-
摘要:
方解石的溶解与沉淀是各种岩溶地质作用的基础,但对其在不同水环境条件下的溶解过程和溶解度有待深入研究。文章通过实验研究了天然方解石(CaCO3)在不同水环境中的溶解作用。结果表明,方解石在纯净水、空气饱和水、CO2饱和水、初始pH=3的溶液和初始pH=9的溶液中溶解时,Ca浓度随着溶解时间的增加呈现缓慢升高并趋于稳定,在溶解4 080 h后达到0.444 4~0.469 6 mmol·L−1、0.402 0~0.415 4 mmol·L−1、0.573 9~0.659 7 mmol·L−1、1.098 1 mmol·L−1和0.448 9 mmol·L−1;方解石(CaCO3)在纯净水中溶解时溶度积(Ksp)为10−8.48±0.08~10−8.48±0.13,吉布斯生成自由能ΔGf˚[CaCO3]为−1 129.82±0.51~−1 129.87±0.76 kJ·mol−1。在天然水中溶解时,桂林漓江水中Ca和Mg的浓度在达到饱和状态后呈现下降趋势;广西北海海水相对于碳酸盐矿物处于饱和或过饱和状态;桂林雁山和丫吉地下水相对于方解石、文石和白云石处于饱和或过饱和状态。研究结果进一步证明了水环境对方解石溶解的显著影响,研究结果可为岩溶地质作用的地球化学模拟提供参考。
Abstract:Dissolution and precipitation of calcite are the basis of various karst geological processes, but the dissolution process and solubility of calcite under different water environmental conditions need to be further studied. In this paper, the dissolution of natural calcite (CaCO3) was studied in different types of water at room temperature. The analysis of chemical composition and the characterization of X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM) showed that when calcite respectively dissolved in pure water, air-saturated water, CO2-saturated water, the HCl solution of initial pH=3 and the NaOH solution of initial pH=9, both of its chemical composition and crystal structure did not change significantly; the aqueous Ca concentrations increased with time and attained an equilibrium or steady state, respectively reaching the values of 0.4444-0.4696 mmol·L−1, 0.4020-0.4154 mmol·L−1, 0.5739-0.6597 mmol·L−1, 1.0981 mmol·L−1 and 0.4489 mmol·L−1, 4,080 hours after dissolution. For the dissolution of calcite in pure water, air-saturated water, CO2-saturated water and the HCl solution of initial pH=3, the pH values increased with time and reached 8.06-8.40 at the end of test. For the dissolution in the NaOH solution of initial pH=9, the pH values increased rapidly to 9.71 with time, and then decreased slowly to an equilibrium or stable state around 8.31. The calculation results with the PHREEQC software indicated that after the dissolution in pure water, air-saturated water, CO2-saturated water, the HCl solution of initial pH=3 and the NaOH solution of initial pH=9 for 2,640−4,080 hours, the aqueous solutions were undersaturated with all the possible minerals and did not precipitate to form aragonite (Saturation Index, SI=−0.09-−0.30), dolomite (SI=−2.03-−3.79), magnesite (SI=−3.00-−4.77) and other carbonate minerals. The solubility product (Ksp) and the Gibbs free energy of formation (ΔGf˚) for calcite (CaCO3) were estimated from the dissolution in pure water to be 10−8.48±0.08−10-8.48±0.13 and 1,129.82±0.51-−1,129.87±0.76 kJ·mol−1, respectively. The solubility product (Ksp) of calcite (10−8.48) is higher than that of rhodochrosite (10−10.58), otavite (10−12), spherocobaltite (10−9.98) and smithsonite (10−10), indicating that the carbonate precipitation method can be applied to fix heavy metals such as Mn, Cd, Co and Zn in soils and waters, which can effectively reduce their mobility and bioavailability in the environment. After dissolution in the seawater collected from Guangxi Beihai and the groundwater from Guilin Yanshan for 4,080 hours, the surface scanning analysis of Energy Dispersive Spectrometer (EDS) showed that calcite samples contained the components of (Ca0.96Mg0.06) CO3 and (Ca0.99Mg0.01) CO3, respectively. The slight increase in Mg content was related to the higher Mg concentration in the seawater (1,056 mg·L−1) and the groundwater (6.70 mg·L−1). In general, after 4,080 hours of dissolution, the pH variation in different types of natural water was listed in the order of river water (10.31) > seawater (8.80) > groundwater (8.03-8.28); the variation of Ca concentrations in different types of natural water was listed in the order of seawater > groundwater > river water; the variation of the total concentrations of HCO3+CO3 was in the order of groundwater > seawater > river water. For the dissolution in natural water, Ca and Mg concentrations in the river water collected from Guilin Lijiang River initially increased to a steady state and then decreased; the SI values of calcite, aragonite and dolomite increased slowly with time, and attained a saturated or oversaturated state after 1,680-hour, 1,920-hour and 2,160-hour, respectively. Thedecrease in Ca and Mg concentrations of the river water indicated that the precipitation of calcite, aragonite and dolomite might occur. For the dissolution in the seawater collected from Guangxi Beihai, the seawater was always saturated or oversaturated with calcite, aragonite, dolomite and magnesite, and the SI values decreased slowly at the beginning and then increased slowly after 720 hours, and finally repectively reached 0.84-1.06, 0.65-0.88, 2.40-2.95 and 0.60-0.76 after 2,640 hours. For the dissolution in the groundwater collected from Guilin Yanshan, the groundwater was always oversaturated or saturated with calcite and aragonite, while it was always saturated or undersaturated with dolomite and magnesite. The SI values decreased slowly at the beginning, then increased slowly after 720 hours, and finally reached 0.14-0.22, −0.06-0.02, −0.25-−0.03 and −1.36-−1.26, respectively after 2,640 hours. For the dissolution in the groundwater collected from Guilin Yaji, the groundwater was always oversaturated or saturated with calcite and aragonite, while it was always saturated or undersaturated with dolomite and magnesite. The SI values decreased slowly at the beginning and then increased slowly after 12 to 48 hours, but decreased slightly once again to a steady state after 480 hours and respectively reached 0.20-0.35, 0.02-0.15, −0.17-−0.04 and −1.50-−1.32 after 2,640 hours. The results further illustrate the significant influence of the water environment on calcite dissolution and can provide a reference for the geochemical simulation of karst geological processes.
-
Key words:
- calcite /
- dissolution /
- solubility product /
- Gibbs free energy of formation
-
表 1 地表水和地下水的理化特性
Table 1. Physicochemical characteristics of surface water and groundwater
样品 pH EC / μs·cm−1 浓度 / mg·L−1 Ca Mg Mn Fe Na K + Cl− 漓江水 7.49 134.9 20.37 1.52 − 0.05 2.60 1.29 57.81 3.92 4.76 10.29 北海海水 7.94 41 700 340.4 1 056 0.20 − 6 509 222 119.59 1478 − 2 114 雁山地下水 7.63 365 67.22 6.70 0.01 − 2.56 0.40 227.18 4.88 5.53 17.64 丫吉地下水 7.86 335 61.87 3.50 0.01 0.03 1.44 3.26 200.04 3.28 3.90 12.51 表 2 方解石(CaCO3)在不同水环境中的溶解(25 ℃)
Table 2. Dissolution of calcite (CaCO3) in different types of water at 25 ℃
样品号 溶解时间 / h pH 浓度 / mmol·L−1 log_IAP
(≈log_Ksp)
log_IAP平均值ΔGf° /
kJ·mol−1ΔGf°平均值 /
kJ·mol−1Ca HCO3+CO3 纯净水1 2 640 8.64 0.452 1 0.640 0 −8.42 −8.48 −1 129.52 −1 129.82 3 360 8.51 0.457 4 0.818 6 −8.44 ±0.08 −1 129.60 ±0.51 4 080 8.30 0.469 6 0.851 0 −8.56 −1 130.33 纯净水2 2 640 8.68 0.425 9 0.736 7 −8.35 −8.48 −1 129.11 −1 129.87 3 360 8.50 0.426 7 0.761 8 −8.50 ±0.13 −1 129.96 ±0.76 4 080 8.31 0.444 4 0.798 6 −8.60 −1 130.53 空气饱和水1 2 640 8.38 0.380 5 0.712 7 −8.39 −8.47 −1 129.31 −1 129.78 3 360 8.27 0.407 0 0.737 3 −8.48 ±0.08 −1 129.86 ±0.47 4 080 8.17 0.415 4 0.734 6 −8.54 −1 130.18 空气饱和水2 2 640 8.23 0.352 8 0.681 5 −8.41 −8.46 −1 129.45 −1 129.74 3 360 8.16 0.388 2 0.684 5 −8.46 ±0.05 −1 129.73 ±0.30 4 080 8.08 0.402 0 0.714 2 −8.51 −1 130.04 CO2饱和水1 2 640 8.68 0.568 1 1.037 3 −8.41 −8.50 −1 129.44 −1129.94 3 360 8.56 0.583 4 1.020 8 −8.48 ±0.10 −1 129.82 ±0.61 4 080 8.37 0.573 9 1.014 6 −8.60 −1 130.55 CO2饱和水2 2 640 8.74 0.661 7 1.208 9 −8.40 −8.51 −1 129.40 −1 130.03 3 360 8.55 0.681 4 1.217 1 −8.53 ±0.11 −1 130.15 ±0.63 4 080 8.40 0.659 7 1.173 3 −8.60 −1 130.53 pH=3溶液 2 640 8.25 1.107 3 0.805 6 −8.37 −8.46 −1 129.23 −1 129.74 3 360 8.11 1.103 3 0.796 9 −8.50 ±0.09 −1 129.98 ±0.51 4 080 8.06 1.098 1 0.797 0 −8.51 −1 130.01 pH=9溶液 2 640 8.70 0.404 7 0.785 5 −8.33 −8.46 −1 128.99 −1 129.73 3 360 8.51 0.438 9 0.797 3 −8.46 ±0.13 −1 129.75 ±0.74 4 080 8.31 0.4489 0.830 5 −8.58 −1 130.43 桂林漓江水 2 640 8.73 0.459 1 0.783 8 −7.90 −7.81 3 360 8.59 0.263 7 0.423 0 −7.95 ±0.22 4 080 8.80 0.236 0 0.427 9 −7.59 广西北海海水 2 640 9.12 8.759 2 1.7307 −7.45 −7.50 3 360 9.62 8.6831 1.5843 −7.61 ±0.11 4 080 10.31 8.679 3 1.467 3 −7.43 雁山校区地下水 2 640 8.05 1.004 8 2.085 0 −8.23 −8.28 3 360 8.01 0.964 1 1.886 9 −8.31 ±0.05 4 080 8.03 0.886 8 1.774 7 −8.30 桂林丫吉地下水 2 640 8.35 0.809 7 1.668 4 −8.10 −8.19 3 360 8.32 0.747 5 1.498 8 −8.19 ±0.09 4 080 8.28 0.663 2 1.324 9 −8.28 -
[1] 莫春梦, 黄芬, 胡晓农, 曹建华, 辛胜林, 张连凯. 硫酸和硝酸对桂林毛村碳酸盐岩溶蚀的室内模拟[J]. 中国岩溶, 2021, 40(4):608-616.
MO Chunmeng, HUANG Fen, HU Xiaonong, CAO Jianhua, XIN Shenglin, ZHANG Liankai. Laboratory simulation of the dissolution of carbonate rocks sampled from Maocun, Guilin by sulfuric acid and nitric acid[J]. Carsologica Sinica, 2021, 40(4):608-616.
[2] 吴水木, 翁全南, 唐孝谦. 桂林市岩溶地下水对酸、碱的缓冲作用[J]. 广西地质, 1991, 4(4):69-73.
WU Shuimu, WENG Quannan, TANG Xiaoqian. The buffering process of karst underground water to acid and alkali in Guilin City[J]. Geology of Guangxi, 1991, 4(4):69-73.
[3] 曹建华, 潘根兴, 袁道先. 柠檬酸对石灰岩溶蚀动力模拟及岩溶意义[J]. 中国岩溶, 2001, 20(1):1-4. doi: 10.3969/j.issn.1001-4810.2001.01.001
CAO Jianhua, PAN Genxing, YUAN Daoxian. Simulation experiment on dissolution of calcite by citric and its karst importance[J]. Carsologica Sinica, 2001, 20(1):1-4. doi: 10.3969/j.issn.1001-4810.2001.01.001
[4] 闫志为. 硫酸根离子对方解石和白云石溶解度的影响[J]. 中国岩溶, 2008, 27(1):26-33. doi: 10.3969/j.issn.1001-4810.2008.01.005
YAN Zhiwei. Influences of SO42- on the solubility of calcite and dolomite[J]. Carsologica Sinica, 2008, 27(1):26-33. doi: 10.3969/j.issn.1001-4810.2008.01.005
[5] 唐伟. 外源水对碳酸盐岩溶蚀速率与碳汇效应影响研究: 以毛村地下河流域为例[D]. 重庆: 西南大学, 2011.
TANG Wei. A study on allogenic water for carbonate dissolution rate and karst carbon sink: An example from the Maocun subterranean river of Guilin[D]. Chongqing: Southwest University, 2011.
[6] 于奭, 严毅萍, 张春来, 王翱宇, 刘齐, 李幼玲. 酸雨对碳酸盐岩溶蚀速率影响的试验研究[J]. 桂林理工大学学报, 2011, 31(4):539-544. doi: 10.3969/j.issn.1674-9057.2011.04.010
YU Shi, YAN Yiping, ZHANG Chunlai, WANG Xiangyu, LIU Qi, LI Youling. Experimental study on carbonate dissolution rate influenced by acid rain[J]. Journal of Guilin University of Technology, 2011, 31(4):539-544. doi: 10.3969/j.issn.1674-9057.2011.04.010
[7] 王晤岩, 李清光. 淡水碳酸盐湖泊中CaCO3-CO32--HCO3--CO2化学平衡对CO2的缓冲作用: 以贵州百花湖为例[J]. 中国岩溶, 2021, 40(4):572-579.
WANG Wuyan, LI Qingguang. Buffering effect of chemical equilibrium of CaCO3-CO32--HCO3--CO2 on CO2 in freshwater carbonate lake: A case study of Baihua lake, Guizhou[J]. Carsologica Sinica, 2021, 40(4):572-579.
[8] Jones A P, Genge M, Carmody L. Carbonate melts and carbonatites[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1):289-322. doi: 10.2138/rmg.2013.75.10
[9] Hazen R M, Downs R T, Jones A P. Carbon mineralogy and crystal chemistry[J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1):7-46.
[10] Bech J, Abreu M M, Chon H-T , Roca N. Remediation of potentially toxic elements in contaminated soils[C]. PHEs, Environment and Human Health. Dordrecht: Springer, 2014, 253-308.
[11] 王茂林, 吴世军, 杨永强, 陈繁荣. 微生物诱导碳酸盐沉淀及其在固定重金属领域的应用进展[J]. 环境科学研究, 2018, 31(2):206-214. doi: 10.13198/j.issn.1001-6929.2017.03.55
WANG Maolin, WU Shijun, YANG Yongqiang, CHEN Fanrong. Microbial induced carbonate precipitation and its application for immobilization of heavy metals: A review[J]. Research of Environmental Sciences, 2018, 31(2):206-214. doi: 10.13198/j.issn.1001-6929.2017.03.55
[12] Reeder R J. Crystal chemistry of the rhombohedral carbonates[J]. Reviews in Mineralogy and Geochemistry, 1983, 11(1):1-47.
[13] Andersson M P, Sakuma H, Stipp S L S. Strontium, nickel, cadmium, and lead substitution into calcite, studied by density functional theory[J]. Langmuir, 2014, 30(21):6129-6133. doi: 10.1021/la500832u
[14] Parkhurst D L, Appelo C A J. Description of input and examples for PHREEQC version 3, A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations[R]. Denver, Colorado: U. S. Geological Survey Techniques and Methods, book 6, chap. A43, 2013.
[15] Allison J D, Brown D S, Novo-Gradac, K J. MINTEQA2/PRODEFA2, A geochemical assessment model for environmental systems: Version 3.0 user’s manual[R]. Athens, Georgia: Environmental Research Laboratory, Office of Research and Development, U. S. Environmental Protection Agency, 1991.
[16] Stieglitz J. The relations of equilibrium between the carbon dioxide of the atmosphere and calcium sulphate, calcium carbonate and calcium bicarbonate in water solutions in contact with it[J]. Carnegie Institute Publication, 1909, 107:235-264.
[17] McCoy H N, Smith H J. Equilibrium between alkali-earth carbonates, carbon dioxide and water[J]. Journal of the American Chemical Society, 1911, 33(4):468-473. doi: 10.1021/ja02217a003
[18] Garrels R M, Christ C L. Solutions, minerals, and equilibria[M]. New York: Harper and Row, 1965.
[19] Meng Z , Seinfeld J H, Saxena P, Kim Y P. Atmospheric gas-aerosol equilibrium: IV. Thermodynamics of carbonates[J]. Aerosol Science and Technology, 1995, 23(2):131-154. doi: 10.1080/02786829508965300
[20] Nakayama F S. Calcium activity, complex and ion-pair in saturated CaCO3 solutions[J]. Soil Science, 1968, 106(6):429-434. doi: 10.1097/00010694-196812000-00004
[21] Latimer W M. The oxidation states of the elements and their potentials in aqueous solutions[M]. Englewood Cliffs, New York: Prentice Hall, 1952.
[22] Langmuir D. The Gibbs free energies of substances in the system Fe-O2-H2O-CO2 at 25°C [R]. Washington: U. S. Geological Survey, Professional Paper 650-B, 1969.
[23] Millero F J, Milne P J, Thurmond V L. The solubility of calcite, strontianite and witherite in NaCl solutions at 25°C[J]. Geochimica et Cosmochimica Acta, 1984, 48(5):1141-1143. doi: 10.1016/0016-7037(84)90205-9
[24] Jacobson R L, Langmuir D. Dissociation constants of calcite and CaHCO3+ from 0 to 50°C[J]. Geochimica et Cosmochimica Acta, 1974, 38(2):301-318. doi: 10.1016/0016-7037(74)90112-4
[25] Jensen D L, Boddum J K, Tjell J C, Christensen T H. The solubility of rhodochrosite (MnCO3) and siderite (FeCO3) in anaerobic aquatic environments[J]. Applied Geochemistry, 2002, 17(4):503-511. doi: 10.1016/S0883-2927(01)00118-4
[26] Plummer L N, Busenberg E. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O[J]. Geochimica et Cosmochimica Acta, 1982, 46(6):1011-1040. doi: 10.1016/0016-7037(82)90056-4
[27] Stumm W, Morgan J J. Aquatic chemistry, chemical equilibria and rates in natural waters[M]. New York: John Wiley & Sons, Inc., 1996.
[28] La Iglesia A, Félix J F. Estimation of thermodynamic properties of mineral carbonates at high and low temperatures from the sum of polyhedral contributions[J]. Geochimica et Cosmochimica Acta, 1994, 58(19):3983-3991. doi: 10.1016/0016-7037(94)90261-5
[29] Naumov G B, Ryzhenko B N, Khodakovsky I L. Handbook of thermodynamic data[R]. Washington: U. S. Geological Survey, Report USGS-WRD-74-001, 1974.
[30] Garrels R M, Thompson M E, Siever R. Stability of some carbonates at 25°C and one atmosphere total pressure[J]. American Journal of Science, 1960, 258(6):402-418. doi: 10.2475/ajs.258.6.402
[31] Robie R A, Hemingway B S. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures[R]. Washington: U. S. Geological Survey Bulletin 2131, 1995.
[32] Zhuk N P. Thermodynamic constants of sulfates, carbonates, chromates, bromates, iodates, oxalates, and other salts slightly soluble in water[J]. Zhurnal Fizicheskoi Khimii, 1954, 28:1690-1697.
[33] Rossini F D, Wagman D D, Evans W H, Levin S, Jaffe I. Selected values of chemical thermodynamical properties[R]. Washington, DC: NBS Circular 500, 1952.
[34] Parker V B, Wagman D D, Evans W H. Selected values of chemical thermodynamic properties: Tables for alkaline earth elements (elements 92 through 97 in the standard order of arrangement[R]. Washington: National Bureau of Standards, NBS Technical Note 270-6, 1971.
[35] Robie R A, Hemingway B S, Fisher J R. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pa) pressure and at higher temperatures[R]. Washington: U. S. Geological Survey Bulletin 1452, 1978.
[36] Wagman D D, Evans W H, Parker V B, Handhalow R, Schumm I,Bailey S M, Churney K L. The NBS tables of chemical thermodynamic properties: Selected values for inorganic and C1 and C2 organic substances in SI units[J]. Journal of Physical and Chemical Reference Data, 1982, 11(suppl.2):1-392.
[37] Sangameshwar S R, Barnes H L. Supergene processes in zinc-lead-silver sulfide ores in carbonates[J]. Economic Geology, 1983, 78(7):1379-1397. doi: 10.2113/gsecongeo.78.7.1379
[38] Holland T J B, Powell R. An internally consistent thermodynamic dataset for phases of petrological interest[J]. Journal of Metamorphic Geology, 1998, 16(3):309-343.
[39] Robie R A. Thermodynamic properties of minerals[R]. Washington: U. S. Geological Survey Open File Report TEI-816, 1962.
[40] Hummel W, Berner U, Curti E, Pearson F J,Thoenen T. Nagra/PSI chemical thermodynamic data base 01/01[J]. Radiochimica Acta, 2002, 90(9-11):805-813. doi: 10.1524/ract.2002.90.9-11_2002.805
[41] Harvie C E, Møller N, Weare J H. The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C[J]. Geochimica et Cosmochimica Acta, 1984, 48(4):723-751. doi: 10.1016/0016-7037(84)90098-X
[42] Helgeson H C, Delany J M, Nesbitt, Bird D K. Summary and critique of the thermodynamic properties of rock forming minerals[J]. American Journal of Science, 1978, 278A:1-229.
[43] Christ C L, Hostetler P B, Siebert R M. Stabilities of calcite and aragonite[J]. U. S. Geological Survey Journal of Research, 1974, 2(2):175-184.
[44] Robinson G R Jr, Haas J L Jr, Schafer C M, Haselton H T Jr. Thermodynamic and thermophysical properties of selected phases in the MgO-SiO2-H2O-CO2, CaO-A12O3-SiO2-H2O-CO2, and Fe-FeO-Fe2O3-SiO2 chemical systems, with special emphasis on the properties of basalts and their mineral components[R]. Reston, VA: U. S. Geological Survey Open File Report 83-79, 1982.
[45] Barin I. Thermochemical data of pure substances[M]. Weinheim, Germany: VCH Velagsgesellschaft, 1993.