Research review on the application of microbial information technology to karst groundwater environment
-
摘要:
岩溶含水层特有的非均质性使其微生物群落具有多样性,微生物信息技术研究对岩溶地下水资源开发利用和保护具有重要意义。在总结国内外微生物信息技术应用研究现状基础上,分析岩溶地下水环境中微生物来源,重点讨论微生物示踪技术、微生物监测技术在岩溶地下水环境中的应用。认为,由于岩溶含水层的复杂性和微生物的易变异性,微生物信息技术应用过程中对岩溶地下水环境造成的污染风险还需进一步探讨,提出推进微生物信息技术在岩溶地下水资源合理开发利用中的研究展望。
Abstract:With the development of society and economy, the environmental problems of karst groundwater are increasingly prominent due to the influence of human activities. The unique heterogeneity of karst aquifer leads to the diversity of microbial community. With the continuous development of microbial information technology, its application to karst groundwater environment will be increasingly extensive. Therefore, the study of microbial information technology is of great significance to the development, utilization and protection of karst groundwater resources.
In this study, the research on application of microbial information technology to karst groundwater environment is reviewed from the aspects of microbial sources, microbial tracing and monitoring technology in karst groundwater, and the application prospect in this regard is also offered. The heterogeneity of karst aquifer and the dual characteristics of microbial source recharge, including endogenous water and exogenous water, lead to the sensitivity and complexity of karst groundwater environment. The sources of microorganisms in karst groundwater are diverse, mainly including native and exotic microorganisms. The input of external microbial communities such as surface water and soil environment is the main source of microorganisms in karst groundwater. In addition, groundwater recharge and other human activities have a significant impact on microbial community characteristics. Because microbial tracer technology, in which the microorganism is used as a tracer indicator, has more advantages than the traditional indicator in the study on pollution and characteristics of pollutant environment in karst groundwater, this technology has become an important method of karst groundwater resource management. So far, many microorganisms, such as Escherichia coli and Bacteriophage, have been used as tracers in tracing tests. Escherichia coli can be used as a tracer to reflect the pollution degree of karst groundwater. Bacteroidetes are used to determine the pollution source and its contribution rate because of their host specificity. Having strong migration ability and being sensitive to changes in hydraulic conditions, Bacteriophages are non-toxic and non-pathogenic to other organisms. They are used as tracers in karst and fractured aquifers for the quantitative migration analysis of groundwater, the delineation of water flow path, etc. In addition, combined with microbial tracers and traditional tracers, the multi-tracking technology has the advantages of accuracy and operability. Because microorganisms are sensitive to the change of karst environment, their community structure and diversity are different, which can effectively indicate the change of karst groundwater environment. Different from hydrochemical index monitoring, microbial monitoring technology can indicate unknown components and provide more comprehensive information of groundwater environment. Its potential application to karst groundwater monitoring has been widely recognized.
With the development of microbial information technology, the sources and distribution characteristics of microorganisms need to be further identified due to the complexity of karst aquifer and the variability of microorganisms. The pollution risk caused by the application of microbial information technology to karst groundwater environment needs to be further discussed. The microbial tracer technique in karst groundwater is still immature and more suitable microbial indicators need to be screened out. Biomonitoring techniques with molecular methods have not yet achieved the resolution and flux required for monitoring purposes, and the correlation between different environmental parameters and the characteristics of microbial community change needs to be further identified. However, the technology is being developed to provide reference for the development of microbial information technology and the development and protection of karst groundwater resources.
-
表 1 岩溶地下水中使用微生物示踪研究汇总表
Table 1. Summary of studies on the application of microbial tracers to karst groundwater
类别 示踪剂名称 地点 示踪剂来源 参考文献 细菌 细菌总数 汝拉山脉、阿尔卑斯山脉(瑞士) 原生细菌 [28] E. coli 老龙洞地下水流域 污染物渗滤 [13] 佛罗里达州(美国) 污染物渗滤 [45] Enterococci
Fecal coliform桂林罗锦响水岩岩溶区 农家肥储存点污水溢流 [46] Enterococci 汝拉山脉、阿尔卑斯山脉(瑞士) 原生细菌 [28] Bacteroides 重庆南山老龙洞地下河 污染物渗滤 [20] Pseudomonas syringae 田纳西州东部(美国) 人工投放 [47] Nitrobacteria
Denitrobacteria青木关岩溶槽谷区 土壤渗透水 [34] 病毒 Bacteriophages T4 密苏里州南部(美国) 人工投放 [18] Bacteriophages H40 瑞士 人工投放 [7] Bacteriophages H4
Bacteriophages H40瑞士 人工投放 Bacteriophages H6
Bacteriophages H40阿勒斯峡泉(瑞士) 人工投放 [44] 真菌 Saccharomyces 阿勒斯峡泉(瑞士) 人工投放 -
[1] 袁道先. 论岩溶环境系统[J]. 中国岩溶, 1988, 7(3):9-16.
YUAN Diaoxian. On the karst environment system[J]. Carsologica Sinica, 1988, 7(3):9-16.
[2] Ford Derek, Williams Paul. Karst Hydrogeology and Geomorphology[M]. New York: John Wiley & Sons Inc, 2007.
[3] C Butscher, A Auckenthaler, S Scheidler, P Huggenberger. Validation of a numerical indicator of microbial contamination for karst springs[J]. Groundwater, 2011, 49(1): 66-76.
[4] 王帅伟. 石漠化区耕作污染的地下水微生物−毒理联合响应机制及模拟[D]. 北京: 中国地质科学院, 2019
WANG Shuaiwei. Microbial-toxicological combined response mechanism and simulation of groundwater polluted by farming in desertification areas[D]. Beijing: China Academy of Geological Sciences, 2019
[5] 杨再旺. 会仙岩溶地下水微生物群落结构及硝化和反硝化功能基因的研究[D]. 武汉: 华中科技大学, 2019
YANG Zaiwang. Microbial community structure and abundance of functional genes of nitrification and denitrification in Huixian karst groundwater[D]. Wuhan: Huazhong University of Science and Technology, 2019
[6] 袁道先. 中国岩溶学[M]. 北京: 地质出版社, 1994
YUAN Daoxian. Chinese karstology[M]. Beijing: Geology Press, Beijing, 1994.
[7] Auckenthaler A, Raso G, Huggenberger P. Particle transport in a karst aquifer: Natural and artificial tracer experiments with bacteria, bacteriophages and microspheres[J]. Water Science & Technology, 2015, 46(3):131-138.
[8] Cherry G S. Simulation of flow in the upper North coast limestone aquifer, Manati-Vega Baja area, Puerto Rico[J]. Water-Resources Investigations Report, 2001.
[9] 贾亚男. 农业土地利用对岩溶地下水影响研究综述[J]. 中国岩溶, 2003(4):57-63, 68.
JIA Ya'nan. Advance of the influence to karst groundwater by agricultural land use[J]. Carsologica Sinica, 2003(4):57-63, 68.
[10] 卢丽, 王喆, 裴建国, 邹胜章, 林永生, 樊连杰. 西南地区典型岩溶地下水系统污染模式[J]. 南水北调与水利科技, 2018, 16(6):89-96.
LU Li, WANG Zhe, PEI Jianguo, ZOU Shengzhang, LIN Yongsheng, FAN Lianjie. Pollution model of typical karst groundwater system in Southwest China[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(6):89-96.
[11] Nataša R, Nico G. Proposed methodology of vulnerability and contamination risk mapping for the protection of karst aquifers in Slovenia[J]. Acta Carsologica, 2007, 36(3).
[12] 曹敏. 城市化影响下岩溶地下水水文地球化学与同位素特征: 以重庆南山老龙洞地下河流域为例[D]. 重庆: 西南大学, 2012
CAO Min. Effects of urbanization on hydrogeochemical and stable isotopis characteristics of karst groundwater: A case from the Laolongdong watershed of Chongqing[D]. Chongqing: Southwest University, 2012.
[13] 段逸凡, 贺秋芳, 刘子琦, 张远瞩, 张弘, 赵瑞一. 岩溶区地下水微生物污染特征及来源: 以重庆南山老龙洞流域为例[J]. 中国岩溶, 2014, 33(4):504-511.
DUAN Yifan, HE Qiufang, LIU Ziqi, ZHANG Yuanzhu, ZHANG Hong, ZHAO Ruiyi. Characteristics and source of microbial contamination of groundwater in Laolongdong basin[J]. Carsologica Sinica, 2014, 33(4):504-511.
[14] 初慧, 朱恒华, 杨丽芝, 林国庆, 唐晓梦, 孙静, 周思凡. 深层灰岩裂隙含水层的微生物种群特征及多样性分析[J]. 地球与环境, 2020, 48(1):105-111.
CHU Hui, ZHU Henghua, YANG Lizhi, LIN Guoqing, TANG Xiaomeng, SUN Jing, ZHOU Sifan. Characteristics and diversity analysis of microbial population in the deep limestone fissure aquifer[J]. Earth and Environment, 2020, 48(1):105-111.
[15] Lehman R M, O'Connell S P, Banta A, Fredrickson J K, Reysenbach A L, Kieft T L, Colwell F S. Microbiological comparison of core and groundwater samples collected from a fractured basalt aquifer with that of dialysis chambers incubated in situ[J]. Geomicrobiology Journal, 2004, 21(3):169-182.
[16] Farnleitner A H, Wilhartitz I, Ryzinska G, Kirschner A K, Stadler H, Burtscher M M, Hornek R, Szewzyk U, Herndl G, Mach R L. Bacterial dynamics in spring water of alpine karst aquifers indicates the presence of stable autochthonous microbial endokarst communities[J]. Environmental Microbiology, 2005, 7(8):1248-1259.
[17] 吴清平, 魏磊, 张菊梅. 地下水中可培养微生物多样性研究进展[J]. 中国卫生检验杂志, 2015, 25(16):2830-2832.
WU Qingping, WEI Lei, ZHANG Jumei. Advances in culturable microbial diversity in groundwater[J]. Chinese Journal of Health Laboratory, 2015, 25(16):2830-2832.
[18] Harvey R W, Hurst C J, Knudsen G R, Mcinerney M J, Stetzenbach L D, Walter M V. In situ and laboratory methods to study subsurface microbial transport[M]. Washington DC: American Society for Microbiology, 1996.
[19] Pronk M, Goldscheider N, Zopfi J. Microbial communities in karst groundwater and their potential use for biomonitoring[J]. Hydrogeology Journal, 2009, 17(1):37-48.
[20] 张弘, 蒋勇军, 张远瞩, 段逸凡, 吕现福, 贺秋芳. 基于PCR-DGGE和拟杆菌(Bacteroides)16S rRNA的岩溶地下水粪便污染来源示踪研究: 以重庆南山老龙洞地下河系统为例[J]. 环境科学, 2016, 37(5):1805-1813.
ZHANG Hong, JIANG Yongjun, ZHANG Yuanzhu, DUAN Yifan, LV Xianfu, HE Qiufang. Tracing the fecal contamination sources based on bacteroides 16S rRNA PCR-DGGE in karst groundwater: Taking Laolongdong Underground River system, Nanshan, Chongqing as an example[J]. Environmental Science, 2016, 37(5):1805-1813.
[21] Goldscheider N, Hunkeler D, Rossi P. Review: Microbial biocenoses in pristine aquifers and an assessment of investigative methods[J]. Hydrogeology Journal, 2006, 14(6):926-941.
[22] 贺秋芳, 邱述兰, 张兴波. 降雨过程中岩溶地下河微生物污染及其指示意义[J]. 三峡环境与生态, 2012, 34(6):9-13.
HE Qiufang, QIU Shulan, ZHANG Xingbo. The microbial contamination and its source tracing during a storm event in a karst underground stream[J]. Environment and Ecology in the Three Gorges, 2012, 34(6):9-13.
[23] Murphy S, Jordan P, Mellander P E, O' Flaherty V. Quantifying faecal indicator organism hydrological transfer pathways and phases in agricultural catchments[J]. Science of the Total Environment, 2015, 520:286-299.
[24] 袁文昊, 贺秋芳, 杨平恒, 旷颖仑, 蒲俊兵, 刘仙. 典型岩溶槽谷地下河水化学时空变化特征及影响因素初探:以重庆青木关地下河系统为例[J]. 西南大学学报(自然科学版), 2009, 31(6):160-164.
YUAN Wenhao, HE Qiufang, YANG Pingheng, KUANG Yinglun, PU Junbing, LIU Xian. Temporal and spatial distribution of underground water hydrochemistry and its influencing factors in typical karst valleys: A case study of Qingmuguan underground water system in Chongqing[J]. Journal of Southwest University (Natural Science Edition), 2009, 31(6):160-164.
[25] Auckenthaler A, Huggenberger P. Pathogene Mikroorganismen im Grund-und Trinkwasser: Transport-Nachweismethoden-Wassermanagement[M]. Basel: Birkhäuser Basel, 2003.
[26] 杨平恒. 重庆青木关地下河系统的水文地球化学特征及悬浮颗粒物运移规律[D]. 重庆: 西南大学, 2010
YANG Pingheng. The hydrogeochemical characteristics and transportation of suspended particle matters in Qingmuguan underground river system, Chongqing, China[D]. Chongqing: Southwest University, 2010
[27] 张祥祥. 贵阳市乌当区地下水空间分布特征及其开发利用研究[D]. 贵阳: 贵州师范大学, 2018
ZHANG Xiangxiang. Study on the spatial distribution characteristics of groundwater and its exploitation and utilization in Wudang district, Guiyang[D]. Guiyang: Guizhou Normal University, 2018
[28] Sinreich M, Pronk M, Kozel R. Microbiological monitoring and classification of karst springs[J]. Environmental Earth Sciences, 2014, 71(2):563-572.
[29] Balkwill D L, Leach F R, Wilson J T, McNabb J F, White D C. Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct counts in subsurface aquifer sediments[J]. Microbial Ecology, 1988, 16(1):73-84.
[30] Simon K S, Gibert J, Petitot P, Laurent R. Spatial and temporal patterns of bacterial density and metabolic activity in a karst aquifer[J]. Archiv Fur Hydrobiologie, 2001, 151(1):67-82.
[31] Wellings F M, Lewis A L, Mountain C W, Pierce L V. Demonstration of virus in groundwater after effluent discharge onto soil[J]. Applied Microbiology, 1975, 29(6):751.
[32] Reed T M, Mcfarland J T, Fryar A E, Fogle A W, Taraba J L. Sediment discharges during storm flow from proximal urban and rural karst springs, central Kentucky, USA[J]. Journal of Hydrology, 2009, 383(3):280-290.
[33] Wwjmd V, Dinkla I, Muyzer G, Rietveld L C, Loosdrecht M V. Molecular characterization of microbial populations in groundwater sources and sand filters for drinking water production[J]. Water Research, 2008, 43(1):182-194.
[34] 贺秋芳, 杨平恒, 袁文昊, 蒋勇军, 袁道先. 微生物与化学示踪岩溶地下水补给源和途径[J]. 水文地质工程地质, 2009(3):39-44. doi: 10.3969/j.issn.1000-3665.2009.03.009
HE Qiufang, YANG Pingheng, YUAN Wenhao, JIANG Yongjun, YUAN Daoxian. Using chemical and microbiological indicators to track the recharge of underground rivers in a karst valley[J]. Hydrogeology & Engineering Geology, 2009(3):39-44. doi: 10.3969/j.issn.1000-3665.2009.03.009
[35] Simpson J M, Santo J W, Reasoner D J. Microbial source tracking: State of the science[J]. Environmental Science & Technology, 2002, 36(24):5279-5288.
[36] Harvey R W. Microorganisms as tracers in groundwater injection and recovery experiments: A review[J]. Fems Microbiology Reviews, 2010(3-4):461-472.
[37] Wicki M, Auckenthaler A, Felleisen R, Karabulut F, Niederhauser I, Tannrer M, Baumgartner A. Assessment of source tracking methods for application in spring water[J]. Journal of Water and Health, 2015, 13(2):473-488.
[38] Fiksdal L, Maki J S, Lacroix S J, Staley J T. Survival and detection of Bacteroides spp. prospective indicator bacteria[J]. Applied and Environmental Microbiology, 1985, 49(1):148-150.
[39] Tran N H, Gin K Y, Ngo H H. Fecal pollution source tracking toolbox for identification, evaluation and characterization of fecal contamination in receiving urban surface waters and groundwater[J]. Science of the Total Environment, 2015, 538:38-57.
[40] Gerba C P. Microorganisms as groundwater tracers[J]. Poluio De Guas Subterrneas,1984, 225-33.
[41] Joe Lewis. Methods in applied soil microbiology[M]. Edinburgh: Tritech Digital Media, 2018.
[42] 贺秋芳. 青木关地下河岩溶系统中的氮循环及其相关微生物作用与示踪研究[D]. 重庆: 西南大学, 2009
HE Qiufang. Nitrogen cycling and correlative microorgnism tracing and impacting in karst groundwater system, Qingmu Guan, Chongqing[D]. Chongqing: Southwest University, 2009
[43] Rossi P, Carvalho A D, Müller I, Aragno M. Comparative tracing experiments in a porous aquifer using bacteriophages and fluorescent dye on a test field located at Wilerwald (Switzerland) and simultaneously surveyed in detail on a local scale by radio-magneto-tellury (12–240 kHz)[J]. Environmental Geology, 1994, 23(3):192-200.
[44] Rossi P, Dörfliger N, Kennedy K, Müller I, Arango M. Bacteriophages as surface and ground water tracers[J]. Hydrology & Earth System Sciences, 1998, 2(1):101-110.
[45] Katz B G, Griffin D W. Using chemical and microbiological indicators to track the impacts from the land application of treated municipal wastewater and other sources on groundwater quality in a karstic springs basin[J]. Environmental Geology, 2008, 55(4):801-821.
[46] 邹胜章, 邓振平, 梁彬, 夏日元, 唐建生. 岩溶水系统中微生物迁移机制[J]. 环境污染与防治, 2010, 32(10):1-4. doi: 10.3969/j.issn.1001-3865.2010.10.001
ZOU Shengzhang, DENG Zhenping, LIANG Bin, XIA Riyuan, TANG Jiansheng. The mechanism of microbe transport in karst aquifer systems[J]. Environmental Pollution & Control, 2010, 32(10):1-4. doi: 10.3969/j.issn.1001-3865.2010.10.001
[47] Janet S G, Anthony P. Laboratory studies identify a colloidal groundwater tracer: Implications for bioremediation[J]. Fems Microbiology Letters, 1997, 148: 131–135.
[48] 张胜, 张翠云, 张云, 李政红, 张明. 地质微生物地球化学作用的意义与展望[J]. 地质通报, 2005, 24(Z1):1027-1031.
ZHANG Sheng, ZHANG Cuiyun, ZHANG Yun, LI Zhenghong, Zhang Ming. Geomicrobial geochemical process: Significance and prospects[J]. Geological Bulletin of China, 2005, 24(Z1):1027-1031.
[49] 张薇, 魏海雷, 高洪文, 胡跃高. 土壤微生物多样性及其环境影响因子研究进展[J]. 生态学杂志, 2005(1):48-52. doi: 10.3321/j.issn:1000-4890.2005.01.010
ZHANG Wei, WEI Hailei, GAO Hongwen, HU Yuegao. Advances of studies on soil microbial diversity and environmental impact factors[J]. Chinese Journal of Ecology, 2005(1):48-52. doi: 10.3321/j.issn:1000-4890.2005.01.010
[50] 林海, 蔡宏道. 粪大肠菌群及粪链球菌群在水体污染监测中的意义[J]. 武汉医学院学报, 1982(3):66-69.
LIN Hai, CAI Hongdao. Singnificance of fecal coliform and fecal streptococcus in water polluction monitoring[J]. Journal of Wuhan Medical College, 1982(3):66-69.
[51] Ender A, Goeppert N, Goldscheider N. Hydrogeological controls of variable microbial water quality in a complex subtropical karst system in Northern Vietnam[J]. Hydrogeology Journal, 2018, 26(7):1-18.
[52] 唐思偲, 王琴, 辛明秀. 用水体中大肠菌群的含量检测水质污染程度[J]. 生物学通报, 2011(8):15-17. doi: 10.3969/j.issn.0006-3193.2011.08.006
TANG Sisi, WANG Qin, XIN Mingxiu. Use coliform group content in water to detect water pollution degree[J]. Bulletin of Biology, 2011(8):15-17. doi: 10.3969/j.issn.0006-3193.2011.08.006
[53] 李冬梅. 近岸大肠杆菌多样性及其溯源研究[D]. 大连: 大连海事大学, 2012
LI Dongmei. Research on the escherichia coli diversity and microbial source tracking of the offshore[D]. Dalian: Dalian Maritime University, 2012.
[54] Obi L U, Atagana H I, Adeleke R A. Isolation and characterisation of crude oil sludge degrading bacteria[J]. Springerplus, 2016, 5(1):1946.
[55] Laroche E, Petit F, Fournier M, Pawlak B. Transport of antibiotic-resistant Escherichia coli in a public rural karst water supply[J]. Journal of Hydrology, 2010, 392(1):12-21.
[56] Pronk M, Goldscheider N, Zopfi J. Dynamics and interaction of organic carbon, turbidity and bacteria in a karst aquifer system[J]. Hydrogeology Journal, 2006, 14(4):473-484.
[57] Cocich A P, Austen M C, Brlocher F, Chaubet E, Cardinale B J, Biles C L, Inchausti P, Dangles O, Solan M, Gessner M O, Statzner B, Moss B. The role of biodiversity in the functioning of freshwater and marine benthic ecosystems[J]. Bioscience, 2004, 54(8):767-775.
[58] F Mösslacher, C Griebler, J Notenboom. Biomonitoring of groundwater systems: Methods, applications and possible indicators among the groundwater biota[M]. Luxemburg: Office for Official Publications of the European Communities.
[59] Feris K P, Hristova K, Gebreyesus B, Mackay D, Scow K M. A shallow BTEX and MTBE contaminated aquifer supports a diverse microbial community[J]. Microbial Ecology, 2004, 48(4):589-600.