利用2015-2019年Sentinel-1数据监测武汉白沙洲岩溶区地表沉降特征

杨辰, 邓飞, 史绪国. 利用2015-2019年Sentinel-1数据监测武汉白沙洲岩溶区地表沉降特征[J]. 中国岩溶, 2023, 42(3): 558-564. doi: 10.11932/karst2023y018
引用本文: 杨辰, 邓飞, 史绪国. 利用2015-2019年Sentinel-1数据监测武汉白沙洲岩溶区地表沉降特征[J]. 中国岩溶, 2023, 42(3): 558-564. doi: 10.11932/karst2023y018
YANG Chen, DENG Fei, SHI Xuguo. Monitoring subsidence characteristics of Baishazhou karst area in Wuhan with Sentinel-1 images from 2015 to 2019[J]. Carsologica Sinica, 2023, 42(3): 558-564. doi: 10.11932/karst2023y018
Citation: YANG Chen, DENG Fei, SHI Xuguo. Monitoring subsidence characteristics of Baishazhou karst area in Wuhan with Sentinel-1 images from 2015 to 2019[J]. Carsologica Sinica, 2023, 42(3): 558-564. doi: 10.11932/karst2023y018

利用2015-2019年Sentinel-1数据监测武汉白沙洲岩溶区地表沉降特征

  • 基金项目: 中国地质调查项目(DD20190432,DD20190343)
详细信息
    作者简介: 杨辰(1989-),男,硕士,工程师,研究方向:岩溶地质信息化、岩溶区地质灾害识别与监测。E-mail:ychen@mail.cgs.gov.cn
  • 中图分类号: P642.2;U231.94

Monitoring subsidence characteristics of Baishazhou karst area in Wuhan with Sentinel-1 images from 2015 to 2019

  • 武汉市白沙洲地区覆盖型岩溶分布广,地质条件十分复杂,历史上多次发生岩溶塌陷,地质问题突出,需要利用有效手段监测区域性地面塌陷,及时发现隐患。文章利用时序InSAR技术对覆盖2015年4月至2019年9月升轨Sentinel-1数据集分析,获取了武汉白沙洲地区地面沉降分布情况,最大年平均变形速率达30 mm·a−1。对典型沉降中心的时序变形分析表明,白沙洲地区的岩溶区地面沉降与季节性降雨密切相关,且有一定的滞后。同时,对武汉地铁6号线车辆段的分析发现,日益加剧的人类活动引起严重的地面沉降,因此需密切注意周围建筑与基础设施的安全问题。本文的实验证明了时序InSAR方法在地表变形监测中的有效性,可在岩溶区地质灾害防治发挥重要作用。

  • 加载中
  • 图 1  实验区地貌分区

    Figure 1. 

    图 2  Sentinel-1干涉对组合

    Figure 2. 

    图 3  利用Sentinel-1数据提取的实验区平均变形速率图

    Figure 3. 

    图 4  白沙洲岩溶区地面沉降速率图

    Figure 4. 

    图 5  P1点累积沉降与降雨

    Figure 5. 

    图 6  地铁6号线地面沉降速率图

    Figure 6. 

    图 7  P2点累积沉降与降雨

    Figure 7. 

  • [1]

    夏日元, 蒋忠诚, 邹胜章, 曹建华, 覃小群, 苏春田, 罗为群, 周立新. 岩溶地区水文地质环境地质综合调查工程进展[J]. 中国地质调查, 2017, 4(1):1-10.

    XIA Riyuan, JIANG Zhongcheng, ZOU Shengzhang, CAO Jianhua, QIN Xiaoqun, SU Chuntian, LUO Weiqun, ZHOU Lixin. Progress of hydrogeology and environmental geology comprehensive survey in karst area[J]. Geological Survey of China, 2017, 4(1):1-10.

    [2]

    吴应科, 毕于远, 郭纯青. 西南岩溶区岩溶基本特征与资源、环境、社会、经济综述[J]. 中国岩溶, 1998, 17(2):141-150.

    WU Yingke, BI Yuyuan, GUO Chunqing. A summary of basic features, resources, environment, sociality and economy in the karst areas of South-West China[J]. Casologica Sinica, 1998, 17(2):141-150.

    [3]

    自然资源部地质灾害技术指导中心. 全国地质灾害通报(2019年)[Z]. 北京, 2019.

    Geological Disaster Technical Guidance Center of the Ministry of Natural Resources. National Geological Hazard Bulletin (2019)[Z]. Beijing, 2019.

    [4]

    贺凯, 李滨, 赵超英, 高杨, 陈立权, 刘朋飞. 基于易滑地质结构与多源数据差异的岩溶山区大型崩滑灾害识别研究[J]. 中国岩溶, 2020, 39(4):467-477.

    HE Kai, LI Bin, ZHAO Chaoying, GAO Yang, CHEN Liquan, LIU Pengfei. Identification of large-scale landslides in karst mountainous areas based on the difference between the slippery geological structure and multi-source data[J]. Carsologica Sinica, 2020, 39(4):467-477.

    [5]

    罗小杰, 沈建. 我国岩溶地面塌陷研究进展与展望[J]. 中国岩溶, 2018, 37(1):101-111.

    LUO Xiaojie, SHEN Jian. Research progress and prospect of karst ground collapse in China[J]. Carsologica Sinica, 2018, 37(1):101-111.

    [6]

    邓忠, 李珊, 高武振, 康志强. 覆盖型岩溶区城市地下轨道交通建设引发地质灾害风险与对策[J]. 城市地质, 2020, 15(3):261-266.

    DENG Zhong, LI Shan, GAO Wuzhen, KANG Zhiqiang. Geological disaster risk caused by construction of urban underground rail transit in covered karst area and its preventive measures[J]. Urban Geology, 2020, 15(3):261-266.

    [7]

    沈铭, 杨涛, 赵新建. 武汉市岩溶地面塌陷监测技术探讨[J]. 资源环境与工程, 2014(2):177-180. doi: 10.3969/j.issn.1671-1211.2014.02.013

    SHEN Ming, YANG Tao, ZHAO Xinjian. Discussion on monitoring technology of karst surface collapse[J]. Resources Environment & Engineering, 2014(2):177-180. doi: 10.3969/j.issn.1671-1211.2014.02.013

    [8]

    涂婧, 杨涛, 刘长宪, 吕玲, 彭惠. 基于GIS武汉岩溶塌陷区岩溶发育规律研究[J]. 资源环境与工程, 2014, 28(1):49-52, 73. doi: 10.3969/j.issn.1671-1211.2014.01.013

    TU Jing, YANG Tao, LIU Changxian, LYU Ling, PENG Hui. Study on karst development law in Wuhan karst collapse area based on GIS[J]. Resource Environment and Engineering, 2014, 28(1):49-52, 73. doi: 10.3969/j.issn.1671-1211.2014.01.013

    [9]

    罗小杰. 武汉地区碳酸盐岩“六带五型”划分与岩溶地质灾害防治[J]. 水利学报, 2014, 45(2):171-179.

    LUO Xiaojie. Division of "Six Belts and Five Types" of carbonate region and control of karst geological disaster in Wuhan[J]. Journal of Hydraulic Engineering, 2014, 45(2):171-179.

    [10]

    廖明生, 张路, 史绪国, 蒋亚楠, 董杰, 刘宇舟. 滑坡变形雷达遥感监测方法与实践[M]. 北京: 科学出版社, 2017.

    LIAO Mingsheng, ZHANG Lu, SHI Xuguo, JIANG Yanan, DONG Jie, LIU Yuzhou. Methods and practice of landslide deformation radar remote sensing monitoring[M]. Beijing: Science Press, 2017.

    [11]

    白林, 江利明, 汪汉胜. 利用高分辨率TerraSAR-X数据监测武汉地区2013~2015年地面沉降[J]. 大地测量与地球动力学, 2019, 39(8):832-836.

    BAI Lin, JIANG Liming, WANG Hansheng. Monitoring ground subsidence in Wuhan City with high-resolution TerraSAR-X images from 2013 to 2015[J]. Journal of Geodesy and Geodynamics, 2019, 39(8):832-836.

    [12]

    Bai L, Jiang L M, Wang H S, Sun Q S. Spatiotemporal characterization of land subsidence and uplift (2009–2010) over Wuhan in Central China revealed by TerraSAR-X InSAR analysis[J]. Remote Sensing, 2016, 8(4): 350.

    [13]

    Jiang Haonan . Land subsidence in Wuhan revealed using a non-linear PSInSAR approach with long time series of COSMO-SkyMed SAR data[J]. Remote Sensing, 2021, 13(7): 1256.

    [14]

    孙伟, 李江卫, 白洁, 童欣. 利用PS-InSAR技术监测武汉市主城区地面沉降[J]. 城市勘测, 2019(5):120-125. doi: 10.3969/j.issn.1672-8262.2019.05.029

    SUN Wei, LI Jiangwei, BAI Jie, TONG Xin. Using the PS-InSAR technique to monitor Wuhan urban district land subsidence[J]. Urban Geotechnical Investigation & Surveying, 2019(5):120-125. doi: 10.3969/j.issn.1672-8262.2019.05.029

    [15]

    Zhou L, Guo J M, Hu J Y, Li J W, Xu Y F, Pan Y J, Shi M. Wuhan surface subsidence analysis in 2015–2016 based on Sentinel-1A data by SBAS-InSAR[J]. Remote Sensing, 2017, 9(10): 982.

    [16]

    Zhang Y, Liu Y, Jin M, Jing Y, Liu Y, Liu Y, Sun W, Wei J, Chen Y. Monitoring land subsidence in Wuhan City (China) using the SBAS-InSAR method with radarsat-2 imagery data[J]. Sensors, 2019, 19 (3): 743.

    [17]

    Ferretti A, Prati C, Rocca F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20.

    [18]

    Shi X G, Yang C, Zhang L, Jiang H J, Liao M S, Zhang L, Liu XG. Mapping and characterizing displacements of active loess slopes along the upstream Yellow River with multi-temporal InSAR datasets[J]. Science of the Total Environment, 2019, 674: 200-210.

    [19]

    Berardino P, Fornaro G, Lanari R. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40 (11): 2375-2383.

    [20]

    李长安, 张玉芬, 庞设典, 官善友. 以地貌单元为依据的工程地质分区研究: 以武汉市都市发展区城市地质研究为例[J]. 地质论评, 2019, 65(3):645-652.

    LI Chang'an, ZHANG Yufen, PANG Shedian, GUAN Shanyou. Study on engineering geological zoning based on geomorphologic units: A case study of the Wuhan metropolitan development area[J]. Geological Review, 2019, 65(3):645-652.

    [21]

    官善友, 朱锐, 庞设典, 江丹. 武汉都市发展区工程地质分区研究[J]. 城市勘测, 2016(6):172-176. doi: 10.3969/j.issn.1672-8262.2016.06.046

    GUAN Shanyou, ZHU Rui, PANG Shedian, JIANG Dan. The study for engineering geological zonation of metropolitan development area in Wuhan[J]. Urban Geotechnical Investigation & Surveying, 2016(6):172-176. doi: 10.3969/j.issn.1672-8262.2016.06.046

    [22]

    徐贵来. 武汉市覆盖层−岩溶地面塌陷形成机理与危险性评价[D]. 武汉: 中国地质大学, 2016.

    XU Guilai. Formation mechanism and risk assessment of overburden-karst ground collapse in Wuhan[D]. Wuhan: China University of Geosciences, 2016.

    [23]

    涂婧, 魏瑞均, 杨戈欣, 刘长宪, 金小刚, 李海涛. 湖北武汉岩溶塌陷时空分布规律及其影响因素分析[J]. 中国地质灾害与防治学报, 2019, 30(6):68-73,93.

    TU Jing, WEI Ruijun, YANG Gexin, LIU Changxian, JIN Xiaogang, LI Haitao. Analysis on spatial and temporal distribution characteristics of karst collapse and its influence factors in Wuhan City of Hubei Province[J]. Chinese Journal of Geological Hazards and Prevention, 2019, 30(6):68-73,93.

    [24]

    郑晓明, 金小刚, 陈标典, 刘鹏瑞, 杨戈欣, 李海涛, 杨涛. 湖北武汉岩溶塌陷成因机理与致塌模式[J]. 中国地质灾害与防治学报, 2019, 30(5):75-82.

    ZHENG Xiaoming, JIN Xiaogang, CHEN Biaodian, LIU Pengrui, YANG Gexin, LI Haitao, YANG Tao. Mechanism and modes of karst collapse in Wuhan City, Hubei Province[J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(5):75-82.

    [25]

    陈冬琴. 武汉市青菱乡岩溶塌陷机理及数值模拟研究[D]. 武汉: 中国地质大学, 2016.

    CHEN Dongqin. Research on karst collapse mechanism and numerical simulation in Qingling township, Wuhan City[D]. Wuhan: China University of Geosciences, 2016.

    [26]

    Li Ying, He Zhongze, Yan Guihua, Han Fengyou. Foundation pit dewatering and ground subsidence in binary structural stratum of Wuhan[J]. Advanced Materials Research, 2013, 639-640: 694-699.

  • 加载中

(7)

计量
  • 文章访问数:  941
  • PDF下载数:  48
  • 施引文献:  0
出版历程
收稿日期:  2022-07-05
刊出日期:  2023-06-25

目录