Trade-off and synergy of ecosystem services of a karst critical zone based on land use scenario simulation: Take Mengzi karst graben basin as a study case
-
摘要:
以蒙自喀斯特断陷盆地为例,利用CLUE-S模型设置自然演化、微度、适度、强力生态治理情景并探究2030年不同情景对生态系统服务的影响及权衡与协同特征。结果表明:(1)2018年蒙自喀斯特断陷盆地植被净初级生产力(NPP)、产水量、覆盖型喀斯特区土壤保持量、裸露型喀斯特区土壤保持量、食物供给量分别增加了13.98%、38.97%、23.04%、25%、105.43%,且各种服务变化存在一定的空间差异性;(2)随着生态治理力度加大,2030年NPP和土壤保持量不断增加,产水量不断减少,食物供给量在强力生态治理情景下减少,在其他三种情景下增加;(3)NPP与产水量、食物供给量为权衡关系,与土壤保持量为协同关系;产水量与土壤保持量为权衡关系,与食物供给量为协同关系;土壤保持量与食物供给量为权衡关系;(4)相较于2018年,适度生态治理情景下四种生态系统服务之间的协调性最好,是较为合理的生态治理模式。
Abstract:The karst critical zone is the near-surface layer of the Earth including vegetation, soil, water, and rocks in the karst area. It is sensitive to the changes of external environment due to the karst power provided by the Five Circles. And the karst critical zone has been regarded as one of the important ecological barrier areas in China. It is very necessary to study the ecological environment in the zone. Therefore, taking the Mengzi karst graben basin (MKGB) as a case, this study hopes to provide some suggestions for ecological governance in the karst critical zone.
MKGB is located in the southeast of Honghe Hani-Yi Autonomous Prefecture in Yunnan Province. Its boundary is almost consistent with the third-largest karst underground river system (the Nandong underground river watershed) in South China. With the influence of natural and human activities, karst rocky desertification is severe in this area. The forest is mainly composed of artificial forest, secondary forest and shrub forest. The ecosystem is imbalanced and the capability of ecosystem services has been reducing. At present, China has launched the project to control rocky desertification, and the main way is to return farmland to forest or grassland. Previous studies have also shown that optimizing land use mode can achieve win-win results between ecological environment and human benefits. However, the pattern and intensity of land use change is unclear in the control of rock desertification. It will be difficult to make reasonable policies for ecological protection if the problem is not paid more attention to. Ecosystem services and the relationship (trade-off and synergy) are important indicators to measure the structure of ecosystem. Therefore, we quantitatively analyzed the current status of ecosystem services and simulated the land use change to maximize ecosystem services in MKGB. In this study, we evaluated regional Net Primary Productivity (NPP), water yield, soil retention of covered and bare karst areas and food supply by respectively using Carnegie-Ames Stanford Approach (CASA model), Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST model), the Revised Universal Soil Loss Equation (RUSLE model) and food supply model. Besides, in order to find the optimal land use mode, we also set up four scenarios—natural scenario, mild ecological governance scenario, moderate ecological governance scenario and strong ecological governance scenario—by the Conversion of Land Use and its Effects at Small Region Extent (CLUE-S model). Then we explored the impacts of different ecological governance scenarios on ecosystem services and their tradeoff or synergistic characteristics.
Results show that ecological land use experienced an increasing trend from 2006 to 2018, which reflected that the land conversion was reasonable in the process of rock desertification control, and the effect of rock desertification control was obvious. In 2030, the continuous strengthening of ecological governance will contribute to the increase of forest land and the decrease of cultivated land. Secondly, NPP, water yield, soil retention of covered and bare karst areas and food supply increased by 13.98%, 38.97%, 23.04%, 25% and 105.43%, respectively in MKGB, and there were certain spatial differences in the changes of various services in 2018. Thirdly, with the implementation of ecological governance measures, NPP and soil retention will show an increasing trend, but water yield will decrease continuously in 2030. The food supply will decrease in the strong ecological governance scenario, but increase in the other three scenarios. This result demonstrates that ecological governance measures can promote NPP and soil retention, but they will also limit the growth of water yield and food supply to some extent. Fourthly, NPP presents a trade-off relationship with water yield and food supply, and a synergic relationship with soil retention. Water yield shows a trade-off relationship with soil retention, and a synergic relationship with food supply. Soil retention and food supply are in a trade-off relationship. Finally, compared with the situation in 2018, the degree of trade-off in the moderate ecological governance scenario is acceptable, implying that it will be a reasonable ecological governance.
Therefore, we should pay close attention to the control of rocky desertification in the areas with the slope > 20° in the future. We believe the conclusions of this study can provide a clear direction for the control of rocky desertification. However, there still exist limitations. For example, the accuracy of basic data should be continuously improved, and more factors affecting the ecosystem services should also be taken into account in future studies.
-
Key words:
- rocky desertification /
- ecosystem /
- CLUE-S model /
- trade-off and synergy /
- karst graben basin
-
表 1 蒙自喀斯特断陷盆地未来土地利用情景设置规则
Table 1. Rules for setting future land use scenarios in MKGB
情景 描述 自然情景 按照2012-2018年土地演化趋势确定。 微度生态治理情景 坡度>25°的耕地转化为林地;15°~25°坡度范围内轻度石漠化区的耕地转化为果园;
15°~25°坡度范围内中重度石漠化区的耕地转化为林地。适度生态治理情景 坡度>20°的耕地转化为林地;15°~20°坡度范围内轻度石漠化区的耕地转化为果园;
15°~20°坡度范围内中重度石漠化区的耕地转化为林地。强力生态治理情景 坡度>15°的耕地转化为林地。 表 2 2030年蒙自喀斯特断陷盆地耕地、果园和林地面积相较于2018年的变化状况(km2)
Table 2. Projected changes of cultivated land, orchard land and forest land in Mengzi karst graben basin in 2030 compared with the changes in 2018 (km2)
自然情景 微度生态治理情景 适度生态治理情景 强力生态治理情景 耕地减少面积 154.50 202.31 208.72 215.82 果园增加面积 32.53 34.24 34.26 28.52 林地增加面积 24.66 126.39 138.81 152.74 表 3 不同情景下生态系统服务权衡与协同关系
Table 3. Relationship between trade-off and synergy of ecosystem services in different scenarios
NPP—产水量 NPP—土壤保持 NPP—食物供给 产水量—土壤保持 产水量—食物供给 土壤保持-食物供给 自然情景 −0.473** 0.362** −0.377** −0.122** 0.307** −0.134** 微度生态治理情景 −0.524** 0.444** −0.414** −0.261** 0.403** −0.074** 适度生态治理情景 −0.508** 0.451** −0.412** −0.252** 0.358** −0.170** 强力生态治理情景 −0.515** 0.453** −0.417** −0.260** 0.360** −0.175** 注:**表示通过了显著性检验。 -
[1] Verburg P H, Chen Y, Veldkamp T. Spatial explorations of land use change and grain production in China[J]. Agriculture Ecosystems & Environment, 2000, 82(1-3):333-354.
[2] Fu B, Wang S, Su C. Linking ecosystem processes and ecosystem services[J]. Current Opinion in Environmental Sustainability, 2013, 5(1):4-10. doi: 10.1016/j.cosust.2012.12.002
[3] Millennium Ecosystem Assessment. Ecosystems and Human Well-Being (MA)[M]. Washington, DC: Island Press, 2005.
[4] Tian Y, Wang S, Bai X, Luo G, Yan X. Trade-offs among ecosystem services in a typical karst watershed, SW China[J]. Science of the Total Environment, 2016, 566-567: 1297-1308.
[5] Carlson T N, Arthur S T. The impact of land use–land cover changes due to urbanization on surface microclimate and hydrology: A satellite perspective[J]. Global and Planetary Change, 2000, 25(1-2):49-65. doi: 10.1016/S0921-8181(00)00021-7
[6] Sterling S M, Ducharne A, Polcher J. The impact of global land-cover change on the terrestrial water cycle[J]. Nature Climate Change, 2013, 3(4):385-390. doi: 10.1038/nclimate1690
[7] Crist P J, Kohley T W, Oakleaf J. Assessing land-use impacts on biodiversity using an expert systems tool[J]. Landscape Ecology, 2000, 15(1):47-62. doi: 10.1023/A:1008117427864
[8] 杜勇, 税伟, 孙晓瑞, 杨海峰, 郑佳瑜. 海湾型城市生态系统服务权衡的情景模拟: 以福建省泉州市为例[J]. 应用生态学报, 2019, 30(12):4293-4302.
DU Yong, SHUI Wei, SUN Xiaorui, YANG Haifeng, ZHENG Jiayu. Scenario simulation of ecosystem service trade-offs in bay cities: A case study in Quanzhou, Fujian Province, China[J]. Chinese Journal of Applied Ecology, 2019, 30(12):4293-4302.
[9] 李鹏, 姜鲁光, 封志明, 于秀波. 生态系统服务竞争与协同研究进展[J]. 生态学报, 2012, 32(16):5219-5229. doi: 10.5846/stxb201109161360
LI Peng, JIANG Luguang, FENG Zhiming, YU Xiubo. Research progress on trade-offs and synergies of ecosystem services: An overview[J]. Acta Ecologica Sinica, 2012, 32(16):5219-5229. doi: 10.5846/stxb201109161360
[10] 林媚珍, 刘汉仪, 周汝波, 龚建周. 多情景模拟下粤港澳大湾区生态系统服务评估与权衡研究[J]. 地理研究, 2021, 40(9):2657-2669. doi: 10.11821/dlyj020200943
LIN Meizhen, LIU Hanyi, ZHOU Rubo, GONG Jianzhou. Evaluation and trade-offs of ecosystem services in Guangdong-Hong Kong-Macao Greater Bay Area under multi-scenario simulation[J]. Geographical Research, 2021, 40(9):2657-2669. doi: 10.11821/dlyj020200943
[11] Shi M, Wu H, Fan X, Jia H, Dong T, He P. Trade-offs and synergies of multiple ecosystem services for different land use scenarios in the Yili river valley, China[J]. Sustainability, 2021, 13(3):1577-1592. doi: 10.3390/su13031577
[12] 梁锦桃, 邓艳, 曹建华, 靳振江, 李旭尧. 典型断陷盆地流域生态系统服务价值时空差异研究[J]. 中国岩溶, 2021, 40(3):476-486.
LIANG Jintao, DENG Yan, CAO Jianhua, JIN Zhenjiang, LI Xuyao. Temporal and spatial differentiation of the ecosystem service value in typical fault-depression basins[J]. Carsologica Sinica, 2021, 40(3):476-486.
[13] Lang Y, Song W, Zhang Y. Responses of the water-yield ecosystem service to climate and land use change in Sancha River Basin, China[J]. Physics and Chemistry of the Earth, 2017, 101:102-111. doi: 10.1016/j.pce.2017.06.003
[14] 吕国屏, 廖承锐, 徐雁南, 张婷, 李海东. 基于CA-Markov模型的喀斯特地区县域生态系统服务价值动态模拟[J]. 南京林业大学学报(自然科学版), 2017, 41(5):49-56.
LV Guoping, LIAO Chengrui, XU Yannan, ZHANG Ting, LI Haidong. Dynamic simulation of future ecosystem service value in Puding county, Guizhou Province based on CA-Markov model[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(5):49-56.
[15] 操玥, 王世杰, 白晓永, 李汇文, 陈飞, 王明明, 吴路华, 许燕, 李琴, 田诗琪, 杨钰杰, 李朝君, 胡泽银, 邓元红, 路茜, 习慧鹏, 陈欢, 王金凤, 冉晨, 罗旭玲. 喀斯特槽谷区土壤侵蚀时空演变及未来情景模拟[J]. 生态学报, 2019, 39(16):6061-6071.
CAO Yue, WANG Shijie, BAI Xiaoyong, LI Huiwen, CHEN Fei, WANG Mingming, WU Luhua, XU Yan, LI Qin, TIAN Shiqi, YANG Yujie, LI Chaojun, HU Zeyin, DENG Yuanhong, LU Qian, XI Huipeng, CHEN Huan, WANG Jinfeng, RAN Chen, LUO Xuling. Spatial-temporal evolution processes and simulation of future soil erosion scenario in the karst valley of Southern China[J]. Acta Ecologica Sinica, 2019, 39(16):6061-6071.
[16] 康彦仁. 云南南洞地下河系统及水资源开发利用[J]. 中国岩溶, 1993, 12(4):16-27.
KANG Yanren. Water resource development of Nandong subterranean stream system Yunnan Province[J]. Carsologica Sinica, 1993, 12(4):16-27.
[17] 王赛男, 蒲俊兵, 李建鸿, 张陶, 霍伟杰, 袁道先. 岩溶断陷盆地“盆—山”耦合地形影响下的气候特征及其对石漠化生态恢复的影响探讨[J]. 中国岩溶, 2019, 38(1):50-59.
WANG Sainan, PU Junbing, LI Jianhong, ZHANG Tao, HUO Weijie, YUAN Daoxian. Climatic characteristics under the influence of basin-mountain coupled topography and its influence on the ecological restoration of rocky desertification in Mengzi karst graben basin, Southwest China[J]. Carsologica Sinica, 2019, 38(1):50-59.
[18] 蓝芙宁, 赵一, 李衍青. 南洞地下河流域水文地质综合调查报告[R]. 2016.
LAN Funing, ZHAO Yi, LI Yanqing. Hydrogeological survey report of Nandong underground river basin[R]. 2016.
[19] 彭建, 蔡运龙, P H Verburg. 喀斯特山区土地利用/覆被变化情景模拟[J]. 农业工程学报, 2007, 23(7):64-70. doi: 10.3321/j.issn:1002-6819.2007.07.012
PENG Jian, CAI Yunlong, P H Verburg. Simulation of land use/ cover change scenarios in karst mountain areas[J]. Transactions of the CSAE, 2007, 23(7):64-70. doi: 10.3321/j.issn:1002-6819.2007.07.012
[20] 张丁轩, 付梅臣, 陶金, 胡利哲, 杨晓丽. 基于CLUE-S模型的矿业城市土地利用变化情景模拟[J]. 农业工程学报, 2013, 29(12):246-256. doi: 10.3969/j.issn.1002-6819.2013.12.031
ZHANG Dingxuan, FU Meichen, TAO Jin, HU Lizhe, YANG Xiaoli. Scenario simulation of land use change in mining city based on CLUE-S model[J]. Transactions of the CSAE, 2013, 29(12):246-256. doi: 10.3969/j.issn.1002-6819.2013.12.031
[21] 张盼盼. 喀斯特石漠化景观格局变化及其模拟[D]. 北京: 中国科学院研究生院, 2010.
ZHANG Panpan. Landscape pattern change and simulation of karst rocky desertification[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2010.
[22] 朱文泉. 基于GIS和RS的中国植被光利用率估算[J]. 武汉大学学报(信息科学版), 2004(8):694-698.
ZHU Wenquan. Estimation of light utilization efficiency of vegetation in China based on GIS and RS[J]. Geomatics and Information Science of Wuhan University, 2004(8):694-698.
[23] 朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007(3):413-424. doi: 10.3321/j.issn:1005-264X.2007.03.010
ZHU Wenquan, PAN Yaozhong, ZHANG Jinshui. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing[J]. Journal of Plant Ecology, 2007(3):413-424. doi: 10.3321/j.issn:1005-264X.2007.03.010
[24] 孙小银, 郭洪伟, 廉丽姝, 刘飞, 李宝富. 南四湖流域产水量空间格局与驱动因素分析[J]. 自然资源学报, 2017, 32(4):669-679. doi: 10.11849/zrzyxb.20160460
SUN Xiaoyin, GUO Hongwei, LIAN Lishu, LIU Fei, LI Baofu. The spatial pattern of water yield and its driving factors in Nansi lake basin[J]. Journal of Natural Resources, 2017, 32(4):669-679. doi: 10.11849/zrzyxb.20160460
[25] Donohue R J, Roderick M L, Mcvicar T R. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model[J]. Journal of Hydrology, 2012, 436:35-50.
[26] Zhou W, Liu G, Pan J, Feng X. Distribution of available soil water capacity in China[J]. Journal of Geographical Sciences, 2005, 15(1):3-12. doi: 10.1007/BF02873101
[27] Dai Q, Peng X, Yang Z, Zhao L. Runoff and erosion processes on bare slopes in the karst rocky desertification area[J]. Catena, 2017, 152:218-226. doi: 10.1016/j.catena.2017.01.013
[28] Gao J, Wang H. Temporal analysis on quantitative attribution of karst soil erosion: A case study of a peak-cluster depression basin in Southwest China[J]. Catena, 2019, 172:369-377. doi: 10.1016/j.catena.2018.08.035
[29] 胡续礼, 潘剑君, 杨树江, 姜小三, 高太成. 几种降雨侵蚀力模型的比较研究[J]. 水土保持通报, 2006, 26(1):68-70. doi: 10.3969/j.issn.1000-288X.2006.01.016
HU Xuli, PAN Jianjun, YANG Shujiang, JIANG Xiaosan, GAO Taicheng. Comparative study on rainfall erosivity models using daily rainfall amounts[J]. Bulletin of Soil and Water Conservation, 2006, 26(1):68-70. doi: 10.3969/j.issn.1000-288X.2006.01.016
[30] Williams J R, Arnold J G. A system of erosion sediment yield models[J]. Soil Technology, 1997, 11(1):53-55.
[31] 蔡崇法, 丁树文, 史志华, 黄丽, 张光远. 应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J]. 水土保持学报, 2000, 14(2):19-24. doi: 10.3321/j.issn:1009-2242.2000.02.005
CAI Chongfa, DING Shuwen, SHI Zhihua, HUANG Li, ZHANG Guangyuan. Study of applying USLE and geographical information system IDRISI to predict soil erosion in small watershed[J]. Journal of Soil and Water Conservation, 2000, 14(2):19-24. doi: 10.3321/j.issn:1009-2242.2000.02.005
[32] 许月卿, 邵晓梅. 基于GIS和RUSLE的土壤侵蚀量计算: 以贵州省猫跳河流域为例[J]. 北京林业大学学报, 2006, 28(4):67-71. doi: 10.3321/j.issn:1000-1522.2006.04.013
XU Yueqing, SHAO Xiaomei. Estimation of soil erosion supported by GIS and RUSLE: A case study of Maotiaohe watershed, Guizhou Province[J]. Journal of Beijing Forestry University, 2006, 28(4):67-71. doi: 10.3321/j.issn:1000-1522.2006.04.013
[33] 杨子生. 滇东北山区坡耕地土壤侵蚀的水土保持措施因子[J]. 山地学报, 1999, 16(S1):22-24.
YANG Zisheng. The factor of soil and water conservation measures of soil erosion on sloping cultivated land in the northeast mountain region of Yunnan Province[J]. Journal of Mountain Science, 1999, 16(S1):22-24.
[34] 李双成, 张才玉, 刘金龙, 朱文博, 马程, 王钰. 生态系统服务权衡与协同研究进展及地理学研究议题[J]. 地理研究, 2013, 32(8):1379-1390.
LI Shuangcheng, ZHANG Caiyu, LIU Jinlong, ZHU Wenbo, MA Cheng, WANG Yu. The tradeoffs and synergies of ecosystem services: Research progress, development trend, and themes of geography[J]. Geographical Research, 2013, 32(8):1379-1390.
[35] 尹礼唱, 王晓峰, 张琨, 肖飞艳, 程昌武, 张欣. 国家屏障区生态系统服务权衡与协同[J]. 地理研究, 2019, 38(9):2162-2172. doi: 10.11821/dlyj020180578
YIN Lichang, WANG Xiaofeng, ZHANG Kun, XIAO Feiyan, CHENG Changwu, ZHANG Xin. Trade-offs and synergy between ecosystem services in National Barrier Zone[J]. Geographical Research, 2019, 38(9):2162-2172. doi: 10.11821/dlyj020180578
[36] 仲俊涛, 王蓓, 米文宝, 樊新刚, 杨美玲, 杨显明. 农牧交错带禁牧草地生态系统服务空间权衡与协同关系[J]. 农业工程学报, 2020, 36(12):268-275. doi: 10.11975/j.issn.1002-6819.2020.12.032
ZHONG Juntao, WANG Bei, MI Wenbao, FAN Xingang, YANG Meiling, YANG Xianming. Spatial trade-offs and synergies of ecosystem services for grazing-prohibited grassland in agro-pasture ecotone[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12):268-275. doi: 10.11975/j.issn.1002-6819.2020.12.032
[37] 郑绍伟, 慕长龙, 陈祖铭, 龚固堂, 黎燕琼. 长江上游森林影响流域水文过程模拟分析[J]. 生态学报, 2010, 30(11):3046-3056.
ZHENG Shaowei, MU Changlong, CHEN Zuming, GONG Gutang, LI Yanqiong. Simulations and analysis on the effects of forest on the hydrological processes in the upper reaches of Yangtze River[J]. Acta Ecologica Sinica, 2010, 30(11):3046-3056.
[38] 陈洪松, 聂云鹏, 王克林. 岩溶山区水分时空异质性及植物适应机理研究进展[J]. 生态学报, 2013, 33(2):317-326. doi: 10.5846/stxb201112011836
CHEN Hongsong, NIE Yunpeng, WANG Kelin. Spatio-temporal heterogeneity of water and plant adaptation mechanisms in karst regions: A review[J]. Acta Ecologica Sinica, 2013, 33(2):317-326. doi: 10.5846/stxb201112011836
[39] Zhang C, Qi X, Wang K, Zhang M, Yue Y. The application of geospatial techniques in monitoring karst vegetation recovery in Southwest China: A review[J]. Progress in Physical Geography, 2017, 41(4):450-477. doi: 10.1177/0309133317714246
[40] 陈金珂, 蒲俊兵, 李建鸿, 张陶, 王赛男, 曾锐. 典型岩溶流域不同坡度等级下的土壤侵蚀与石漠化分布特征耦合分析[J]. 水土保持研究, 2020, 27(5):1-9.
CHEN Jinke, PU Junbing, LI Jianhong, ZHANG Tao, WANG Sainan, ZENG Rui. Coupling of rocky desertification distribution and soil erosion under different slope grades in a typical karst basin[J]. Research of Soil and Water Conservation, 2020, 27(5):1-9.
[41] Peng J, Hu X, Wang X, Meersmans J, Liu Y, Qiu S. Simulating the impact of Grain-for-Green Programme on ecosystem services trade-offs in northwestern Yunnan, China[J]. Ecosystem Services, 2019, 39:100998. doi: 10.1016/j.ecoser.2019.100998
[42] 韩会庆, 苏志华. 喀斯特生态系统服务研究进展与展望[J]. 中国岩溶, 2017, 36(3):352-358. doi: 10.11932/karst20170309
HAN Huiqing, SU Zhihua. Research progress and prospects of karst ecosystem services[J]. Carsologica Sinica, 2017, 36(3):352-358. doi: 10.11932/karst20170309
[43] Wang J, Peng J, Zhao M, Liu Y, Chen Y. Significant trade-off for the impact of Grain-for-Green Programme on ecosystem services in north-western Yunnan, China[J]. Science of the Total Environment, 2017, 574:57-64. doi: 10.1016/j.scitotenv.2016.09.026
[44] Jia X, Fu B, Feng X, Hou G, Yu L, Wang X. The tradeoff and synergy between ecosystem services in the Grain-for-Green areas in northern Shanxi, China[J]. Ecological Indicators, 2014, 43(1):103-113.