岩溶水库热结构变化对水体溶解无机碳及其同位素的影响过程

李大帅, 吴少景, 李建鸿, 张陶. 岩溶水库热结构变化对水体溶解无机碳及其同位素的影响过程[J]. 中国岩溶, 2022, 41(2): 183-196. doi: 10.11932/karst2022y02
引用本文: 李大帅, 吴少景, 李建鸿, 张陶. 岩溶水库热结构变化对水体溶解无机碳及其同位素的影响过程[J]. 中国岩溶, 2022, 41(2): 183-196. doi: 10.11932/karst2022y02
LI Dashuai, WU Shaojing, LI Jianhong, ZHANG Tao. Influence process of thermal structure variations of a karst water reservoir on dissolved inorganic carbon and its stable carbon isotope[J]. Carsologica Sinica, 2022, 41(2): 183-196. doi: 10.11932/karst2022y02
Citation: LI Dashuai, WU Shaojing, LI Jianhong, ZHANG Tao. Influence process of thermal structure variations of a karst water reservoir on dissolved inorganic carbon and its stable carbon isotope[J]. Carsologica Sinica, 2022, 41(2): 183-196. doi: 10.11932/karst2022y02

岩溶水库热结构变化对水体溶解无机碳及其同位素的影响过程

  • 基金项目: 中国地质科学院基本科研业务费项目(2017006,2020004);国家自然科学基金项目(41977166,41907172,41572234);广西自然科学基金项目(2017GXNSFFA198006)
详细信息
    作者简介: 李大帅(1994-),男,硕士研究生,主要研究方向:岩溶环境学与碳循环。E-mail:Bigshuai0220karst@163.com
    通讯作者: 李建鸿(1988-),男,助理研究员,博士,研究方向:岩溶环境、岩溶水文地球化学等。E-mail:jianhonglikarst@163.com
  • 中图分类号: P641;TV697.2

Influence process of thermal structure variations of a karst water reservoir on dissolved inorganic carbon and its stable carbon isotope

More Information
  • 以中国南方亚热带地区典型的地下水补给型水库——大龙洞水库为对象,于2018年1月、4月、7月、10月、12月分别在上、中、下游三个监测点进行采样,探究水库热结构变化对于水体无机碳及其同位素的影响过程及机理。结果表明:(1)大龙洞水库水体在一个水文年中呈现周期性的混合期—分层期—混合期的热结构变化,4月热分层开始显现,7月逐渐显著呈现完整的热分层,10月以后热分层逐渐消失,水体逐渐实现混合;(2)水体热分层是溶解无机碳(DIC)浓度与碳稳定同位素(δ13CDIC)值变化的主要驱动力。表水层中DIC主要受水—气界面二氧化碳脱气、水生生物光合作用控制,其DIC浓度与δ13CDIC值分别为3.22 mmol·L−1和−9.15‰;温跃层中DIC主要受有机质降解过程影响,其DIC浓度与δ13CDIC值分别为3.43 mmol·L−1和−9.70‰;底水层中DIC主要受碳酸盐沉淀过程影响,其DIC浓度与δ13CDIC值分别为4.32 mmol·L−1和−11.89‰;(3)三种过程伴随水库热结构的变化而变化,驱动DIC浓度及其同位素的变化梯度 G (DIC)与 G13CDIC)的变化,表现为底水层<表水层<温跃层。热分层结束进入混合期后,DIC浓度与δ13CDIC值的时空差异均逐渐消失,最终表现出DIC浓度与δ13CDIC值的均一化。

  • 加载中
  • 图 1  大龙洞水库采样点分布图

    Figure 1. 

    图 2  大龙洞水库水温分布

    Figure 2. 

    图 3  大龙洞水库各采样点水体表层DIC浓度与δ13CDIC值分布特征

    Figure 3. 

    图 4  大龙洞水库水体DIC及δ13CDIC季节变化图

    Figure 4. 

    图 5  大龙洞水库样品DIC浓度及δ13CDIC垂向分布

    Figure 5. 

    图 6  热分层期间各分层DIC浓度及δ13CDIC值变化梯度

    Figure 6. 

    图 7  大龙洞水库各采样点剖面二氧化碳分压分布

    Figure 7. 

    图 8  大龙洞水库各采样点水气界面CO2交换通量

    Figure 8. 

    图 9  大龙洞水库各采样点分层期间各水层DIC浓度及δ13CDIC值与主要指标相关关系

    Figure 9. 

    图 10  大龙洞水库各采样点剖面叶绿素分布

    Figure 10. 

    图 11  大龙洞水库各采样点剖面SIC与Ca2+浓度分布

    Figure 11. 

    表 1  监测期间各水层物理化学参数平均值

    Table 1.  Mean values of physical and chemical parameters of each water layer during monitoring

    位置T/pHDIC/δ13CDIC/Ca2+/DO/Chl-a/pCO2/SIC
    mmol·L−1mg·L−1mg·L−1μg·L−1μatm

    1月
    SU-Mix16.648.253.64−9.5568.809.2734.361072.160.85
    SM-Mix16.778.163.75−10.3574.008.2325.661339.140.80
    SD-Mix17.098.043.83−11.2973.437.1220.021763.480.69


    4月
    SU-E23.477.912.70−6.9548.006.7020.435255.040.28
    SM-E22.707.842.93−7.6152.676.2927.534347.720.32
    SM-H17.607.383.97−11.6470.671.4315.078917.200.06
    SD-E22.237.933.07−8.0154.677.4929.973614.850.42
    SD-H17.237.463.83−11.4971.331.6313.377139.430.13




    7月
    SU-E29.008.601.40−3.9623.009.9822.52215.410.54
    SU-T26.707.992.80−8.1550.008.0212.504384.210.39
    SU-H24.157.384.30−11.3089.006.582.9510550.320.27
    SM-E28.758.112.30−6.1843.009.6822.751758.550.49
    SM-T26.207.593.60−9.8363.007.3617.756356.100.30
    SM-H23.237.214.50−11.5382.003.104.6716852.670.08
    SD-E28.758.162.80−7.6850.0011.1721.801409.360.69
    SD-T26.057.633.85−11.1268.007.4023.607838.700.39
    SD-H21.737.164.30−12.3381.001.697.6516850.80−0.01

    10月
    SU-E22.827.633.51−10.7465.176.196.885528.570.30
    SM-E22.887.703.82−11.3970.006.789.605976.820.43
    SD-E22.977.663.83−10.9673.676.128.127099.000.42
    SD-H21.337.154.87−12.8590.331.091.4319570.080.06

    12月
    SU-Mix
    SM-Mix
    SD-Mix
    17.18
    17.38
    17.63
    8.20
    8.02
    7.92
    3.55
    3.59
    3.76
    −10.21
    −10.73
    −11.41
    77.20
    75.00
    79.43
    9.05
    7.47
    6.52
    23.50
    12.90
    8.60
    1178.11
    1791.03
    2441.43
    0.82
    0.67
    0.62
    注:SU(上游), SM(中游), SD(下游), E(表水层), T(温跃层), H(底水层),Mix(混合期)。
    下载: 导出CSV

    表 2  观测期间大龙洞水库各水层DIC浓度与δ13CDIC值变化梯度

    Table 2.  Gradient differences of DIC concentrations and δ13CDIC values at each water depth during study period (G (DIC), G (δ13CDIC)

    1月4月7月10月12月

    混合期


    表水层
    SU
    SM
    SD
    SU
    (0.04,0.23)
    (0.01,0.14)
    (0.01,0.16)



    (0.54,1.67)



    (0,0.82)



    (0.08,0.21)
    (0.01,0.03)
    (0.03,0.07)
    (0.01,0.02)
    SM(0.36,1.63)(0.56,1.68)(0.10,0.22)
    SD(0.38,1.53)(0.48,0.72)(0.09,0.23)

    温跃层
    SU(1.11,2.54)
    SM(0.48,1.23)
    SD(0.36,2.03)

    底水层
    SU(0.08,0.02)
    SM(0.04,0.06)(0.12,0.38)
    SD(0.02,0.17)(0.04,0.40)(0.12,0.01)
    下载: 导出CSV
  • [1]

    Barros N, Cole J J, Tranvik L J, Prairie Y T, Bastviken D, Huszar V. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude[J]. Nature Geoscience, 2011, 4(9):593-596. doi: 10.1038/ngeo1211

    [2]

    Dean W E, Gorham E. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands[J]. Geology, 1998, 26(6):535-538. doi: 10.1130/0091-7613(1998)026<0535:MASOCB>2.3.CO;2

    [3]

    Tranvik L J, Downing J A, Cotner J B, Loiselle S A, Striegl R G, Ballatore T J, Dillon P, Finlay K, Fortino K, Knoll L B. Lakes and reservoirs as regulators of carbon cycling and climate[J]. Limnology and Oceanography, 2009, 54(6):2298-2314.

    [4]

    Cole J J, Prairie Y T, Caraco N F, Mcdowell W H, Tranvik L J, Striegl R G, Duarte C M, Kortelainen P, Downing J A, Middelburg J J, Melack J. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 2007, 10(1):172-185. doi: 10.1007/s10021-006-9013-8

    [5]

    Aufdenkampe A K, Mayorga E, Raymond P A, Melack J M, Doney S C, Alin S R, Aalto R E, Yoo K. Riverine coupling of biogeochemical cycles between land,oceans,and atmosphere[J]. Frontiers in Ecology and the Environment, 2011, 9(1):53-60. doi: 10.1890/100014

    [6]

    Dynesium M, Nilsson C. Fragmentation and flow regulation of river systems in the northern third of the world[J]. Science, 1994, 266(5186):753-762. doi: 10.1126/science.266.5186.753

    [7]

    Jaramillo F, Destouni G. Local flow regulation and irrigation raise global human water consumption and footprint[J]. Science, 2015, 350(6265):1248-1251. doi: 10.1126/science.aad1010

    [8]

    Lehner B, Liermann C R, Revenga C, Smarty V R, Fekete B C, Crouzet P, Li P D, Endejan M, Frenken K, Magome J. High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management[J]. Frontiers in Ecology and the Environment, 2011, 9(9):494-502. doi: 10.1890/100125

    [9]

    Teodoru C R, DelGiorgio P A, Prairie Y T, Annick St-Pierre. Depositional fluxes and sources of particulate carbon and nitrogen in natural lakes and a young boreal reservoir in Northern Québec[J]. Biogeochemistry, 2013, 113(1-3):323-339. doi: 10.1007/s10533-012-9760-x

    [10]

    Wen Z D, Song K S, Shang Y X, Fang C, Li L, Lv L L, Lv X G, Chen L J. Carbon dioxide emissions from lakes and reservoirs of China: a regional estimate based on the calculated pCO2[J]. Atmospheric Environment, 2017, 170:71-81.

    [11]

    刘丛强, 汪福顺, 王雨春, 王宝利. 河流筑坝拦截的水环境响应: 来自地球化学的视角[J]. 长江流域资源与环境, 2009, 18(4):384-396. doi: 10.3969/j.issn.1004-8227.2009.04.015

    LIU Congqiang, WANG Fushu, WANG Yuchun, WANG Baoli. Responses of aquatic environment to river damming—from the geoche mical view[J]. Resources and Environment in the Yangtze Basin, 2009, 18(4):384-396. doi: 10.3969/j.issn.1004-8227.2009.04.015

    [12]

    Anderson L G, Jutterström S, Hjalmarsson S, Wåhlström I, Semiletov I P. Outgassing of CO2 from Siberian Shelf seas by terrestrial organic matter decomposition[J]. Geophysical Research Letters, 2009, 36:390-406.

    [13]

    van Geldern R, Schulte P, Mader M, Baier A, Barth J A. Spatial and temporal variations of pCO2, dissolved inorganic carbon and stable isotopes along a temperate karstic watercourse[J]. Hydrological Process, 2015, 29(1515):3423-3440.

    [14]

    Baehr M M, DeGrandpre M D. In situ pCO2 and O2 measurements in a lake during turnover and stratification[J]. Limnology and oceanography, 2004, 49(2):330-340. doi: 10.4319/lo.2004.49.2.0330

    [15]

    Aberg J, Jansson M, Jonsson A. Importance of water temperature and thermal stratification dynamics for temporal variation of surface water CO2 in a boreal lake[J]. Journal of Geophysical^ Research, 2010, 115(G02024).

    [16]

    Wang W, Li S L, Zhong J, Li C, Yi Y, Chen S, Ren Y. Understanding transport and transformation of dissolved inorganic carbon (DIC) in the reservoir system using δ13CDIC and water chemistry[J]. Journal of Hydrology, 2019, 574:193-201.

    [17]

    Khadka M B, Martin J B, Jin J. Transport of dissolved carbon and CO2 degassing from a river system in a mixed silicate and carbonate catchment[J]. Journal of Hydrology, 2014, 513:391-402.

    [18]

    Doctor D H, Kendall C, Sebestyen S D, Shanley J B, Ohte N, Boyer E W. Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream[J]. Hydrological Process, 2008, 22(14):2410-2423. doi: 10.1002/hyp.6833

    [19]

    赵登忠, 谭德宝, 李翀, 申邵洪. 隔河岩水库二氧化碳通量时空变化及影响因素[J]. 环境科学, 2017, 38(3):954-963.

    ZHAO Dengzhong, TAN Debao, LI Chong, SHEN Shaohong. Tempo-spatial variations and influential factors of carbon dioxide emissions from the geheyan reservoir over the qingjiang river basin, China[J]. Environmental Science, 2017, 38(3):954-963.

    [20]

    刘文, 蒲俊兵, 于奭, 章程, 区绎如, 袁道先, 杨会, 唐伟. 广西五里峡水库夏季溶解无机碳行为的初步研究[J]. 环境科学, 2014, 35(8):2959-2966.

    LIU Wen, PU Junbing, YU Shi, ZHANG Cheng, QU Yiru, YUAN Daoxian, YANG Hui, TANG Wei. Preliminary research on the feature of dissolved inorganic carbon in wulixia reservoir in summer, Guangxi, China[J]. Environmental Science, 2014, 35(8):2959-2966.

    [21]

    Miao Liu, Yunlin Zhang, Kun Shi. Thermal stratification dynamics in a large and deep subtropical reservoir revealed by high-frequency buoy data[J]. Science of the Total Environment, 2019, 651:614-624. doi: 10.1016/j.scitotenv.2018.09.215

    [22]

    Downing J A, Duarte C M. The global abundance and size distribution of lakes, ponds, and impoundments[J]. Limnology and oceanography, 2006, 51(5):2388-2397. doi: 10.4319/lo.2006.51.5.2388

    [23]

    黄思宇. 典型岩溶地下水补给型水库碳埋藏机制研究[D]. 北京: 中国地质科学院, 2020: 1-125.

    HUANG Siyu. Carbon Burial in a Typical Groundwater-fed Reservoir in Karst area[D]. Beijing: Chinese Academy of Geological Science, 2020: 1-125.

    [24]

    吴飞红, 蒲俊兵, 李建鸿, 张陶, 李丽, 黄思宇. 夏季热分层效应对典型岩溶水库水化学及溶解无机碳的影响[J]. 环境科学, 2017, 38(8):3210-3217.

    WU Feihong, PU Junbing, LI Jianhong, ZHANG Tao, LI Li, HUANG Siyu. Impacts of thermal stratification on the hydrochemistry and dissolved inorganic carbon in a typical karst reservoir in summer[J]. Environmental Science, 2017, 38(8):3210-3217.

    [25]

    李建鸿, 蒲俊兵, 袁道先, 刘文, 肖琼, 于奭, 张陶, 莫雪, 孙平安, 潘谋成. 岩溶区地下水补给型水库表层无机碳时空变化特征及影响因素[J]. 环境科学, 2015, 36(8):2833-2842.

    LI Jianhong, PU Junbing, YUAN Daoxian, LIU Wen, XIAO Qiong, YU Shi, ZHANG Tao, MO Xue, SUN Pingan, PAN Moucheng. Variations of inorganic carbon and its impact factors in surface-layer waters in a groundwater-fed reservoir in karst area, SW China[J]. Environmental Science, 2015, 36(8):2833-2842.

    [26]

    Pu J, Li J, Zhang T, Martin J B, Yuan D. Varying thermal structure controls the dynamics of CO2 emissions from a subtropical reservoir, south China[J]. Water Research, 2020, 178:115831. doi: 10.1016/j.watres.2020.115831

    [27]

    Huang S H, Pu J B, Cao J H, Li J, Bai B. Origin and effect factors of sedimentary organic carbon in a karst groundwater-fed reservoir, south china[J]. Environmental Science and Pollution Research, 2018, 25(8):8497-8511.

    [28]

    张陶, 李建鸿, 蒲俊兵, 吴飞红, 李丽, 袁道先. 桂江流域夏季水气界面CO2脱气的空间变化及其影响因素[J]. 环境科学, 2017, 38(7):2773-2783.

    ZHANG Tao, LI Jianhong, PU Junbing, WU Feihong, LI Li, YUAN Daoxian. Spatial variations of CO2 degassing across water-air interface and its impact factors in summer in Guijiang river, China[J]. Environmental Science, 2017, 38(7):2773-2783.

    [29]

    Kelly C A, Rudd J W M, Bodaly R A, Roulet N P, Stlouis V L, Heyes A, Moore T R, Schiff S, Aravena R, Scott K J. Increases in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir[J]. Environmental Science and Technology, 1997, 31(5):1334-1344. doi: 10.1021/es9604931

    [30]

    Jacob K. 古滨河. 湖沼学: 内陆水生态系统[M]. 北京: 高等教育出版社, 2011: 154-180.

    Jacob K. Gu Binhe. Limnology: Inland aquatic ecosystems[M]. Beijing: Higher Education Press, 2011: 154-180.

    [31]

    Khairul Hasan, Kaosar Alam, Md Saidul Azam Chowdhury. The Use of an Aeration System to Prevent Thermal Stratification of Water Bodies: Pond, Lake and Water Supply Reservoir[J]. Applied Ecology and Environmental Sciences, 2014, 2(1):1-7.

    [32]

    Lewis W M Jr. A revised classification of lakes based on mixing[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1983, 40(10):1779-1787. doi: 10.1139/f83-207

    [33]

    Das A, Krishnaswami S, Bhattacharya S K. Carbon isotope ratio of dissolved inorganic carbon (DIC) in rivers draining the Deccan Traps, India: Sources of DIC and their magnitudes[J]. Earth and planetary science Letters, 2005, 236(1-2):419-429. doi: 10.1016/j.jpgl.2005.05.009

    [34]

    Khadka M B, Martin J B, Jin J. Transport of dissolved carbon and CO2 degassing from a river system in a mixed silicate and carbonate catchment[J]. Journal of Hydrology, 2014, 513:391-402. doi: 10.1016/j.jhydrol.2014.03.070

    [35]

    Schindler D W. Recent advances in the understanding and management of eutrophication[J]. Limnology and Oceanography, 2006, 51(1, part 2):356-363.

    [36]

    Reynolds C S, Irish A E, Elliott J A. The ecological basis for simulating phytoplankton responses to environmental change (PROTECH)[J]. Ecological Modelling, 2001, 140(3):271-291. doi: 10.1016/S0304-3800(01)00330-1

    [37]

    Gamier J, Billen G, Coste M. Seasonal succession of diatoms and Chlorophyceae in the drainage network of the Seine River: observation and modeling[J]. Limnology and Oceanography, 1995, 40(4):750-765. doi: 10.4319/lo.1995.40.4.0750

    [38]

    Yao G R, Gao Q Z, Wang Z G, Huang X, Tong Y, Zhang Y, Jiao S, Jian D. Dynamics of CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River, a subtropical monsoon river in China[J]. Science of the Total Environment, 2007, 376(1-3):255-266. doi: 10.1016/j.scitotenv.2007.01.080

    [39]

    Guo J H, Wang F S, Vogt R D, Zhang Y, Liu C Q. Anthropogenically enhanced chemical weathering and carbon evasion in the Yangtze Basin[J]. Scientific Reports, 2015, 5(1):11941. doi: 10.1038/srep11941

    [40]

    Wang X D, Yang S Y, Ran X B, Liu X M, Bataille, Clement. Response of the Changjiang (Yangtze River) water chemistry to the impoundment of Three Gorges Dam during 2010–2011[J]. Chemical Geology, 2018, 487:1-11.

    [41]

    Bardhan P, Naqvi S W A, Karapurkar S G, Shenoy D M, Kurian S, Naik H. Isotopic composition of nitrate and particulate organic matter in a pristine dam reservoir of western India: implications for biogeochemical processes[J]. Biogeosciences, 2017, 14(4):767-779. doi: 10.5194/bg-14-767-2017

    [42]

    Maberly S C, Barker P A, Stott A W, Ville M D. Catchment productivity controls CO2 emissions from lakes[J]. Nature Climate Change, 2012, 3(4):391-394.

    [43]

    Raymond P A, Hartmann J, Lauerwald R, Sobek S, Guth P. Global carbon dioxide emissions from inland waters[J]. Nature, 2013, 503(7476):355-359. doi: 10.1038/nature12760

    [44]

    De V M, Martin J B, Cohen M J, Foster C, Kurz M J. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river[J]. Chemical Geology, 2011, 283(1-2):31-43.

    [45]

    Hartley A M, House W A, Leadbeater B S, Callow M E. The use of microelec trodes to study the precipitation of calcite upon algal biofilms[J]. Journal of Colloid and Interface Science, 1996, 183(2):498-505. doi: 10.1006/jcis.1996.0573

  • 加载中

(11)

(2)

计量
  • 文章访问数:  1478
  • PDF下载数:  62
  • 施引文献:  0
出版历程
收稿日期:  2020-12-01
刊出日期:  2022-04-25

目录