山西娘子关泉群及其水的来源

唐春雷, 梁永平, 晋华, 申豪勇, 赵春红, 王志恒, 谢浩, 赵一, 王士娜. 山西娘子关泉群及其水的来源[J]. 中国岩溶, 2022, 41(2): 174-182. doi: 10.11932/karst20220201
引用本文: 唐春雷, 梁永平, 晋华, 申豪勇, 赵春红, 王志恒, 谢浩, 赵一, 王士娜. 山西娘子关泉群及其水的来源[J]. 中国岩溶, 2022, 41(2): 174-182. doi: 10.11932/karst20220201
TANG Chunlei, LIANG Yongping, JIN Hua, SHEN Haoyong, ZHAO Chunhong, WANG Zhiheng, XIE Hao, ZHAO Yi, WANG Shina. Niangziguan spring group in Shanxi Province and its water source[J]. Carsologica Sinica, 2022, 41(2): 174-182. doi: 10.11932/karst20220201
Citation: TANG Chunlei, LIANG Yongping, JIN Hua, SHEN Haoyong, ZHAO Chunhong, WANG Zhiheng, XIE Hao, ZHAO Yi, WANG Shina. Niangziguan spring group in Shanxi Province and its water source[J]. Carsologica Sinica, 2022, 41(2): 174-182. doi: 10.11932/karst20220201

山西娘子关泉群及其水的来源

  • 基金项目: 广西自然科学基金面上项目(2021GXNSFAA220071);国家自然科学基金项目(41672253);中国地质调查项目(DD20221758, DD20190334);中国地质科学院基本科研项目(2020010)
详细信息
    作者简介: 唐春雷(1984-),男,副研究员,研究方向:岩溶水文地球化学、岩溶生态环境修复。E-mail:yourfriendtcl@163.com
    通讯作者: 晋华(1969-),女,教授,博士生导师,研究方向:水文水资源、矿山环境地质。E-mail:jinhua@tyut.edu.cn
  • 中图分类号: P641

Niangziguan spring group in Shanxi Province and its water source

More Information
  • 娘子关泉域群泉是中国北方最大的岩溶泉,泉域汇水面积达7 436 km2,前人认为:泉域内岩溶水由北、西、南3面向娘子关一带径流汇集,由于娘子关一带下奥陶系燧石团块或条带白云岩相对隔水层隆起,并被桃河侵蚀出露,使岩溶地下水溢出地表成泉群,其主要含水层为中奥陶系含石膏碳酸盐岩。但各泉的水化学、同位素特征有差异,娘子关泉群并不是出自统一源。文章通过水化学、同位素、水文地质剖面等方法研究得出: 娘子关泉域存在两个含水层、三个子系统:中奥陶系灰岩含水层和中上寒武系白云岩含水层;西部奥陶系岩溶水系统、东部奥陶系岩溶水系统和东部中上寒武系岩溶水系统。泉域内城西泉与程家泉出露于中奥陶系下马家沟组泥灰岩之上,含水层为中奥陶系灰岩裂隙、溶隙水,由于区域下马家沟组泥灰岩隆起隔水出露地表成泉,属于东部奥陶系岩溶水系统;坡底泉、五龙泉、河北泉、水帘洞泉、苇泽关泉其补给主要来源于中上寒武系含水岩组,为承压上升泉,属于东部中上寒武系岩溶水系统。

  • 加载中
  • 图 1  娘子关泉域排泄区泉群分布图

    Figure 1. 

    图 2  娘子关泉流域水文地质图

    Figure 2. 

    图 3  岩溶地下水的Piper图

    Figure 3. 

    图 4  岩溶泉水Sr2+ 与Ca2+的关系

    Figure 4. 

    图 5  岩溶地下水δ34S 与${\rm{SO}}_4^{2-} $关系

    Figure 5. 

    图 6  岩溶地下水δD与δ18O关系

    Figure 6. 

    图 7  娘子泉域水文地质剖面图

    Figure 7. 

    表 1  岩溶地下水水化学特征

    Table 1.  Hydrochemical characteristics of karst groundwater

    编号类型pHCa2+Mg2+K+Na+ClSrδDδ18O34S水化学类型
    /mg·L−1/mg·L−1/mg·L−1/mg·L−1/mg·L−1/mg·L−1/mg·L−1/mg·L−1/‰/‰/‰
    N01左权石港村7.7098.724.61.511.711.1127.2244.50.86−68.0−9.218.2HCO3·SO4-Ca·Mg
    N02昔阳大寨水源
    地岩溶井
    7.5575.818.91.26.69.044.9262.00.38−74.6−10.27.2HCO3-Ca·Mg
    N03寿阳岩溶井7.21123.740.91.514.18.2284.4240.62.96−73.1−10.223.1HCO3·SO4-Ca·Mg
    N04小河村斜井岩溶井7.24235.045.74.9124.2111.1596.0320.21.17−61.3−8.24.7HCO3-Ca·Mg
    N05盂县岩溶井7.36291.644.41.695.034.9744.7359.01.26−67.3−9.118.1HCO3·SO4-Ca
    N06温池水源地岩溶井7.6090.622.60.99.612.290.4277.50.63−70.0−9.68.5HCO3·SO4-Ca·Mg
    N07河底镇岩溶井7.08312.585.22.031.040.2816.5293.01.89−65.5−8.812.8SO4-Ca·Mg
    N08神子山岩溶井7.5682.325.01.311.712.368.8262.90.54−70.5−9.53.7HCO3-Ca·Mg
    N09程家泉岩溶井7.28165.545.16.5128.9125.7405.8291.10.79−62.2−8.25.3HCO3·SO4-Ca·Na
    N10坡底泉7.35135.241.82.142.955.7271.8263.92.14−71.6−9.515.5HCO3·SO4-Ca·Mg
    N11城西泉7.40112.134.82.139.548.0185.6260.01.59−67.1−9.19.2HCO3·SO4-Ca·Mg
    N12五龙泉7.36131.439.72.142.155.7251.7263.91.97−69.3−9.416.7HCO3·SO4-Ca·Mg
    N13河北泉7.32134.141.22.143.157.7262.0267.82.10−69.9−9.417.4HCO3·SO4-Ca·Mg
    N14苇泽关泉7.19134.542.22.144.657.8268.2265.82.09−70.5−9.617.8HCO3·SO4-Ca·Mg
    N15水帘洞泉7.31135.042.02.144.557.9267.3265.82.10−70.1−9.517.4HCO3·SO4-Ca·Mg
    N16禁区泉7.47134.542.32.144.258.0266.6263.92.12−70.6−9.517.5HCO3·SO4-Ca·Mg
    N17滚泉7.44134.242.22.144.058.2269.9262.02.07−70.4−9.616.7HCO3·SO4-Ca·Mg
    下载: 导出CSV
  • [1]

    沈照理, 王焰新. 水—岩相互作用研究的回顾与展望[J]. 地球科学, 2002, 27(2):127-133.

    SHEN Zhaoli, WANG Yanxin. Review and Outlook of Water Rock Interaction Studies[J]. Earth Science, 2002, 27(2):127-133.

    [2]

    王焰新, 马腾, 郭清海, 马瑞. 地下水与环境变化研究[J]. 地学前缘, 2005(S1):14-21.

    WANG Yanxin, MA Teng, GUO Qinghai, MA Rui. Groundwater and environmental change[J]. Earth Science Frontiers, 2005(S1):14-21.

    [3]

    袁道先. 中国岩溶地球化学研究的进展[J]. 水文地质工程地质, 1990(5):41-42.

    YUAN Daoxian. Advances in Karst geochemistry in China[J]. Hydrogeology & Engineering Geology, 1990(5):41-42.

    [4]

    唐春雷, 梁永平, 王维泰, 赵春红,申豪勇. 龙子祠泉域岩溶水水化学—同位素特征[J]. 桂林理工大学学报, 2017, 37(1):53-58. doi: 10.3969/j.issn.1674-9057.2017.01.007

    TANG Chunlei, LIANG Yongping, WANG Weitai, ZHAO Chunhong,SHEN Haoyong. Hydrogeochemical and isotopic Characteristic of the karst Groundwater Systems, in Longzici spring basin[J]. Journal of Guilin University of Technology, 2017, 37(1):53-58. doi: 10.3969/j.issn.1674-9057.2017.01.007

    [5]

    Q Xiao, Y Jiang, L Shen, D Yuan. Origin of calcium sulfate-type water in the Triassic carbonate thermal water system in Chongqing, China: A chemical and isotopic reconnaissance[J]. Applied Geochemistry, 2018, 89:49-58. doi: 10.1016/j.apgeochem.2017.11.011

    [6]

    W Smykatz-Kloss, H Kossl, H Hotzl. The gypsum karst area of Foum Tatahouine, Southern Tunisia: Mineralogy and hydrogeochemistry[J]. Chemical Geology, 1990, 84(1):206-207.

    [7]

    M A Schiavo, S Hauser, P P Povinec. Stable isotopes of water as a tool to study groundwater-seawater interactions in coastal south-eastern Sicily[J]. Journal of Hydrology, 2009, 364(1):40-49.

    [8]

    M Musgrove, L A Stern, J L Banner. Springwater geochemistry at Honey Creek State Natural Area, central Texas: Implications for surface water and groundwater interaction in a karst aquifer[J]. Journal of Hydrology, 2010, 388(1):144-156.

    [9]

    唐春雷, 王桃良, 王维泰, 赵春红. 极端降水条件下北京西山黑龙关泉响应研究[J]. 水文, 2016, 36(6):70-75.

    TANG Chunlei, WANG Taoliang, WANG Weitai, ZHAO Chunhong. Response of Heilongguan Spring to Extreme Precipitation in Xishan Mountain Area, Beijing[J]. Journal of China Hydrology, 2016, 36(6):70-75.

    [10]

    唐春雷, 郑秀清, 梁永平, 张发旺,景泽. 山西太原晋祠—平泉水力联系及对晋祠泉复流的贡献[J]. 中国地质, 2020, 47(6):1755-1764. doi: 10.12029/gc20200612

    TANG Chunlei, ZHENG Xiuqing, LIANG Yongping, ZHANG Fawang,JING Ze. The hydraulic connection between Jinci and Pingquan in Taiyuan and its contribution to the reflow of Jinci spring[J]. Geology in China, 2020, 47(6):1755-1764. doi: 10.12029/gc20200612

    [11]

    高旭波, 王万洲, 侯保俊, 高列波,张建友,张松涛,李成城,姜春芳. 中国北方岩溶地下水污染分析[J]. 中国岩溶, 2020, 39(3):287-298.

    GAO Xubo, WANG Wanzhou, HOU Baojun, GAO Liebo, ZHANG Jianyou, ZHANG Songtao, LI Chengcheng, JIANG Chunfang. Analysis of karst groundwater pollution in northern China[J]. Carsologica Sinica, 2020, 39(3):287-298.

    [12]

    梁永平, 韩行瑞. 优化技术在娘子关泉域岩溶地下水开采资源量评价与管理中的应用[J]. 水文地质工程地质, 2006(4):67-71. doi: 10.3969/j.issn.1000-3665.2006.04.017

    LIANG Yongping, HAN Xingrui. Application of optimal technique to evaluation of expl oitable karstwater resources and its management in Niangziguan spring basin[J]. Hydrogeology& Engineering Geology, 2006(4):67-71. doi: 10.3969/j.issn.1000-3665.2006.04.017

    [13]

    刘再华. 娘子关泉群水的来源再研究[J]. 中国岩溶, 1989, 8(8):22-29.

    LIU Zaihua. Restudy on the Source of Niangziguan springs[J]. Carsologica Sinica, 1989, 8(8):22-29.

    [14]

    李义连, 王焰新, 周来茹, 高红波,张江华. 地下水矿物饱和度的水文地球化学模拟分析: 以娘子关泉域岩溶水为例[J]. 地质科技情报, 2002, 21(1):32-36.

    LI Yilian, WANG Yanxin, ZHOU Lairu, GAO Hongbo,ZHANG Jianghua. Hydrogeochemical Modeling on Saturation of minerals in Groundwater: A case study at Niangziguan, Northern China[J]. Geological Science and Technology Information, 2002, 21(1):32-36.

    [15]

    袁道先. 我国北方岩溶研究的形势和任务[J]. 中国岩溶, 2010, 29(3):219-221. doi: 10.3969/j.issn.1001-4810.2010.03.001

    YUAN Daoxian. The situation and tasks for northern karst research of our country[J]. Carsologica Sinica, 2010, 29(3):219-221. doi: 10.3969/j.issn.1001-4810.2010.03.001

    [16]

    赵春红, 梁永平,卢海平,唐春雷,申豪勇,王志恒. 娘子关泉域岩溶水SO42−δ34S特征及其环境意义[J]. 中国岩溶, 2019, 38(6):867-875.

    ZHAO Chunhong, LIANG Yongping,LU Haiping,TANG Chunlei,SHEN Haoyong,WANG Zhiheng. Chemical characteristics and environmental significance of SO42− and sulfur isotope in the karst watershed of the Niangziguan spring, Shanxi Province[J]. Carsologica Sinica, 2019, 38(6):867-875.

    [17]

    梁永平, 高洪波, 张江华, 等. 娘子关泉流量衰减原因的初步定量化分析[J]. 中国岩溶, 2005, 34(3): 227-231. doi: 10.3969/j.issn.1001-4810.2005.03.011

    LIANG Yongping, GAO Hongbo, ZHANG Jianghua, et al. Preliminary quantitative analysis on the causes of discharge attenuation in Niangziguan spring. [J]. Carsologica Sinica, 2005, 34 (3): 227-231. doi: 10.3969/j.issn.1001-4810.2005.03.011

    [18]

    梁永平, 赵春红, 唐春雷, 申豪勇,王志恒,郭芳芳. 山西娘子关泉水及污染成因再分析[J]. 中国岩溶, 2017, 36(5):633-640.

    LIANG Yongping, ZHAO Chunhong, TANG Chunlei, SHEN Haoyong,WANG Zhiheng,GUO Fangfang. Reanalysis of spring water and its pollution causes of the Niangziguan spring in Shanxi[J]. Carsologica Sinica, 2017, 36(5):633-640.

    [19]

    唐春雷, 晋华, 梁永平, 赵春红,申豪勇,潘尧云,景泽. 娘子关泉域岩溶地下水位变化特征及成因[J]. 中国岩溶, 2020, 39(6):810-816.

    TANG Chunlei, JIN Hua, LIANG Yongping,ZHAO Chunhong, SHEN Haoyong,PAN Yaoyun,JING Ze. Characteristics and Formation causes of Karst Groundwater Level variation in Niangziguan Spring Area[J]. Carsologica Sinica, 2020, 39(6):810-816.

    [20]

    C Tang, H Jin, Y Liang. Using Isotopic and Hydrochemical Indicators to Identify Sources of Sulfate in Karst Groundwater of the Niangziguan Spring Field, China[J]. Water, 2021, 13(3):390. doi: 10.3390/w13030390

    [21]

    B Capaccioni, O Vaselli, F Tassi, A P Santo,A D Huertas. Hydrogeochemistry of the thermal waters from the Sciacca Geothermal Field (Sicily, southern Italy)[J]. Journal of Hydrology, 2011, 396(3):292-301.

    [22]

    R Ma, Y Wang, Z Sun, C Zheng,T Ma,H Prommer. Geochemical evolution of groundwater in carbonate aquifers in Taiyuan, northern China[J]. Applied Geochemistry, 2011, 26(5):884-897. doi: 10.1016/j.apgeochem.2011.02.008

    [23]

    C Kohfahl, C Sprenger, J B Herrera, H Meyer,F F Chacón,A Pekdeger. Recharge sources and hydrogeochemical evolution of groundwater in semiarid and karstic environments: A field study in the Granada Basin (Southern Spain)[J]. Applied Geochemistry, 2008, 23(4):846-862. doi: 10.1016/j.apgeochem.2007.09.009

    [24]

    S Pasvanoğlu. Hydrogeochemistry of thermal and mineralized waters in the Diyadin (Ağri) area, Eastern Turkey[J]. Applied Geochemistry, 2013, 38:70-81. doi: 10.1016/j.apgeochem.2013.08.010

    [25]

    N Keul, G Langer, S Thoms, L J de Nooijer,G J Reichart,J Bijma. Exploring foraminiferal Sr/Ca as a new carbonate system proxy[J]. Geochimica et Cosmochimica Acta, 2017, 202:374-386. doi: 10.1016/j.gca.2016.11.022

    [26]

    唐春雷, 郑秀清, 梁永平. 龙子祠泉域岩溶地下水水化学特征及成因[J]. 环境科学, 2020, 41(5):2087-2095.

    TANG Chunlei, ZHENG Xiuqing, LIANG Yongping. Hydrochemical Characteristics and Formation Causes of Ground Karst Water Systems in the Longzici Spring Catchment[J]. Environmental Science, 2020, 41(5):2087-2095.

    [27]

    J Zhou, Q Zhang, F Kang, Y Zhang,L Yuan,D Wei,S Lin. Using multi-isotopes (34S, 18O, 2H) to track local contamination of the groundwater from Hongshan-Zhaili abandoned coal mine, Zibo city, Shandong province[J]. International Biodeterioration & Biodegradation, 2018, 128:48-55.

    [28]

    H Mohammadzadeh, R Aravena. Investigating the Origin and Interaction between Karstic and Alluvial Aquifers in NW of Zagros Mountain Range, Iran, Using Isotopic and Geochemical Tools[J]. Procedia Earth and Planetary Science, 2015, 13:256-260. doi: 10.1016/j.proeps.2015.07.060

    [29]

    F Xu, H Yuan, G Xu, X Luo. Fluid charging and hydrocarbon accumulation in the Cambrian Long wangmiao Formation of Moxi Structure, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(3):442-451. doi: 10.1016/S1876-3804(18)30049-1

    [30]

    I Herms, J Jódar, A Soler, I Vadillo,L J Lambán,S Martos-Rosillo,J A Núñez,G Arnó,J Jorge. Contribution of isotopic research techniques to characterize high-mountain-Mediterranean karst aquifers: The Port del Comte (Eastern Pyrenees) aquifer[J]. Science of The Total Environment, 2019, 656:209-230. doi: 10.1016/j.scitotenv.2018.11.188

    [31]

    E S B Santiago, R P Xavier, S G Hagemann, L V S Monteiro,J Cliff. Multiple sulfur isotopes constraints on origin and evolution of the Neoarchean and Paleoproterozoic Cu-Au systems from the Carajás Domain, Amazonian Craton, Brazil[J]. Ore Geology Reviews, 2020, 1038:72.

    [32]

    C Erarslan, Y Örgün, N Balcı. Source and distribution of pyrite and inorganic sulfur isotopes in the Saray and Pınarhisar Coalfields, North Thrace Basin, Turkey[J]. International Journal of Coal Geology, 2020:227.

    [33]

    B Yang, J Liu, X Shi, H Zhang,X Wang,Y Wu,X Fang. Mineralogy and sulfur isotope characteristics of metalliferous sediments from the Tangyin hydrothermal field in the southern Okinawa Trough[J]. Ore Geology Reviews, 2020:120.

    [34]

    唐春雷, 赵春红, 申豪勇, 梁永平,王志恒. 娘子关泉群水化学特征及成因[J]. 环境科学, 2021, 42(3):1416-1423.

    TANG Chunlei, ZHAO Chunhong, SHEN Haoyong,LIANG Yongping,WANG Zhiheng. Chemical Characteristics and Causes of Groups Water in Niangziguan Spring[J]. Environmental Science, 2021, 42(3):1416-1423.

    [35]

    杨振华. 浅议矿区水文地质钻探工作[J]. 冶金管理, 2020(3):160,162.

    YANG Zhenhua. Discussion on hydrogeological drilling in mining area[J]. China Steel Focus, 2020(3):160,162.

    [36]

    王磊. 水文地质钻探在土壤调查采样中的应用[J]. 黑龙江科学, 2020, 11(8):48-49. doi: 10.3969/j.issn.1674-8646.2020.08.023

    WANG Lei. The Application of Hydrogeologic Drilling in the Sampling Survey of Soil Pollution[J]. Heilongjiang science, 2020, 11(8):48-49. doi: 10.3969/j.issn.1674-8646.2020.08.023

    [37]

    朱静静, 周宏. 水文地质剖面分析在岩溶水系统研究中的应用: 以鄂西响水洞岩溶水系统为例[J]. 安全与环境工程, 2017, 24(3):1-7,19.

    ZHU Jingjing, ZHOU Hong. Application of Hydro geological Profile Analysis to Karst Water System A Case Study on Xiangshuidong Karst Water System in Western Hubei Province[J]. Safety and Environmental Engineering, 2017, 24(3):1-7,19.

    [38]

    蔡强, 王一楠. 基于组件式GIS的水文地质剖面图自动生成方法研究[J]. 中小企业管理与科技, 2017(5):141-142. doi: 10.3969/j.issn.1673-1069.2017.05.088

    CAI Qiang, WANG Yinan. Research on Automatic Generation of Hydro geological Profile Based on Component GIS[J]. Management & Technology of SME, 2017(5):141-142. doi: 10.3969/j.issn.1673-1069.2017.05.088

    [39]

    刘广英. 巨城地堑对石太客运专线线路方案的影响[J]. 铁道勘察, 2004(6):27-29. doi: 10.3969/j.issn.1672-7479.2004.06.009

    LIU Guangying. Impact of Jucheng Graben on Railroad Engineering[J]. Railway Investigation and Surveying, 2004(6):27-29. doi: 10.3969/j.issn.1672-7479.2004.06.009

    [40]

    郝永红, 黄登宇, 刘洁,王学萌. 娘子关泉域降水补给的时滞研究[J]. 中国岩溶, 2003, 22(2):11-14.

    HAO Yonghong, HUANG Dengyu, LIU Jie, WANG Xuemeng. Study on time lag of precipitation recharge in Niangziguan Spring Area[J]. Carsologica Sinica, 2003, 22(2):11-14.

    [41]

    孙志鸿. 娘子关泉域泉口区岩溶水文地质特征分析[J]. 山西水利科技, 2017(3):51-53,61. doi: 10.3969/j.issn.1006-8139.2017.03.019

    SUN Zhihong. Analysis on the Karst Hydrogeology Character of the Niangziguan Spring Exit Region[J]. Shanxi Hydrotechnics, 2017(3):51-53,61. doi: 10.3969/j.issn.1006-8139.2017.03.019

  • 加载中

(7)

(1)

计量
  • 文章访问数:  1478
  • PDF下载数:  28
  • 施引文献:  0
出版历程
收稿日期:  2021-04-06
刊出日期:  2022-04-25

目录