基于信息量和多层感知机分类器模型耦合的平果市斜坡类地质灾害易发性评价

王新伟, 张漓黎, 莫德科, 叶宗达, 江凡. 基于信息量和多层感知机分类器模型耦合的平果市斜坡类地质灾害易发性评价[J]. 中国岩溶, 2023, 42(2): 370-381. doi: 10.11932/karst20230208
引用本文: 王新伟, 张漓黎, 莫德科, 叶宗达, 江凡. 基于信息量和多层感知机分类器模型耦合的平果市斜坡类地质灾害易发性评价[J]. 中国岩溶, 2023, 42(2): 370-381. doi: 10.11932/karst20230208
WANG Xinwei, ZHANG Lili, MO Deke, YE Zongda, JIANG Fan. Hillslope geo-hazard susceptibility assessment in Pingguo City based on coupling of CF information value and MLPC classifier model[J]. Carsologica Sinica, 2023, 42(2): 370-381. doi: 10.11932/karst20230208
Citation: WANG Xinwei, ZHANG Lili, MO Deke, YE Zongda, JIANG Fan. Hillslope geo-hazard susceptibility assessment in Pingguo City based on coupling of CF information value and MLPC classifier model[J]. Carsologica Sinica, 2023, 42(2): 370-381. doi: 10.11932/karst20230208

基于信息量和多层感知机分类器模型耦合的平果市斜坡类地质灾害易发性评价

  • 基金项目: 桂林市2018年市本级可持续发展重大专项项目“典型废弃采石场生态修复及综合利用关键技术集成与示范”(合同编号:20180101-2);国家重点研发计划课题“漓江流域喀斯特自然景观修复与植被生态功能提升关键技术研发及试验示范(合同编号:2019YFC0507503)”专题“漓江流域典型喀斯特废弃采石场景观修复技术与示范”
详细信息
    作者简介: 王新伟(1988-),男,工程师,硕士,研究方向为水工环地质及地质环境修复治理。E-mail:wangxinwei1012@163.com
  • 中图分类号: P245.25

Hillslope geo-hazard susceptibility assessment in Pingguo City based on coupling of CF information value and MLPC classifier model

  • 广西平果市频发的地质灾害严重制约着市区的工程建设和生命财产安全。在充分收集和整理区域地质资料的基础上,通过遥感解译和现场调查,确定了平果市共发育251处斜坡类地质灾害,其中崩塌189处、滑坡62处。选择高程、坡度、坡向、曲率、工程地质岩组、距断层距离、土层厚度、距河流距离和降雨共9个因子作为评价因子,结合信息量和多层感知机分类器的优势,采用信息量和多层感知机分类器耦合模型对平果市斜坡类地质灾害进行易发性评价。斜坡类地质灾害易发性制图表明极高易发区占平果市面积的25.39%,主要分布于平果市的北部、中部和南部山区。通过ROC曲线对模型预测能力进行检验获得AUC=0.809,表明模型评价结果能够很好地预测研究区斜坡类地质灾害的发生。研究结果可为研究区的崩滑灾害风险评价和灾害防治提供科学依据。

  • 加载中
  • 图 1  研究区地理位置及斜坡类地质灾害编录

    Figure 1. 

    图 3  黎明乡那朗屯滑坡

    Figure 3. 

    图 2  龙板村崩塌

    Figure 2. 

    图 4  灾害影响因子

    Figure 4. 

    图 5  斜坡类地质灾害易发性分区图

    Figure 5. 

    图 6  IV-MLPC模型的ROC曲线图

    Figure 6. 

    表 1  崩滑灾害影响因子分级及IV值

    Table 1.  The classes and IV of factors

    因子因子分级分级栅格分级栅格占比/%灾害数目灾害占比/%IV
    高程/m50~1501 801 05311.324155.976−0.639
    150~2503 231 40420.3186023.9040.163
    250~3504 206 90226.4519738.6450.379
    350~4503 916 67024.6276124.303−0.013
    450~5501 995 48412.547145.578−0.811
    550~650649 8044.08641.594−0.941
    650~896102 9190.647000
    坡度/°0~104 306 29627.07620.797−3.526
    10~204 354 21627.37883.187−2.151
    20~303 869 99724.333249.562−0.934
    30~402 037 33912.814618.3270.358
    40~50965 3266.07013051.7932.144
    50~60311 7111.9603614.3431.990
    60~8059 3510.37351.9921.675
    坡向平面206 4761.298000
    2 015 08212.672610.359−0.201
    东北1 863 35811.7162610.359−0.123
    1 820 55911.4473714.7410.253
    东南2 250 94014.1533011.952−0.169
    2 189 50213.7674618.3270.286
    西南2 002 42812.5913614.3430.130
    西1 644 77010.342197.570−0.312
    西北1 911 12112.0163112.3510.027
    曲率−60.21~−0.056 661 59441.88613152.1910.220
    −0.05~0.053 046 56419.1565220.7170.078
    0.05~62.726 196 07838.9596827.092−0.363
    工程地质岩组岩组i58 3560.36710.3980.082
    岩组ii5 033 58131.6496325.100−0.232
    岩组iii3 273 83320.5853413.546−0.418
    岩组iv7 538 46647.39915360.9560.252
    距断层距离/m0~5003 722 91423.4086657.7690.903
    500~1 0002 845 85617.8943823.5060.273
    1 000~1 5002 159 70913.5792914.3430.055
    1 500~2 0001 688 18410.615244.382−0.885
    2 000~2 5001 344 0828.451218.367−0.010
    >25004 143 49126.0537329.0840.110
    土层厚度/m0~17 508 53447.21114557.7690.202
    1~34 051 84825.4775923.506−0.081
    3~53 647 72622.9363614.343−0.469
    >5696 1284.377114.3820.001
    距河流距离/m0~2505 831 69336.66815260.5580.502
    250~5003 734 62023.4822911.554−0.709
    500~7502 264 78114.240187.171−0.686
    750~1 0001 354 4858.517103.984−0.760
    1 000~1 250826 6425.19893.586−0.371
    >1 2501 892 01511.8963313.1470.100
    降雨/mm1 223~1 2731 415 8638.902114.382−0.709
    1 273~1 3237 487 00647.07610341.036−0.137
    1 323~1 3736 096 85238.33511947.4100.212
    1 373~1 428904 5155.687187.1710.232
    下载: 导出CSV

    表 2  地质灾害影响因子的共线性诊断

    Table 2.  Multicollinearity diagnosis of influencing factors of geo-hazards

    影响因子TOLVIF
    高程0.9371.067
    坡度0.8951.117
    坡向0.9801.021
    曲率0.9641.038
    工程地质岩组0.8551.169
    距断层距离0.9871.013
    土层厚度0.9601.042
    距河流距离0.8961.116
    降雨0.8601.163
    下载: 导出CSV

    表 3  研究区地质灾害易发区划统计

    Table 3.  Statistics of geo-hazard susceptibility zoning in the study area

    易发性等级灾害个数灾害占比/%面积/km2面积占比/%频率比地质环境条件
    极低易发区93.59900.5836.240.10地势相对平坦的区域,如高程50~150 m和坡度为0°~20°的地区
    低易发区5521.91758.8230.540.7250~150 m、坡度10°~30°、岩组iii
    中易发区41.59107.824.340.37高程150~250 m、坡度20°~40°、土层厚度d>5 m
    高易发区218.3786.753.492.40河谷两岸1 500 m范围内以及高程>450 m以及坡度30°~50°
    极高易发区16264.54631.0525.392.54高程150~350 m、坡度40°~60°、河流两岸500 m范围内,
    距离断层1 000 m范围内以及岩组(iv)
    下载: 导出CSV
  • [1]

    郑玲静, 李秀珍, 徐瑞池. 基于斜坡单元的区域滑坡敏感性评价: 以云南省小江流域为例[J]. 科学技术与工程, 2021, 21(28):12322-12329. doi: 10.3969/j.issn.1671-1815.2021.28.052

    ZHENG Lingjing, LI Xiuzhen, XU Ruichi. Sensitivity evaluation of regional landslide based on slope units: Taking Xiaojiang river basin in Yunnan Province as an example[J]. Science Technology and Engineering, 2021, 21(28):12322-12329. doi: 10.3969/j.issn.1671-1815.2021.28.052

    [2]

    刘璐瑶, 高惠瑛, 李照. 基于CF与Logistic回归模型耦合的永嘉县滑坡易发性评价[J]. 中国海洋大学学报(自然科学版), 2021, 51(10):121-129. doi: 10.16441/j.cnki.hdxb.20200247

    LIU Luyao, GAO Huiying, LI Zhao. Landslide susceptibility assessment based on coupling of CF model and logistic regression model in Yongjia county[J]. Periodical of Ocean University of China, 2021, 51(10):121-129. doi: 10.16441/j.cnki.hdxb.20200247

    [3]

    Huang Junpeng, Ling Sixiang, Wu Xiyong, Deng Rui. GIS-based comparative study of the Bayesian network, decision table, radial basis function network and stochastic gradient descent for the spatial prediction of landslide susceptibility[J]. Land, 2022, 11(3): 436.

    [4]

    李萍, 叶辉, 谈树成. 基于层次分析法的永德县地质灾害易发性评价[J]. 水土保持研究, 2021, 28(5):394-399, 406. doi: 10.13869/j.cnki.rswc.2021.05.045

    LI Ping, YE Hui, TAN Shucheng. Evaluation of geological hazards in Yongde county based on analytic hierarchy process[J]. Research of Soil and Water Conservation, 2021, 28(5):394-399, 406. doi: 10.13869/j.cnki.rswc.2021.05.045

    [5]

    吴远斌, 刘之葵, 殷仁朝, 雷明堂, 戴建玲, 罗伟权, 潘宗源. 基于AHP和GIS技术的湖南怀化地区岩溶塌陷易发性评价[J]. 中国岩溶, 2022, 41(1):21-33.

    WU Yuanbin, LIU Zhikui, YIN Renchao, LEI Mingtang, DAI Jianling, LUO Weiquan, PAN Zongyuan. Evaluation of karst collapse susceptibility in Huaihua area, Hunan Province based on AHP and GIS[J]. Carsologica Sinica, 2022, 41(1):21-33.

    [6]

    王念秦, 朱文博, 郭有金. 基于PSO-SVM模型的滑坡易发性评价[J]. 长江科学院院报, 2021, 38(4):56-62. doi: 10.11988/ckyyb.20200074

    WANG Nianqin, ZHU Wenbo, GUO Youjin. Assessment of landslide susceptibility based on PSO-SVM model[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(4):56-62. doi: 10.11988/ckyyb.20200074

    [7]

    齐信, 黄波林, 刘广宁, 王世昌. 基于GIS技术和频率比模型的三峡地区秭归向斜盆地滑坡敏感性评价[J]. 地质力学学报, 2017, 23(1):97-104. doi: 10.3969/j.issn.1006-6616.2017.01.005

    QI Xin, HUANG Bolin, LIU Guangning, WANG Shichang. Landslide susceptibility assessment in the Three Gorges area, China, Zigui synclinal basin, using GIS technology and frequency ratio model[J]. Journal of Geomechanics, 2017, 23(1):97-104. doi: 10.3969/j.issn.1006-6616.2017.01.005

    [8]

    杨根云, 周伟, 方教勇. 基于信息量模型和数据标准化的滑坡易发性评价[J]. 地球信息科学学报, 2018, 20(5):674-683. doi: 10.12082/dqxxkx.2018.170535

    YANG Genyun, ZHOU Wei, FANG Jiaoyong. Assessment of landslide susceptibility based on information quantity model and data normalization[J]. Journal of Geo-information Science, 2018, 20(5):674-683. doi: 10.12082/dqxxkx.2018.170535

    [9]

    冯杭建, 周爱国, 唐小明, 游省易, 徐兴华. 基于确定性系数的降雨型滑坡影响因子敏感性分析[J]. 工程地质学报, 2017, 25(2):436-446. doi: 10.13544/j.cnki.jeg.2017.02.022

    FENG Hangjian, ZHOU Aiguo, TANG Xiaoming, YOU Shengyi, XU Xinghua. Susceptibility analysis of factors controlling rainfall-triggered landslides using certainty factor method[J]. Journal of Engineering Geology, 2017, 25(2):436-446. doi: 10.13544/j.cnki.jeg.2017.02.022

    [10]

    杨永刚, 殷坤龙, 赵海燕, 黄晨忱, 陈丽霞, 张俞. 基于C5.0决策树-快速聚类模型的万州区库岸段乡镇滑坡易发性区划[J]. 地质科技情报, 2019, 38(6):189-197. doi: 10.19509/j.cnki.dzkq.2019.0622

    YANG Yonggang, YIN Kunlong, ZHAO Haiyan, HUANG Chenchen, CHEN Lixia, ZHANG Yu. Landslide susceptibility evaluation for township units of bank section in Wanzhou district based on C5.0 decision tree and k-means cluster model[J]. Bulletin of Geological Science and Technology, 2019, 38(6):189-197. doi: 10.19509/j.cnki.dzkq.2019.0622

    [11]

    段宇英, 汤军, 刘远刚, 高贤君, 段宇雄. 基于随机森林的山西省柳林县黄土滑坡空间敏感性评价[J]. 地理科学, 2022, 42(2):343-351. doi: 10.13249/j.cnki.sgs.2022.02.016

    DUAN Yuying, TANG Jun, LIU Yuangang, GAO Xianjun, DUAN Yuxiong. Spatial sensitivity evaluation of loess landslide in Liulin county, Shanxi based on random forest[J]. Scientia Geographica Sinica, 2022, 42(2):343-351. doi: 10.13249/j.cnki.sgs.2022.02.016

    [12]

    黄立鑫, 郝君明, 李旺平, 周兆叶, 贾佩钱. 基于RBF神经网络-信息量耦合模型的滑坡易发性评价: 以甘肃岷县为例[J]. 中国地质灾害与防治学报, 2021, 32(6):116-126.

    HUANG Lixin, HAO Junming, LI Wangping, ZHOU Zhaoye, JIA Peiqian. Landslide susceptibility assessment by the coupling method of RBF neural network and information value: A case study in Min Xian, Gansu Province[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(6):116-126.

    [13]

    王卫东, 刘攀, 龚陆. 基于支持向量机模型的四川省滑坡灾害易发性区划[J]. 铁道科学与工程学报, 2019, 16(5):1194-1200. doi: 10.19713/j.cnki.43-1423/u.2019.05.011

    WANG Weidong, LIU Pan, GONG Lu. Landslide susceptibility mapping of Sichuan Province based on support vector machine[J]. Journal of Railway Science and Engineering, 2019, 16(5):1194-1200. doi: 10.19713/j.cnki.43-1423/u.2019.05.011

    [14]

    秦红富, 谈树成, 施旖奇, 李红梅, 汪旭. 基于CF-LR组合模型的地质灾害易发性评价: 以云南省宁洱哈尼族彝族自治县为例[J]. 人民长江, 2022, 53(7):119-127.

    QIN Hongfu, TAN Shucheng, SHI Yiqi, LI Hongmei, WANG Xu. Geological hazard susceptibility assessment based on CF&LR combined model: Case of Ning'er Hani and Yi Autonomous County, Yunnan Province[J]. Yangtze River, 2022, 53(7):119-127.

    [15]

    赵晓燕, 李永平, 谈树成. GIS支持下CF与信息量耦合模型的攀枝花市矿山地质灾害易发性评价[J]. 云南大学学报(自然科学版), 2022, 44(4):754-764.

    ZHAO Xiaoyan, LI Yongping, TAN Shucheng. Evaluation of mine geological hazard susceptibility of coupling CF with information model based on GIS in Panzhihua City[J]. Journal of Yunnan University (Natural Sciences Edition), 2022, 44(4):754-764.

    [16]

    李文彦, 王喜乐. 频率比与信息量模型在黄土沟壑区滑坡易发性评价中的应用与比较[J]. 自然灾害学报, 2020, 29(4):213-220. doi: 10.13577/j.jnd.2020.0422

    LI Wenyan, WANG Xile. Application and comparison of frequency ratio and information value model for evaluating landslide susceptibility of loess gully region[J]. Journal of Natural Disasters, 2020, 29(4):213-220. doi: 10.13577/j.jnd.2020.0422

    [17]

    王志恒, 胡卓玮, 赵文吉, 国巧真, 万诗敏. 基于多层感知器模型的区域滑坡敏感性评价研究: 以四川低山丘陵区为例[J]. 防灾减灾工程学报, 2015, 35(5):691-698.

    WANG Zhiheng, HU Zhuowei, ZHAO Wenji, GUO Qiaozhen, WAN Shimin. Research on regional landslide susceptibility assessment based on multiple layer perceptron: Taking the hilly area in Sichuan as example[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(5):691-698.

    [18]

    李晓青, 阳倩妮, 周楷淳, 罗为群. 喀斯特地区不同岩性上农村居民点分布特征: 以平果市为例[J]. 中国岩溶, 2021, 40(2):355-362.

    LI Xiaoqing, YANG Qianni, ZHOU Kaichun, LUO Weiqun. Distribution characteristics of rural settlement on different lithology in karst area: A case study of Pingguo City[J]. Carsologica Sinica, 2021, 40(2):355-362.

    [19]

    吴远斌, 刘之葵, 殷仁朝, 杨建兴, 罗伟权, 雷明堂, 戴建玲, 潘宗源. 湖南怀化盆地岩溶发育特征与分布规律[J]. 中国岩溶, 2022, 41(5):759-772, 807.

    WU Yuanbin, LIU Zhikui, YIN Renchao, YANG Jianxing, LUO Weiquan, LEI Mingtang, DAI Jianling, PAN Zongyuan. Karst development characteristics and distribution law in Huaihua basin, Hunan Province[J]. Carsologica Sinica, 2022, 41(5):759-772, 807.

    [20]

    董晓超, 熊康宁, 朱大运, 蓝家程, 廖建军, 曹洋, 刘兴宜. 喀斯特生态环境风险评价: 以贵州省为例[J]. 中国岩溶, 2019, 38(5):713-721.

    DONG Xiaochao, XIONG Kangning, ZHU Dayun, LAN Jiacheng, LIAO Jianjun, CAO Yang, LIU Xingyi. Risk assessment of karst ecological environments: A case study of Guizhou Province[J]. Carsologica Sinica, 2019, 38(5):713-721.

    [21]

    李艳慧. 广西平果至那坡地质灾害高易发时空分布及成因调查[J]. 赤峰学院学报(自然科学版), 2016, 32(21):41-43. doi: 10.13398/j.cnki.issn1673-260x.2016.21.018

    LI Yanhui. Investigation on the spatial and temporal distribution and causes of geological disasters from Pingguo to Napo, Guangxi[J]. Journal of Chifeng University (Natural Science Edition), 2016, 32(21):41-43. doi: 10.13398/j.cnki.issn1673-260x.2016.21.018

    [22]

    Paola Reichenbach, Mauro Rossi, Bruce D. Malamud, Monika Mihir, Fausto Guzzetti. A review of statistically-based landslide susceptibility models[J]. Earth Science Reviews, 2018, 180(1):60-91. doi: 10.1016/j.earscirev.2018.03.001

    [23]

    李齐荣, 苗则朗, 陈帅, 李珂, 蒲明辉. 基于多模态分类模型的芦山地震滑坡易发性评价[J]. 长江科学院院报, 2022, 39(5): 63-70.

    LI Qirong, MIAO Zelang, CHEN Shuai, LI Ke, PU Minghui. Mapping the susceptibility of Lushan seismic landslide based on multimodal classification model[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(5): 63-70.

    [24]

    杜国梁, 杨志华, 袁颖, 任三绍, 任涛. 基于逻辑回归—信息量的川藏交通廊道滑坡易发性评价[J]. 水文地质工程地质, 2021, 48(5):102-111. doi: 10.16030/j.cnki.issn.1000-3665.202104009

    DU Guoliang, YANG Zhihua, YUAN Ying, REN Sanshao, REN Tao. Landslide susceptibility mapping in the Sichuan-Tibet traffic corridor using logistic regression-information value method[J]. Hydrogeology & Engineering Geology, 2021, 48(5):102-111. doi: 10.16030/j.cnki.issn.1000-3665.202104009

  • 加载中

(6)

(3)

计量
  • 文章访问数:  489
  • PDF下载数:  50
  • 施引文献:  0
出版历程
收稿日期:  2022-07-01
刊出日期:  2023-04-25

目录