Interactions between the Earth Sphere and its constraint on the progress of anoxic-oxic in the Cretaceous Ocean
-
摘要:
白垩纪诸多地质事件中,以黑色页岩为特征的大洋缺氧事件和以红层为特征的大洋富氧环境尤其引人关注。本文探讨了白垩纪大洋从缺氧到富氧转化的过程与机制,认为上述沉积事件是地球圈层之间相互作用的结果。白垩纪岩石圈剧烈的岩浆活动,是缺氧、富氧事件发生的源动力,水圈、大气圈、生物圈的共同作用是沉积事件发生的结果。具体过程为:白垩纪大规模的火山喷发,改变了海陆面积的对比,并引起地球内部大量热能释放和大气中CO2气体浓度的升高,最终导致大气温度的升高。海水温度的升高和CO2浓度的增加导致海洋环境中溶解O2的降低,缺氧事件随之而产生。同时,海底岩浆喷发在海底产生大量的富含铁元素的基性和超基性岩石,通过海底风化和热液活动,铁元素从岩石圈进入水圈。海水中的铁元素是海洋浮游植物宝贵的营养盐类,其含量的增加可激发浮游植物的大规模繁盛,而这一生命过程可以吸收海水中大量的CO2,并且产生等量的O2。随着海水中O2浓度的不断升高,以富含Fe3+的红色沉积物为特征的海洋富氧环境出现。藏南和深海钻探、大洋钻探典型剖面的数据证实大洋缺氧和富氧发生的韵律性,即缺氧事件之后往往伴随富氧环境的出现。研究认为,白垩纪大洋缺氧和富氧事件是同一原因导致的不同结果,地球圈层相互作用是其根本制约因素。由岩浆活动引起的缺氧事件和同样由其造成的富氧环境,其机制存在明显的差异,前者以物理、化学过程为主,后者除此之外还演绎了更为复杂的生物-海洋地球化学过程。
-
关键词:
- 白垩纪缺氧 /
- 与富氧事件地球圈层相互作用
Abstract:The Cretaceous is an important period in which occurred many geological events, especially the OAEs (Oceanic Anoxic Events) characterized by black shales, and theoxic process characterized by CORBs (Cretaceous Oceanic Red Beds). This paper describes the causative mechanism which explains how the oceanic environment changed from anoxic to oxic in Cretaceous. Two typical events show different results that caused by interactionsoftheEarthSpheres. Here we propose that the rise of atmospheric CO2 occurred because the enhanced submarine volcanism-was abruptly and permanently diminished during the Cretaceous. The Cretaceous large-scale submarine volcanism caused the concentration of CO2. The releasing of the inner energy of the lithosphere and thedistribution oflandwhich caused the increasing of atmospheric temperature. This change presented the same trend as the oceanic water temperature, and caused the decreasing of O2 concentration in the Cretaceous ocean, and then the OAEs occurred. The lithosphere produced volume of lava in the upper oceanic crustwhich contained Fe in the seafloor. When thehydrothermal fluids alteration of oceanic crust and the seawater/basalt interactions (including microbes alteration of submarine basaltic glass), the element Fe dissolved in seawater. Iron is a micronutrient essential for the synthesis of enzymes required for photosynthesis in oceanic environment, it could spur phytoplankton growth rapidly. The photosynthesis of phytoplankton which can consume carbon dioxide is in much of the world's oceans, wherever they are in atmosphere or in ocean. This process could produce equal oxygen. And then, the oxic environment characterized by red sediment which is rich in Fe3+ appeared. The data show rhythm of the anoxic and oxic from south Tibet and DSDP/ODP section, which the anoxic is often accompanied by the occurrence of oxygen rich environment.Undoubtedly, the anoxic andoxic in the Cretaceous Ocean were controlled by the mutually dependent processes of the Earth system which included lithosphere, hydrosphere, atmosphere and biosphere. An important conclusion of this study is that the black shalesand the oceanic red beds are caused by the same reason, but led different results. The anoxic and oxic in the Cretaceous ocean were caused by volcanic activities, but they were of different causative mechanisms. The former was based on physical and chemical process, while the latter involved more complicated bio-oceanic-geochemistry process.
-
Key words:
- Cretaceous /
- Anoxic andoxic
-
图 1 Ma来洋中脊和海底高原的生产量及大气CO2含量、浅海水温的对应关系(据Coffin and Eldholm,1994;Robert and Abraham,2005修改)
Figure 1.
图 3 白垩纪(100 Ma)全球洋流图(红色箭头表示洋流方向,据Chen et al. 2005, 修改)
Figure 3.
-
Arthur M A. 1979. North Atlantic cretaceous black shales:The record at site 398 and a brief comparison with other occurrences[M]. Initial reports of the Deep Sea Drilling Project, 47:719-753
Arvidson R S, Mackenzie F T, Guidry M W. 2013. Geologic history of seawater:A MAGic approach to carbon chemistry and ocean ventilation. Chemical Geology, 362:287-304 doi: 10.1016/j.chemgeo.2013.10.012
Asimow P D, Hirschmann M M, Stolper E M. 2001. Calculation of peridotite partial melting from thermodynamic models of minerals, melts:Ⅳ. Adiabatic decompression, the composition, mean properties of mid-ocean ridge basalts[J]. Petrology, 42:963-998 doi: 10.1093/petrology/42.5.963
Barron E J. 1983.A warm equable Cretaceoue:the nature of the problem[J]. Earth-Science Review, 19(4):305-338. doi: 10.1016/0012-8252(83)90001-6
Benzerara K, Menguy N, Banerjee N R, Tolek T, Guyot F. 2007. Alteration of submarine basaltic glass from the Ontong Java Plateau:A STXM and TEM study[J]. Earth and Planetary Science Letters, 260:187-200. doi: 10.1016/j.epsl.2007.05.029
Berner R A, Beerling D J, Dudley R, Jennifer M R, Richard A W. 2003. Phanerozoic atmospheric oxygen[J].Annual Review of Earth Planetary Science. 31:105-34. doi: 10.1146/annurev.earth.31.100901.141329
Berner R A, Canfield D E. 1989. A new model for atmospheric oxygen over Phanerozoic time[J]. American Journal of Science, 289(4):333-61. doi: 10.2475/ajs.289.4.333
Berner R A, Lasaga A C, Garrels R M. 1983. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 283:641-683. doi: 10.2475/ajs.283.7.641
Berner R A. 1990. Atmospheric carbon dioxide levels over Phanerozoic time[J]. Science, 249(4975):1382-1386. doi: 10.1126/science.249.4975.1382
Berner R A. 1992.Palaeo-CO2 and climate[J]. Nature, 358:114. doi: 10.1038/358114a0
Berner R A. 1999.Atmospheric CO2 over Phanerozoic time[J]. Proceeding of the National Academy Sciences of the USA, 96(20):10955-10957. doi: 10.1073/pnas.96.20.10955
Bi Siwen. 2003. Earth system science-the frontier of earth science and scientific basis of the sustainable development strategy in the 21st century[J]. Geological Bulletin of China, 22(8):601-611 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200308008.htm
Blank J G, Delaney J R, Marsais D J. 1993. The concentration isotopic composition of carbon in basaltic glasses from the Juan de Fuca Ridge[J]. GeochimicaetCosmochimicaActa, 57(4):875-887. https://link.springer.com/article/10.1007/BF02831074
Boucot A J, Gray J. 2001. A critique of Phanerozoic climatic models involving changes in the CO2 content of the atmosphere[J]. EarthScience Reviews, 56(1-4):1-159. http://www.sciencedirect.com/science/article/pii/S0012825201000666
Broecker W S. 1991.The great ocean conveyor[J]. Oceanography, 4:79-89. doi: 10.5670/oceanog
Bruce W F. 1996. Phytoplankton bloom on iron rations[J]. Nature, 383:475-476. http://www.nature.com/nature/journal/v383/n6600/abs/383475a0.html
Brumsack H J. 1980.Geochemistry of Cretaceous black shales from the Atlantic Pcean (DSDP Legs 11, 14, 36 and 41). Chemical Geology, 3:1-2, 5. http://linkinghub.elsevier.com/retrieve/pii/0009254180900649
Campbell I H, Kerr A C. 2007. The great plume debate:Testing the plume theory[J]. Chemical Geology, 241 (3/4):149-152. http://www.sciencedirect.com/science/article/pii/S0009254107000642
Cerling T E. 1991. Carbon dioxide in the atmosphere:Evidence from Cenozoic and Mesozoic paleosols[J]. American Journal of Science, 291(4):377-400. doi: 10.2475/ajs.291.4.377
Cerling T E. Solomon D K, Quade J, John R B. 1991. On the isotopic composition of carbon in soil carbon dioxide[J].Geochimica et Cosmochimica Acta, 55(11):3403-3405. doi: 10.1016/0016-7037(91)90498-T
Chen J, Devey C, Fischer C. 2005. Ocean-abyss of time[M].Earth Sciences for Society Foundation, Leiden, The Netherlands.1-16.
Christopher L S, Richard A F, Nicolas G, Robert M K, Kitack L, John L B, Rik W, Wong C S, Douglas W R, Bronte T, Frank J M, Peng T H, Alexander K, Tsueno Ono, Aida F R. 2004. The oceanic sink for anthropogenic CO2[J]. Science, 305:367-371. doi: 10.1126/science.1097403
Christopher L S, Toste T. 2010. Estimation of anthropogenic CO2 inventories in the ocean[J]. Annual Review Marine Science, 2:175-198. doi: 10.1146/annurev-marine-120308-080947
Christopher S R. Earth History.Paleomap Project Cretaceous[]. http://www.scotese.com/earth.htm.
Coale K H, Fitzwater S E, Gordon R M, Kenneth S J, Richard T B. 1996. Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean[J]. Nature, 379:621-624. doi: 10.1038/379621a0
Coffin M F, Eldholm O. 1994. Large igneous provinces:Crustal structure, dimensions, and external consequences[J]. Review Geophys, 32:1-36. doi: 10.1029/93RG02508
Courtillot V E, Renne P R. 2003. On the age of flood basalt events[J]. ComptesRendus Geoscience, 335(1):113-140 doi: 10.1016/S1631-0713(03)00006-3
Dahl T W, Emma U H, Ariel D A, David P G, Bond G, Benjamin C, Gill H. 2010. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish[J]. Proceedings of the National Academy of Science of the United States of America, 107(42):17911-17915. doi: 10.1073/pnas.1011287107
de Baar H J, de Jong J T. 2001. Distributions, sources and sinks of iron in seawater[C]//Turner D R, Hunter K A(eds.). Biogeochemistry of Fe in Seawater. SCOR/IUPAC.Chichester, 123-253.
Dondra V B, Tyler H C, Ralph C T, Geoffrey J S, Kenneth W B. 2013. Coastal iron and nitrate distributions during the spring and summer upwelling season in the central California Current upwelling regime[J]. Continental Shelf Research, 66:58-72. doi: 10.1016/j.csr.2013.07.003
Duce R A, Tindale N W. 1991. Atmospheric transport of iron and its deposition in the ocean[J]. Limnology and Oceanography, 36(8):1715-1726. doi: 10.4319/lo.1991.36.8.1715
Edward R A, Cliff S L, Philip W B, Samantha J L, Maria T M, Andrew R Bowie.2000. Importance of stirring in the development of an iron-fertilized phytoplankton bloom[J]. Nature, 407:727-730. doi: 10.1038/35037555
Falkowski P, Scholes R J, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie F T, Moore B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W. 2000. The global carbon cycle:a test of our knowledge of earth as a system[J]. Science, 290(5490):291-296. doi: 10.1126/science.290.5490.291
Fisk M R, Giovannoni S J, Thorseth I H. 1998.The extent of microbial life in the volcanic crust of the ocean basins[J]. Science, 281:978-980. doi: 10.1126/science.281.5379.978
Furnes H, Staudigel H. 1999. Biological mediation of basalt glass alteration in the ocean crust:how deep is the deep biosphere?[J]. Earth and Planetary Science Letters, 166(3-4):97-103. doi: 10.1016/S0012-821X(99)00005-9
Geider R J, LaRoche J. 1994. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea[J].Photosynthesis Research, 39:275-301. doi: 10.1007/BF00014588
George W L, Wu J f. 1997. What controls dissolved iron concentrations in the world ocean?-a comment[J]. Marine Chemistry, 57(3/4):137-161. https://miami.pure.elsevier.com/en/publications/what-controls-dissolved-iron-concentrations-in-the-world-ocean-a-
Gordon R M, Coale K H, Johnson K S. 1997. Iron distributions in the equatorial Pacific:implications for new production[J]. Limnology and Oceanography, 42(3):419-431. doi: 10.4319/lo.1997.42.3.0419
Gregory J R. 2001. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles[J]. Nature, 411:287-290. doi: 10.1038/35077041
Guo Zhengtang, Wu Haibin. 2004. On the solid earth science and earth system science[J]. Advances In Earth Science, 19(5):699-705(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200405002.htm
Guy C, Daux V, Schott J. 1999. Behaviour of rare earth elements during seawater/basalt interactions in the Mururoa Massif[J]. Chemical Geology, 158(1/2):21-35. https://www.sciencedirect.com/science/article/pii/S0009254199000194
Hansell D A, Carlson C A. 1998. Deep-ocean gradients in the concentration of dissolved organic carbon[J]. Science, 395(6699):263-266. http://www.nature.com/nature/journal/v395/n6699/full/395263a0.html
Hein J W, de Baar, Jeroen T M, de Jong, Rob F N, Klaas R T, Maria A L, Bathmann U, Michiel R L, Jüri S. 1999. Low dissolved Fe and the absence of diatom blooms in remote Pacific waters of the Southern Ocean[J]. Marine Chemistry, 66(1/2):1-34. https://www.narcis.nl/publication/RecordID/oai:pure.rug.nl...
Hollander D J, McKenzie J A. 1991. Carbon dioxide control on carbon-isotope fractionation during aqueous photosynthesis:A paleo-PCO2 barometer[J]. Geology, 19(9):929-32. doi: 10.1130/0091-7613(1991)019<0929:CCOCIF>2.3.CO;2
Hong Hanjing, Yu Yong, ZhengXiuzhen, Liu Peixun, Tao We. 2003. Global volcano distribution:pattern and variation. Earth Science Frontiers, 10:11-16(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_dxqy2003z1004.aspx
Hutchins D A, Hare C E, Weaver R S, Zhang Y, Firme G F, DiTullio G R, Alm M B, Riseman S F, Maucher J M, Geesey M E, Trick C G, Smith G J, Rue E L, Conn J, Bruland K W. 2002. Phytoplankton Fe limitation in the Humboldt Current and Peru Upwelling[J]. Limnology and Oceanography, 47:997-1011. doi: 10.4319/lo.2002.47.4.0997
Hutchins D A, Wang W X, Fisher N S. 1995. Copepod grazing and the biogeochemical fate of diatom iron[J]. Limnology and Oceanography, 40:989-994. doi: 10.4319/lo.1995.40.5.0989
Ingle S, Coffin M F. 2004.Impact origin for the greater Ontong Java Plateau?[J]. Earth and Planetary Science Letters, 218(1/2):123-134. https://www.sciencedirect.com/science/article/pii/S0012821X03006290
Jeffrey B G, Nancy M A, Robert D, Carl G. 1995. Implications of the late Palaeozoic oxygen pulse for physiology and evolution[J]. Nature, 375:117-120. doi: 10.1038/375117a0
Jeffrey C A, Pilar M. 2000.On the role of microbes in the alteration of submarine basaltic glass:A TEM study[J]. Earth and Planetary Science Letters, 181(3):301-313. doi: 10.1016/S0012-821X(00)00204-1
Jenkyns H C. 2010. Geochemistry of oceanic anoxic events[J]. Geochemistry, Geophysics, Geosystems, 11:1-30. http://onlinelibrary.wiley.com/doi/10.1029/2009GC002788/full?scrollTo=references
Jickells T D. 1999. The inputs of dust derived elements to the Sargasso Sea:a synthesis[J]. Marine Chemistry, 68(1-2):5-14. doi: 10.1016/S0304-4203(99)00061-4
Jickells T, Spokes L J. 2001. Atmospheric iron inputs to the oceans. In:Turner, D.R., Hunter, K.A. (Eds.), The biogeochemistry of Iron in seawater. SCOR-IUPAC, Baltimore, 85-121. https://ueaeprints.uea.ac.uk/32319/
Jin Xingchun, Zhou Zuyi, Wang Pinxian.1995. Ocean Drilling Program and Earth Science in China[M].Shanghai:Tongji University Press, 248-251(in Chinese with English abstract).
John P, Hayes J M. 1990. A carbon isotope record of CO2 levels during the late Quaternary[J].Nature, 347:462-464. doi: 10.1038/347462a0
Johnson K S, Gordon R M, Coale K H. 1997. What controls dissolved iron concentrations in the world ocean?[J]. Marine Chemistry, 57(3-4):137-161. doi: 10.1016/S0304-4203(97)00043-1
Kazumi O, Eiichi T. 2013. Biogeochemical effects of atmospheric oxygen concentration, phosphorus weathering, and sea-level stand on oceanic redox chemistry:Implications for greenhouse climates. Earth and Planetary Science Letters, 373:129-139. doi: 10.1016/j.epsl.2013.04.029
Kazumi O, Eiichi T. 2013.Biogeochemical effects of atmospheric oxygen concentration, phosphorus weathering, and sea-level stand on oceanic redox chemistry:Implications for greenhouse climates. Earth and Planetary Science Letters, 373:129-139. doi: 10.1016/j.epsl.2013.04.029
Kenneth S J, Kenneth H C, Virginia A E, Neil W T. 1994. Iron photochemistry in seawater from the equatorial Pacific[J]. Marine Chemistry, 46(4):319-334. doi: 10.1016/0304-4203(94)90029-9
Kentaro N, Yasuhiro K, Kensaku T, Teruaki I. 2007. Geochemistry of hydrothermally altered basaltic rocks from the Southwest Indian Ridge near the Rodriguez Triple Junction[J]. Marine Geology, 239(3-4):125-141. doi: 10.1016/j.margeo.2007.01.003
Kerr A C, Mahoney J J. 2007. Oceanic plateaus:Problematic plumes, potential paradigms[J]. Chemical Geology, 241(3-4):332-353. doi: 10.1016/j.chemgeo.2007.01.019
Kevin B, Trond H T. 2004. Derivation of Large Igneous Provinces of the past 200 million years from long-term heterogeneities in the deep Mantle[J]. Earth and PlanetaryScience Letters, 227(3-4):531-538. doi: 10.1016/j.epsl.2004.09.015
Lam P J, Bishop J K. 2008. The continental margin is a key source of iron to the HNLC North Pacific Ocean[J]. Geophysical Research Letters, 35(7):521-539. http://onlinelibrary.wiley.com/doi/10.1029/2008GL033294/abstract
Larson R L. 1991.Geological consequences of superplumes[J]. Geology, 19:963-966. doi: 10.1130/0091-7613(1991)019<0963:GCOS>2.3.CO;2
Leblanc K, Hare C E, Boyd P W, Bruland K W, Sohst B, Pickmere S, Lohan M C, Buck K, Ellwood M, Hutchins D A. 2005. Fe and Zn effects on the Si cycle and diatom community structure in two contrasting high and low-silicate HNLC areas[J]. Deep Sea Research Part I:Oceanographic Research Papers, 52(10):1842-1864. doi: 10.1016/j.dsr.2005.06.005
Leckie R M, Bralower T J, Cashman R. 2002. Oceanic anoxic events and plankton evolution:Biotic response to tectonic forcing during the mid-Cretaceous[J]. Paleoceanography, 17:1-29. http://onlinelibrary.wiley.com/doi/10.1029/2001PA000623/full
Lehman S J, Keigwin L D. 1992. Sudden changes in North Atlantic circulation during the last deglacbtion[J]. Natare, 356:757-762. doi: 10.1038/356757a0
Liu Benpei, Zhang Shihong.1997. Rhythms of different geospheres and their relations in middle jurassic-early cretaceous. Earth Science Frontiers (China University of Geosciences, Beijing), 4(3/4):65-74(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY7Z2.006.htm
Liu Z H, Dreybrodt W, Liu H J. 2011. Atmospheric CO2 sink:Silicate weathering or carbonate weathering?[J] Application Geochemistry, 26:292-294. doi: 10.1016/j.apgeochem.2011.03.085
Liu Z H, Dreybrodt W, Wang H J. 2010. A new direction in effective accounting for the atmospheric CO2 budget:Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth Science Review, 99:162-172. doi: 10.1016/j.earscirev.2010.03.001
Liu Zaihua, Drevhrodt W, Liu Huan. 2011. Atmospheric CO2 sink:silicate weathering or carbonate weathering[J]. Quaternary Sciences, 31:426-430(in Chinese with English abstract). http://www.dsjyj.com.cn/EN/Y2011/V31/I3/426
Liu Zaihua, DreybrodtW, WangHaijing. 2007. An important CO2 sinks generated by the global water cycle[J]. Chinese Science Bulletin, 52(20):2418 -2422(in Chinese). http://www.dlyj.ac.cn/EN/10.11821/yj2010110008
Liu ZaiHua.2012. New progress and prospects in the study of rockweathering-related carbon sinks[J]. Chinese Science Bulletin, 57(2/3):95-102(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KXTB2012Z1002.htm
Liu Yushan, Zhang Guilan. 1996. An experimental study on sea waterbasalt interaction at 250~500℃ and 100 MPa[J]. Geochimica, 25:53-62(in Chinese with English abstract).
Lu Lu, Yan Lilong, Li Qiuhuan, Zeng Lu, Jin Xin, Zhang Yuxiu, Hou Quanlin, Zhang Kaijun. 2016. Oceanic plateau and its significances on the Earth system:A review[J]. Acta Petrologica Sinica, 32(6):1851-1876(in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=...
Lui H C, Jeffrey C A, Damon A H. 2002. Lithium and lithium isotope through the upper oceanic crust:a study of seawater-basalt exchange at ODP Sites 504B and 896A[J]. Earth and Planetary Science Letters, 201(1):187-201. doi: 10.1016/S0012-821X(02)00707-0
Ma Zongjin, Du Pinren, Lu Miaoan. 2005. Multi-Layered interaction of the earth[J]. Earth Science Frontiers, 12(2):11-21(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY200101001.htm
Mackey D J, OSullivan J E, Watson R J. 2002. Iron in the western Pacific:A riverine or hydrothermal source for iron in the Equatorial Undercurrent?[J]. Deep Sea Research Part I:Oceanographic Research Papers, 49(5):877-893. doi: 10.1016/S0967-0637(01)00075-9
Mann P, Asahiko T. 2004. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone[J]. Tectonophysics, 389(3/4):137-190. https://www.researchgate.net/publication/223180444_Global_tectonic...
Martin J H, Coale K H, Johnson K S, Fitzwater S E, Gordon R M, Tanner S J, Hunter C N, Elrod V A, Nowicki J L, Coley T L, Barber R T, Lindley S, Watson A J, Van Scoy K, Law C S, Liddicoat M I, Ling R, Stanton T, Stockel J, Collins C, Anderson A, Bidigare R, Ondrusek M, Latasa M, Millero F J, Lee K, Yao W, Zhang J Z, Friederich G, Sakamoto C, Chavez F, Buck K, Kolber Z, Greene R, Falkowski P, Chisholm S W, Hoge F, Swift R, Yungel J, Turner S, Nightingale P, Hatton A, Liss P, Tindale N W. 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean[J]. Nature, 371:123-129. doi: 10.1038/371123a0
Martin J H, Gordon R M. 1988. Northeast Pacific iron distributions in relation to phytoplankton Productivitys[J]. Deep Sea Research Part A. Oceanographic Research Papers, 35 (2):177-196. doi: 10.1016/0198-0149(88)90035-0
Martin J H. 1990. Glacical-interglacial CO2 change:The iron hypothesis[J]. Paleoceanography, 5:1-13. doi: 10.1029/PA005i001p00001
Martin R W, Timothy D J, Karen J H. 2014. The role of iron sources and transport for Southern Ocean productivity[J].Deep Sea Resarch Part I:Oceanographic Research Papers, 87:82-94. doi: 10.1016/j.dsr.2014.02.003
Mercedes de la P, Emma M H, Xose A P, Melchor G D, Magdalena S C, Jesús M F, Abdellatif O, Fiz F P, Aida F R. 2011. Reconstruction of the seasonal cycle of air-sea CO2 fluxes in the Strait of Gibraltar[J]. Marine Chemistry, 126(1/4):155-162. https://www.sciencedirect.com/science/article/pii/S0304420311000582
Murataa A, Kumamotoa Y, Saitoa C, Kawakami H, Asanuma I, Kusakabe M, Inoue H Y. 2002. Impact of a spring phytoplankton bloom on the CO2 system in the mixed layer of the northwestern North Pacific[J]. Deep-Sea Research Ⅱ, 49:5531-5555. doi: 10.1016/S0967-0645(02)00203-5
Olsen P E. 1997. Stratigraphic record of the Mesozoic breakup of Pangea rift system[J].Science, 25:337-421. http://www.annualreviews.org/doi/abs/10.1146/annurev.earth.25.1.337
Passow U, Carlson C A. 2012. The biological pump in a high CO2 world[J]. Marine Ecology Progress Series, 470:249-271. doi: 10.3354/meps09985
Philip E J, Paterno R C. 2001. Geochemistry of the oldest Atlantic oceanic crust suggests Mantle plume involvement in the early history of the central Atlantic Ocean[J]. Earth and Planetary Science Letters, 192(3):291-302. doi: 10.1016/S0012-821X(01)00452-6
Philip W B, Andrew J W, Cliff S L, Edward R A, Thomas T, Rob M, Dorothee C E, Andrew R B, Buesseler K O, Hoe C, Matthew C, Peter C, Ken D, Russell F, Mark G, Mark H, Julie H, Mike H, Greg J, Julie L, Malcolm L, Roger L, Maria T M, Michael R M, Scott N, Stu P, Rick P, Steve R, Karl S, Philip S, Robert S, Kim T, Suzanne T, Anya W, John Z. 2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization[J]. Nature, 407:695-702 doi: 10.1038/35037500
Pieter P T, Joseph A B, Ralph F K. 1993. Oceanic 13C/12C Observation:A new window on ocean CO2 uptake[J]. Global Biogeochemical Cycles, 7:353-368. doi: 10.1029/93GB00053
Pineau F, Javoy M. 1994. Strong degassing at ridge crests:The behavior of dissolved carbon, water in basalt glasses at MidAtlantic ridge[J]. Earth and Planetary Science Letters, 123(1/3):179-198. https://www.sciencedirect.com/science/article/pii/0012821X94902666
Price M L, Morel F M. 1998. Biological cycling of iron in the ocean[J]. Metal Ions in Biological System, 35:1-36 http://cat.inist.fr/?aModele=afficheN&cpsidt=10345624
Raymond T P, Ian S, Richard J S, Mike I L, Mark M, Rachel A M, Peter J S, John T A, Alex R B, Dorothee C B, Matthew A C, Sophie F, Gary R F, Megan F, Anna E H, Ross J H, Alan H, Timothy D J, Richard S L, Paul J M, Florence H N, Maria N, Hélène P, Ekaterina E P, Alex J P, Jane F R, Sophie S, Tania S, Mark S, Sarah T, Sandy T, Hugh J V, Robert W, Mike V Z. 2009. Southern Ocean deepwater carbon export enhanced by natural iron fertilization[J]. Nature, 457:577-580. doi: 10.1038/nature07716
Richard E E, Kenneth L B, Ian H C. 2005. Frontiers in Large Igneous Province research[J]. Lithos, 79(3/4):271-297. http://www.sciencedirect.com/science/article/pii/S0024493704003093
Robert E L, Abraham L. 2005. A model of Phanerozoic cycles of carbon and calcium in the global ocean:Evaluation and constraints on ocean chemistry and input fluxes[J]. Chemical Geology, 217 (1/2):113-126. https://www.sciencedirect.com/science/article/pii/S0009254105000136
Saunders A D, Tarney J, Kerr A C, Kent R W. 1996.The formation and fate of large oceanic igneous provinces[J].Lithos, 37(2/3):81-95. http://linkinghub.elsevier.com/retrieve/pii/0024493795000305
Schlanger S O, Jenkyns H C. 1976. Cretaceous oceanic an-oxic events:Cause and consequence[J]. Geology, 55:179-184.
Schmitz W J. 1995. On the interbasin-scale thermohalinecirculation[J]. Review Geophys, 33:151-173. doi: 10.1029/95RG00879
Shigenobu Takeda, Atsushi Tsuda. 2005. An in situ iron-enrichment experiment in the western subarctic Pacific (SEEDS):Introduction and summary[J]. Progress in Oceanography, 64:95-109. doi: 10.1016/j.pocean.2005.02.004
Sinton C W, Duncan R A. 1998. An oceanic flood basalt province within the Caribbean plate[J]. Earth and Planetary Science Letters, 155(3-4):221-235. doi: 10.1016/S0012-821X(97)00214-8
Sun Jun, Li Xiaoqian, Chen Jianfang, Guo Shujing. 2016. Progress in oceanic biological pump[J]. Journal of Oceanography, 38(4):1-21(in Chinese with English abstract). https://www.researchgate.net/publication/311265594_Progress_in...
Sun Jun.2011. Marine phytoplankton and biological carbon sink. Acta Ecologica Sinica, 31(18):5372-5378(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-STXB201118031.htm
Takata H, Kuma K, Iwade S, Yamajyoh Y, Yamaguchi A, Takagi S, Sakaoka K, Yamashita Y, Tanoue E, Takashi M, Kan K, Jun N. 2004. Spatial variability of iron in the surface ocean water of the northwestern North Pacific Ocean[J]. Marine Chemistry, 86(3/4):139-157. http://ci.nii.ac.jp/naid/80016684442
Tarduno J A, Sliter W V, Kroenke L, Leckie M, Mayer H, Mahoney J J, Musgraver R, Storey M, Winterer E L. 1991. Rapid formation of Ontong Java Plateau by Aptian Mantle Plume[J].Science, 254:399-403. doi: 10.1126/science.254.5030.399
Thorseth I H, Pedersen R B, Christie D M. 2003. Microbial alteration of 0-30 Ma seafloor and sub-seafloor basaltic glasses from the Australian Antarctic Discordance[J]. Earth and Planetary Science Letters, 255(15):237-247. http://www.sciencedirect.com/science/article/pii/S0012821X03004278
Torsvik T, Furnes H, Muehlenbachs K, Ingunn H T, Tumyr O. 1998. Evidence for microbial activity at the glass-alteration interface in oceanic basalts[J]. Earth and Planetary Science Letters, 162(1/4):165-176. http://www.academia.edu/25711687/Evidence_for_microbial_activity_at_the...
Wan Xiaoqiao, Liu Wencan, Li Guobiao, Li Yan. 2003. Cretaceous black shale and dissolved oxygen content-A case study in southern Tibet[J]. Geology in China, 30 (1):36-47(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200301004.htm
Wang Chengshan, Cao Ke, Huang Yongjian. 2009. Sedimentary record and Cretaceous Earth Surface System changes[J]. Earth Science Frontiers, 16(5):1-14(in Chinese with English abstract). http://d.g.wanfangdata.com.cn/Periodical_dxqy200905001.aspx
Wang Chengshan. 2006. Coupling of the Earth Surface System:Inferring from the Cretaceous major geological events[J]. Advances in Earth Science, 21(7):837-842(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200608007.htm
Wang Chenshan, Huang Yongjian, Hu Xiumian, Li Xianghui. 2004. Cretaceous oceanic redbeds:Implications for paleoclimatology and paleoceanography[J]. Acta Geologica Sinca, 78(3):873-877. http://www.cqvip.com/QK/86253X/200403/11250615.html
Wang Xi, Wan Xiaoqiao, Li Guobiao. 2008. Late Cretaceous to early Paleogene strontium isotopic stratigraphy in the Gamba area, Tibet[J]. Geology in China, 35(4):598-607(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200804005.htm
Wells M L, Price N M, Bruland K W. 1995. Iron chemistry in seawater and its relationship to phytoplankton[J]. Marine Chemistry, 48:157-182. doi: 10.1016/0304-4203(94)00055-I
Wells M L, Vallis G K, Silver E A. 1999. Tectonic processes in Papua New Guinea and past productivity in the eastern equatorial Pacific Ocean[J]. Nature, 398:601-604. doi: 10.1038/19281
Wen Zhixin, Tong Xiaoguang, Zhang Guangya, Wang Zhaoming, Yang Shufeng, Chen Hanlinj, Song Chengpeng. 2014. Earth Science Frontiers, 21(3):26-37(in Chinese with English abstract).
Wignall P B. 2001. Large igneous provinces and mass extinctions[J]. Earth Science Reviews, 53(1/2):1-33. https://blogs.scientificamerican.com/history-of-geology/large...
Wolfgang B, Karina J E. 2003. Iron and sulfide oxidation within the basaltic ocean crust:Implications for chemolithoautotrophic microbial biomass production[J]. Geochimica et Cosmochimica Acta, 67(20):3871-3887. doi: 10.1016/S0016-7037(03)00304-1
Wu Genyao. 2006. Cretaceous:A key transition period of the plate tectonic evolution in China and its adjacent areas[J]. Geology in China, 33(1):64-77(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200601006.htm
Wu Guanghe, Zhang Ruyi, Zhang Chao. 2004. Physical Geography[M]. Beijing:Higher Education Press(in Chinese).
Wu J F, Luther G W. 1996. Spatial and temporal distribution of iron in the surface water of the northwestern Atlantic Ocean[J]. Geochimica et Cosmochimica Acta, 60:2729-2741. doi: 10.1016/0016-7037(96)00135-4
Wu Weihua, Yang Jiedong, Xu Shijin. 2007. Chemical Weathering and Atmospheric CO2 Consumption of Qinghai-Xizang(Tibet) Plateau[J]. Geological Review, 53(4):515-528(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200704011.htm
Xiao Qinghui, Liu Yong, FengYanfang, QiuRuizhao, Zhang Yu. 2010. A preliminary study of the relationship between Mesozoic lithosphere evolution in eastern China and the subduction of the Pacific plate[J]. Geology in China, 37(4):1092-1101(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/zgdizhi201004023
Xu Fei, Zhou Zuyi. 2003. Oceanic plateaus:windows to the earth's interior. Advance in earthsciences, 18(5):745-752(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXJZ200305015.htm
Xu Yongfu, Wang Mingxing.1998. The role of marine biological processes in the oceanic uptake of atmospheric carbon dioxide[J], Actameteorologica sinica, 56(4):436-446(in Chinese with English abstract). http://www.cmsjournal.net/qxxb_cn/ch/reader/view_abstract.aspx?...
Xu Zemin, Huang Runqiu. 2013. The assessment of the weathering intensity of Emeishan basalt based on rock blocks(Ⅰ):Geochemistry of weathered basalt blocks[J]. Geology in China, 40(3):895-908(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201303021.htm
Xu Zemin, Huang Runqiu. 2013.The assessment of the weathering intensity of Emeishan basalt based on rock blocks (Ⅳ):A proposed weathering index (FF)[J]. Geology in China, 40(6):1942-1948(in Chinese with English abstract). https://www.researchgate.net/publication/286862615_The_assessment...
Yann B, Helmuth T, Khalid E, Hein J W. 2005. The continental shelf pump for CO2 in the North Sea-evidence from summer observation[J]. Marine Chemistry, 93(2/4):131-147.
Yin Jianping, Wang Youshao, XuJirong, Sun Song. 2006. Adavances of studies on marine carbon cycle.Actaecologica sinica, 26(2) 566-575(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-STXB200602032.htm
Zhai Shikui, Wang Xingtao, Yu Zenghui, Li Huaiming.2005. Heat and mass flux estimation of modern seafloor hydrothermal activity.Acta Oceanologica Sinica, 27(2):115-121(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-SEAE200606005.htm
Zhang Zhenguo, DuanXingkuan, GaoLianfeng, WangChunlei, Leng Chunpeng, Cui Yue. 2013. Modern ocean iron release experiment and its implications for palaeoceanographicstudy:forming mechanisms of corbs[J]. Marine Geology Frontiers, 29(9):1-8(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0264817217303641
Zhang Zhenguo, Fang Nianqiao, GaoLianfeng, GuiBaoling, Cui Muhua. 2007. Cretaceous black shale and oceanic red beds:process and mechanism of oceanic anoxic events and oxic environment[J]. Marine Geology & Quaternary Geology, 27(3):69-75(in Chinese with English abstract). https://rd.springer.com/content/pdf/10.1007/s11707-008-0008-y.pdf
Zhang Zhenguo, Fang Nianqiao, GaoLlianfeng, GuiBaoling, Cui Muhua. 2008. Cretaceous black shale and the oceanic red beds:Process mechanisms of oceanic anoxic events and oxic environment[J]. Frontiers Earth Science China, 2(1):41-48. doi: 10.1007/s11707-008-0008-y
Zhao Xixi. 2005. The earth's magnetic field and global geologic phenomena in mid-cretaceous[J]. Earth Science Frontiers, 12 (2):199-216. http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY20050200T.htm
Zhou Lijun. 2007. Evolution of thermohaline circulation in the Atlantic:the north Atlantic deep water began to form in Early Oligocene[J]. Marine Geology Letters, 23(1):17-19(in Chinese).
Zhou Shuzhen, TianLianshu, HuShuangxi. 2005. Climatology and Meteorology[M]. Beijing:Higher Education Press(in Chinese).
Zhu Yaohua, Wei Zexun, Fang Guohong, Wang Yonggang, Guan Yuping. 2014. Interbasin exchanges and their roles in global ocean circulation:A study based on 1400 years'spin up of MOM4p1[J]. Acta Oceanological Sinica, 36(2):1-15(in Chinese with English abstract). https://link.springer.com/article/10.1007/s13131-014-0429-2
Zong Pu, Xue Jingzhuang. Co-evolution of atmospheric oxygen content and biodiversity in Geological history[J]. Bulletin of Biology, 2015, 50(4):1-5(in Chinese). https://www.deepdyve.com/lp/wiley/history-of-marine-biodiversity...
毕思文. 2003.地球系统科学-世纪地球科学前沿与可持续发展战略科学基础[J].地质通报, 22(8):601-611. https://mall.cnki.net/qikan-ZQYD200308008.html
郭正堂, 吴海斌. 2004.浅谈固体地球科学与地球系统科学[J].地球科学进展, 19(5):699-705. https://www.wenkuxiazai.com/doc/e55f4460caaedd3383c4d3d9...
洪汉净, 于泳, 郑秀珍, 刘培洵, 陶玮. 2003.全球火山分布特征[J].地学前缘, 10:11-16. doi: 10.3321/j.issn:1005-2321.2003.z1.004
金性春, 周祖翼, 汪品先. 1995.大洋钻探与中国地球科学[M].上海:同济大学出版社, 248-251.
刘本培, 张世红. 1997.侏罗-白垩纪地球圈层演化节律及相互关系[J].地学前缘, 4(3/4):65-74. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy7z2.006&dbname=CJFD&dbcode=CJFQ
刘玉山, 张桂兰. 1996. 250~500℃、100Mpa下海水-玄武岩反应的实验研究[J].地球化学, 25:53-62. doi: 10.3321/j.issn:0379-1726.1996.01.006
刘再华, Dreybrodt W, 刘洹. 2011.大气CO2汇:硅酸盐风化还是碳酸盐风化的贡献?[J].第四纪研究, 31:426-430. doi: 10.3969/j.issn.1001-7410.2011.03.04
刘再华, Dreybrodt W, 王海静. 2007.一种由全球水循环产生的可能重要的CO2汇[J].科学通报, 52(20):2418-2422. doi: 10.3321/j.issn:0023-074x.2007.20.013
刘再华.岩石风化碳汇研究的最新进展和展望[J].科学通报, 2012, 57(2-3):95-102. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kxtb2012z1002&dbname=CJFD&dbcode=CJFQ
陆鹿, 严立龙, 李秋环, 曾璐, 金鑫, 张玉修, 侯泉林, 张开均. 2016.洋底高原及其对地球系统意义研究综述[J].岩石学报, 32(6):1851-1876 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201606019&dbname=CJFD&dbcode=CJFQ
马宗晋, 杜品仁, 卢苗安. 2005.地球的多圈层相互作用[J].地学前缘, 12(2):11-21. https://mall.cnki.net/qikan-DXQY200101001.html
孙军, 李晓倩, 陈建芳, 郭术津. 2016.海洋生物泵研究进展[J].海洋学报, 38(4):1-21. doi: 10.11978/2015092
孙军. 2011.海洋浮游植物与生物碳汇[J].生态学报, 31(18):5372-5378. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=stxb201118031&dbname=CJFD&dbcode=CJFQ
万晓樵, 刘文灿, 李国彪, 李艳. 2003.白垩纪黑色页岩与海水含氧量变化——以西藏南部为例[J].中国地质, 30 (1):36-47. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20030104&flag=1
王成善, 曹珂, 黄永建. 2009.沉积记录与白垩纪地球表层系统变化[J].地学前缘, 16(5):1-14. http://doi.wanfangdata.com.cn/10.3321/j.issn:1005-2321.2009.05.001
王成善. 2006.白垩纪地球表层系统重大地质事件与温室气候变化研究-从重大地质事件探寻地球表层系统耦合[J].地球科学进展, 21(7):837-842. http://doi.wanfangdata.com.cn/10.3321/j.issn:1001-8166.2006.08.008
王曦, 万晓樵, 李国彪. 2008.西藏岗巴晚白垩世-古近纪早期锶同位素地层[J].中国地质, 35(4):598-607. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20080404&flag=1
温志新, 童晓光, 张光亚, 王兆明, 杨树锋, 陈汉林, 宋成鹏. 2014.全球板块构造演化过程中五大成盆期原型盆地的形成、改造及叠加过程[J].地学前缘, 21(3):26-37. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=...
吴根耀. 2006.白垩纪:中国及邻区板块构造演化的一个重要变换期[J].中国地质, 33(1):64-77. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20060107&flag=1
吴卫华, 杨杰东, 徐士进. 2007.青藏高原化学风化和对大气CO2的消耗通量[J].地质论评, 53(4):515-528. http://www.adearth.ac.cn/article/2014/1001-8166-29-7-0835.html
伍光和, 田连恕, 胡双熙, 王乃昂. 2004.自然地理学[M].北京:高等教育出版社.
肖庆辉, 刘勇, 冯艳芳, 邱瑞照, 张昱. 2010.中国东部中生代岩石圈演化与太平洋板块俯冲消减关系的讨论[J].中国地质, 37(4):1092-1101. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20100422&flag=1
徐斐, 周祖翼. 2003.洋底高原:了解地球内部的窗口[J].地球科学进展, 18(5):745-752. http://www.adearth.ac.cn/fileup/PDF/200305015.pdf
徐永福, 王明星. 1998.海洋生物过程在海洋吸收大气二氧化碳中的作用[J].气象学报, 56(4):436-446. doi: 10.11676/qxxb1998.038
徐则民, 黄润秋.2013.基于结构体的峨眉山玄武岩风化程度评价(Ⅰ):风化结构体地球化学[J].中国地质, 40(3):895-908. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20130320&flag=1
徐则民, 黄润秋. 2013.基于结构体的峨眉山玄武岩风化程度评价(Ⅳ):风化指数FF[J].中国地质, 40(6):1942-1948. http://geochina.cgs.gov.cn/ch/reader/view_abstract.aspx?file_no=20130623&flag=1
殷建平, 王友绍, 徐继荣, 孙松. 2006.海洋碳循环研究进展[J].生态学报, 26(2):566-575. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=stxb200602032&dbname=CJFD&dbcode=CJFQ
翟世奎, 王兴涛, 于增慧, 李怀明. 2005.现代海底热液活动的热和物质通量估算[J].海洋学报, 27(2):115-121. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=seac20050200d&dbname=CJFD&dbcode=CJFQ
张振国, 段杏宽, 高莲凤, 王春磊, 冷春鹏, 崔岳. 2013.现代大洋铁盐投放实验对古海洋学研究的启示:白垩纪大洋红层产生的背景与机制[J].海洋地质前沿, 29(9):1-8. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hydt201309001&dbname=CJFD&dbcode=CJFQ
张振国, 方念乔, 高莲凤, 桂宝玲, 崔木花. 2007.白垩纪黑色页岩与大洋红层:缺氧到富氧的过程与机制[J].海洋地质与第四纪地质, 27(3):69-75. https://www.wenkuxiazai.com/doc/0ea1d4d44028915f804dc2b7...
周立君. 2007.大西洋温盐循环的演变:早渐新世北大西洋深水开始形成[J].海洋地质动态, 23(1):17-19. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hydt200701004&dbname=CJFD&dbcode=CJFQ
周淑珍, 田连恕, 胡双熙. 2005.气象学与气候学[M].北京:高等教育出版社.
朱耀华, 魏泽勋, 方国洪, 王永刚, 管玉平. 2014.洋际交换及其在全球大洋环流中的作用:MOM4p1积分1400年的结果[J].海洋学报, 36(2):1-15. doi: 10.11978/j.issn.1009-5470.2014.02.001
宗普, 薛进庄. 2015.地质历史时期大气氧含量与生物多样性的协同演变[J].生物学通报, 50(4):1-5. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=swxt201504001&dbname=CJFD&dbcode=CJFQ