assessment system for abandoned coal mines[J]. Energy Environmental Protection, 2014, 28(2):13-16, 8. doi: 10.3969/j.issn.1006-8759.2014.02.004

    [32]

    刘再华. 娘子关泉群水的来源再研究[J]. 中国岩溶, 1989, 8(3):200-207.

    Liu Zaihua. Restudy on the sources of Niangziguan spring[J]. Carsologica Sinica, 1989, 8(3):200-207.

    [33]

    顾慰祖, 林曾平, 费光灿, 郑平生. 环境同位素硫在大同南寒武-奥陶系地下水资源研究中的应用[J]. 水科学进展, 2000, 11(1): 11-14

    GU Weizu, LIN Zengping, FEI Guangchan, ZHENG Pingsheng[J]. Advances in Water Science, 2000, 11(1): 11-14. .

    [34]

    段光武, 梁永平. 应用34 S同位素分析阳泉市岩溶地下水硫酸盐污染[J]. 西部探矿工程, 2006, 117(1):100-103. doi: 10.3969/j.issn.1004-5716.2006.01.045

    DUAN Guangwu, LIANG Yongping. Analysis of sulfate pollution of karst groundwater in Yangquan City by 34S isotope[J]. West-China Exploration Engineering, 2006, 117(1):100-103. doi: 10.3969/j.issn.1004-5716.2006.01.045

    [35]

    张江华, 梁永平, 王维泰, 韩行瑞, 侯光才. 硫同位素技术在北方岩溶水资源调查中的应用实例[J]. 中国岩溶, 2009, 28(13):235-241.

    ZHANG Jianghua, LIANG Yongping, WANG Weitai, HAN Xingrui, HOU Guangcai. A practical use of δ34 S in the investigation of karst groundwater resource in North China[J]. Carsologica Sinica, 2009, 28(13):235-241.

    [36]

    唐春雷, 郑秀清, 梁永平. 龙子祠泉域岩溶地下水水化学特征及成因[J]. 环境科学, 2020, 41(5):2087-2095.

    TANG Chunlei, ZHENG Xiuqing, LIANG Yongping. Hydrochemical characteristics and formation causes of ground karst water systems in the Longzici spring catchment[J]. Environmental Science, 2020, 41(5):2087-2095.

    [37]

    TANG Chunlei, HUA Jin, LIANG Yongping. Using isotopic and hydrochemical indicators to identify sources of sulfate in karst groundwater of the Niangziguan spring field, China[J]. Water, 2021, 13(3):390. doi: 10.3390/w13030390

    [38]

    王柏林, 张志村. 1/20万阳泉幅地质图说明书[R]. 太原: 山西省地质局, 1965

    WANG Bailin, ZHANG Zhicun. Description of 1 / 200,000 Yangquan geological map[R], Taiyuan: Shanxi Geological Bureau, 1965.

    [39]

    孙文瀚, 代淑娟, 罗娜, 于连涛. 基于矿石溶解性差异的菱镁矿酸浸脱钙[J]. 中国有色金属学报, 2019, 29(8):1733-1739.

    SUN Wenhan, DAI Shujuan, LUO Na, YU Liantao. Decalcification leaching test of magnesite based on solubleness difference of minerals[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(8):1733-1739.

    [40]

    胡宽溶, 曹玉清. 碳酸盐岩地区水质和化学动力学模型研究[J]. 水文地质工程地质, 1993, 3:8-14.

    HU Kuanrong, CAO Yuqing. Study on water quality and chemical kinetics model in carbonate area[J]. Hydrogeology & Engineering Geology, 1993, 3:8-14.

    [41]

    夏雨, 吴攀, 张瑞雪, 朱健, 王悦竹, 宋传孝, 李玲. 酸性矿山废水对碳酸盐岩侵蚀的影响[J]. 生态学杂志, 2018, 37(6):1702-1707.

    XIA Yu, WU Pan, ZHANG Ruixue, ZHU Jian, WANG Yuezhu, SONG Chuanxiao, LI Ling. The effects of acid mine drainage on the erosion of carbonatite in carbonate rocks[J]. Chinese Journal of Ecology, 2018, 37(6):1702-1707.

    [42]

    DENG Licong, ZHANG Yifei, CHEN Fangfang, CAO Shaotao, YOU Shaowei, LIU Yan, ZHANG Yi. Reactive crystallization of calcium sulfate dihydrate from acidic wastewater and lime[J]. Chinese Journal of Chemical Engineering, 2013, 21:1303-1312. doi: 10.1016/S1004-9541(13)60626-6

    [43]

    黄思静, 杨俊杰, 张文正, 黄月明, 刘桂霞, 肖林萍. 石膏对白云岩溶解影响的实验模拟研究[J]. 沉积学报, 1996, 14(1):103-109.

    HUANG Sijing, YANG Junjie, ZHANG Wenzheng, HUANG Yueming, LIU Guixia, XIAO Linping. Effects of gypsum on dissolution of dolomite under different temperatures and pressures of epigenesis and burial diagenesis[J]. Acta Sedimentologica Sinica, 1996, 14(1):103-109.

    [44]

    闫志为, 张志卫, 王佳佳. 硫酸水对方解石和白云石矿物的溶蚀作用[J]. 水资源保护, 2009, 25(2):79-81. doi: 10.3969/j.issn.1004-6933.2009.02.021

    YAN Zhiwei, ZHANG Zhiwei, WANG Jiajia. Corrosion of calcite and dolomite in sulfuric acid water[J]. Water Resources Protection, 2009, 25(2):79-81. doi: 10.3969/j.issn.1004-6933.2009.02.021

    [45]

    闫志为. 硫酸根离子对方解石和白云石溶解度的影响[J]. 中国岩溶, 2008, 27(1):24-31. doi: 10.3969/j.issn.1001-4810.2008.01.005

    YAN Zhiwei. Influences of SO42− on the solubility of calcite and dolomite[J]. Carsologica Sinica, 2008, 27(1):24-31. doi: 10.3969/j.issn.1001-4810.2008.01.005

    [46]

    Schwertmann U, Bigham J M, Murad E. The first occurrence of schwertmannite in a natural stream environment[J]. Eur J Miner, 1995, 7:547-552. doi: 10.1127/ejm/7/3/0547

    [47]

    Bigham J M, Schwertmann U, Traina S J, et al. S chwertmannite and the chemical modelin of iron in acid sulfate waters[J]. Geochim Cosmochim Acta, 1996, 60:2111-2121. doi: 10.1016/0016-7037(96)00091-9

    [48]

    岳梅, 赵峰华, 孙红福, 任德贻. 煤矿酸性水中亚稳态矿物Schwertmannite 的形成与转变[J]. 矿物学报, 2006, 26(1):43-46. doi: 10.3321/j.issn:1000-4734.2006.01.008

    YUE Mei, ZHAO Fenghua, SUN Hongfu, REN Deyi. THE formation and transition of The metastable mineral schwertmannite in acid drainage from caol mine[J]. Acta Mineralogica Sinica, 2006, 26(1):43-46. doi: 10.3321/j.issn:1000-4734.2006.01.008

  • 加载中

(7)

(2)

计量
  • 文章访问数:  1610
  • PDF下载数:  22
  • 施引文献:  0
出版历程
收稿日期:  2022-01-10
刊出日期:  2022-08-25

目录