中国地质调查局 中国地质科学院主办
科学出版社出版

桂东南马山玄武岩的年代学、地球化学及岩石成因:对华南地区印支期构造背景的制约

王晓地, 孙传敏, 贾小辉, 张利国, 周岱. 2023. 桂东南马山玄武岩的年代学、地球化学及岩石成因:对华南地区印支期构造背景的制约[J]. 中国地质, 50(2): 573-585. doi: 10.12029/gc20190429004
引用本文: 王晓地, 孙传敏, 贾小辉, 张利国, 周岱. 2023. 桂东南马山玄武岩的年代学、地球化学及岩石成因:对华南地区印支期构造背景的制约[J]. 中国地质, 50(2): 573-585. doi: 10.12029/gc20190429004
WANG Xiaodi, SUN Chuanmin, JIA Xiaohui, ZHANG Liguo, ZHOU Dai. 2023. Geochronology, geochemistry, and petrogenesis of the Mashan basalt in southeast Guangxi Province: Constraints on the Indosinian tectonic setting of South China[J]. Geology in China, 50(2): 573-585. doi: 10.12029/gc20190429004
Citation: WANG Xiaodi, SUN Chuanmin, JIA Xiaohui, ZHANG Liguo, ZHOU Dai. 2023. Geochronology, geochemistry, and petrogenesis of the Mashan basalt in southeast Guangxi Province: Constraints on the Indosinian tectonic setting of South China[J]. Geology in China, 50(2): 573-585. doi: 10.12029/gc20190429004

桂东南马山玄武岩的年代学、地球化学及岩石成因:对华南地区印支期构造背景的制约

  • 基金项目:
    中国地质调查局项目(1212710610714、12120120512、DD20190811、DD20230226)资助
详细信息
    作者简介: 王晓地, 男, 1974年生, 高级工程师, 从事岩石学和矿床学调查和研究工作; E-mail: 178372234@qq.com
  • 中图分类号: P597+.3;P581

Geochronology, geochemistry, and petrogenesis of the Mashan basalt in southeast Guangxi Province: Constraints on the Indosinian tectonic setting of South China

  • Fund Project: Supported by the projects of China Geological Survey (No.1212710610714, No.12120120512, No.DD20190811, No. DD20230226)
More Information
    Author Bio: WANG Xiaodi, male, born in 1974, senior engineer, engaged in the investigation and study of petrology and mineral deposits; E-mail: 178372234@qq.com .
  • 研究目的

    桂东南马山杂岩体北部出露的印支期玄武岩,是研究华南印支运动的关键岩石探针。目前关于马山玄武岩的研究资料较少,制约了对华南地区大地构造背景演化的认识。

    研究方法

    本文对马山玄武岩开展了锆石U-Pb年代学、岩石地球化学、Sr-Nd同位素研究。

    研究结果

    玄武岩的LA-ICPMS锆石U-Pb年龄为(246.7±1.5)Ma,MSWD=0.16。岩石富碱((K2O+Na2O)=5.21%~8.02%)、富钾(K2O=2.59%~4.96%),为钾质粗面玄武岩,稀土元素特征为轻稀土富集型,微量元素特征为富集大离子亲石元素(Rb、Ba、K、Pb、LREE),亏损高场强元素(Nb、Ta、P、Ti、HREE),Sr-Nd同位素显示具有EMⅡ富集地幔端元的特征。

    结论

    马山玄武岩符合钾玄岩系列的岩石特点,其岩浆作用以分离结晶为主,无明显的地壳混染,其源区为受俯冲壳源物质释放的流体交代作用形成的含金云母石榴子石的富集地幔(>80 km)源区。马山玄武岩产于板内环境,其形成可能与印支期逆冲-推覆构造后期的伸展作用有关,由于伸展作用产生有利空间,造成玄武质岩浆上涌喷发形成玄武岩。

  • 加载中
  • 图 1  马山杂岩体地质图(据广西壮族自治区区域地质调查研究院,2006修改)

    Figure 1. 

    图 2  马山玄武岩显微照片

    Figure 2. 

    图 3  马山玄武岩锆石阴极发光图像及锆石U-Pb谐和图

    Figure 3. 

    图 4  马山玄武岩分类判别图解(a据Le Bas et al., 1986;b据Peccerillo and Taylor, 1976

    Figure 4. 

    图 5  马山玄武岩稀土元素球粒陨石标准化配分图及微量元素原始地幔标准化蛛网图(标准化数值据Sun and Mcdonough, 1989

    Figure 5. 

    图 6  马山玄武岩ISr-εNd(t)关系图(底图据Zinder and Hart, 1986

    Figure 6. 

    图 7  马山玄武岩Ba/Rb-Rb/Sr和Nb/Th-Rb/Sr图解(底图据Furman and Graham, 1999

    Figure 7. 

    图 8  马山玄武岩构造环境判别图解(底图a据Pearce and Norry, 1979;底图b据汪云亮等,2001

    Figure 8. 

    表 1  马山玄武岩LA-ICPMS锆石U-Pb同位素分析数据

    Table 1.  LA-ICPMS zircon U-Pb isotopic data of the Mashan basalt

    下载: 导出CSV

    表 2  马山玄武岩主量元素(%)和稀土及微量元素(10−6)分析结果及参数

    Table 2.  Compositions and parameters of major elements(%), rare earth and trace element(10−6) in the Mashan basalt

    下载: 导出CSV

    表 3  马山玄武岩Sr-Nd同位素组成分析结果

    Table 3.  Sr-Nd isotopic data of the Mashan basalt

    下载: 导出CSV
  • Adam J D, Green T H, Sie S H. 1993. Proton microprobe determined partitioning of Rb, Sr, Ba, Y, Zr, Nb and Ta between experimentally produced amphiboles and silicate melts with variable F content[J]. Chemical Geology, 109(1/4): 29-49.

    Beard J S, Lofgren G E. 1991. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb[J]. Journal of Petrology, 32(2): 365-401. doi: 10.1093/petrology/32.2.365

    Campbell I H. 2007. Testing the plume theory[J]. Chemical Geology, 241(3/4): 153-176.

    Carter A, Roques D, Bristow C, Kinny P. 2001. Understanding Mesozoic accretion southeast Asia: Significance of Triassic thermotectonism (Indosinian orogeny) in Vietnam[J]. Geology, 29(3): 211-214. doi: 10.1130/0091-7613(2001)029<0211:UMAISA>2.0.CO;2

    Cao Jianjin. 2006. Geochemistry of the Mesozoic and Cenozoic Mafic Dikes and the Lithosphere Revolution from the Coastal Areas of Guangdong Province and Hainan Island, China[D]. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences, 1-126 (in Chinese with English abstract).

    Chen Lihui, Zeng Gang, HU Senlin, Yu Xun, Chen Xiayu. 2012. Crustal recycling and genesis of continental alkaline basalts: Case study of the Cenozoic alkaline basalts from Shandong Province, eastern China[J]. Geological Journal of China Universities, 18(1): 16-27 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2012.01.002

    Furman T, Graham D. 1999. Erosion of lithospheric mantle beneath the East African Rift system: Geochemical evidence from the Kivu volcanic province[J]. Lithos, 48(1/4): 237-262.

    Glaser S M, Foley S F, Günther D. 1999. Trace element compositions of minerals in garnet and spinel peridotite xenoliths from the Vitim volcanic field, Transbaikalia, eastern Siberia[J]. Lithos, 48(1/4): 263-285.

    Green T H. 1994. Experimental studies of trace-element partitioning applicable to igneous petrogenesis Sedona 16 years later[J]. Chemical Geology, 117(1/4): 1-36.

    Guo F, Fan W M, Lin G, Lin Y X. 1997. Sm-Nd dating and petrogenesis of Mesozoic gabbro xenolith in Daoxian County, Hunan Province[J]. Chinese Science Bulletin, 42(21): 1814-1816. doi: 10.1007/BF02882650

    Guo Xinshen, Chen Jiangfeng, Zhang Xun, Tang Jiafu, Xie Zhi, Zhou Taixi, Liu Yulong. 2001. Nd isotopic ratios of K- enriched magmatic complexes from southeastern Guangxi Province: Implications for upwelling of the mantle in southeastern China during the Mesozoic[J]. Acta Petrological Sinica, 17(1): 19-27 (in Chinese with English abstract).

    Hofmann A W. 1988. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust[J]. Earth and Planetary Science Letters, 90(3): 297-314. doi: 10.1016/0012-821X(88)90132-X

    Ionov D A, Griffin W L, O'Reilly S Y. 1997. Volatile-bearing minerals and lithophile trace elements in the upper mantle[J]. Chemical Geology, 141(1/4): 153-184.

    LaTourette T, Hervig R L, Holloway J R. 1995. Trace element partitioning between amphibole, phlogopite, and basanite melt[J]. Earth and Planetary Science Letters, 135(5/6): 13-30.

    Le Bas M J, Le Maitre R W, Streckeisen A, Zanettin B. 1986. A chemical classification of volcanic rocks based on the total Alkali-Silica diagram[J]. Journal of Petrology, 27(3): 745-750. doi: 10.1093/petrology/27.3.745

    Li X H, Zhou H W, Liu Y, Lee C, Sun M, Chen C H. 2000. Shoshonitic intrusive suite in SE Guangxi: Petrology and geochemistry[J]. Chinese Science Bulletin, 45(7): 653-659. doi: 10.1007/BF02886045

    Li Z X, Li X H, Wartho J A, Clark C, Li W X, Zhang C L, Bao C D. 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions[J]. GSA Bulletin, 122(1/4): 772-793.

    Li Zilong, Yang Shufeng, Chen Hanlin, Yu Xin, Langmuir C H. 2008. Chronology and geochemistry of Taxinan basalts from the Tarim basin: Evidence for Permian plume magmatism[J]. Acta Petrologica Sinica, 24(S1): 959-970 (in Chinese with English abstract).

    Liu Yong, Li Tingdong, Xiao Qinghui, Geng Shufang, Wang Tao, Chen Bihe. 2010. New chronology of the Ningyuan alkali basalt in southern Hunan, China: Evidence from LA-ICP-MS zircon U-Pb dating[J]. Geological Bulletin of China, 29(6): 833-941 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2010.06.005

    Lloyd F E, Huntingdon A T, Davies G R, Nixon P H. 1991. Phanerozoic volcanism of Southwest Uganda: A Case for Regional K and LILE Enrichment of the Lithosphere beneath a Domed and Rifted Continental Plate. In: Kampunzu A B, Lubala R T(eds. ). Magmatism in Extensional Structural Settings: The Phanerozoic African Plate[M]. Berlin Springer, 23-72.

    Lu Yuanfa, Li Wenxia. 2021. Petrochemical calculation method and VBA program for natural mineral of granitoids[J]. South China Geology, 37(4): 445-457 (in Chinese with English abstract).

    Nielsen T F D, Turkov V A, Solovova I P, Kogarko L N, Ryabchikov I D. 2006. A Hawaiian beginning for the Iceland plume: Modelling of reconnaissance data for olivine-hosted melt inclusions in Palaeogene picrite lavas from East Greenland[J]. Lithos, 92(1): 83-104.

    Olafsson M, Eggler D H. 1983. Phase relations of amphibole, amphibole- carbonate and phlogopite- carbonate peridotite: Petrologic constraints on the asthenosphere[J]. Earth and Planetary Science Letters, 64 (2): 305-315. doi: 10.1016/0012-821X(83)90212-1

    Pearce J A, Norry M J. 1979. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 69(1): 33-47. doi: 10.1007/BF00375192

    Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81. doi: 10.1007/BF00384745

    Peng Shaomei, Peng Songbai, Shao Jianguo. 1995. Geological features and tectonic evolution of peripheral faults around Yunkai Massif[J]. Guangdong Geology, 10(2): 9-16 (in Chinese with English abstract).

    Sato K, Katsura T, Ito E. 1997. Phase relations of natural phlogopite with and without enstatite up to 8 GPa: Implications for mantle metasomatism[J]. Earth and Planetary Science Letters, 146(3/4): 511-526.

    Shu Liangshu. 2006. Pre-Devonian tectonic evolution of South China: From Cathaysian Block to Caledonian period folded orogenic belt[J]. Geological Journal of China Universities, 12(4): 418-431 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-7493.2006.04.002

    Stolz A J, Jochum K P, Spettel B, Hofmann A W. 1996. Fluid-and melt-related enrichment in the subarc mantle: Evidence from Nb/Ta variations in island-arc basalts[J]. Geology, 24(7): 587-590. doi: 10.1130/0091-7613(1996)024<0587:FAMREI>2.3.CO;2

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle compositions and processes[J]. Geological Society London Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    Taylor S R, McLennan S M. 1985. The Continental Crust: Its Composition and Evolution[M]. Boston: Blackwell Scientific Publication, 209-230.

    Wallace M E, Green D H. 1988. An experimental determination of primary carbonatite composition[J]. Nature, 335(6188): 343-345. doi: 10.1038/335343a0

    Wang Q, Zhao Z H, Jian P, Xiong X L, Ma Ji L, Bao Z W. 2003. SHRIMP U-Pb zircon geochronology of Yangfang aegiriteaugite syenite in Wuyi Mountains of South China and its tectonic implications[J]. Chinese Science Bulletin, 48(20): 2241-2247. doi: 10.1007/BF03182860

    Wang Xiaodi. 2013. A study on geochronology, geochemistry and genesis of Mashan Complex, Southeast Guangxi[D]. Chengdu: Chengdu University of Technology, 1-129 (in Chinese with English abstract).

    Wang Yinxi, Yang Jiedon, Tao Xiangchong, Li Huimin. 1988. A study of the Sm-Nd method for fossil mineral and rock and its applications[J]. Journal of Nanjing University (Natural Science), 24(2): 297-308 (in Chinese with English abstract).

    Wang Y J, Zhang Y H, Fan W M, Xi X W, Guo F, Lin G. 2002. Numerical modeling of the formation of Indo-Sinian peraluminous granitoids in Hunan Province: Basaltic underplating versus tectonic thickening[J]. Science in China (Series D: Earth Sciences), 45(11): 1042-1056. doi: 10.1007/BF02911241

    Wang Y J, Fan W M, Cawood P A, Ji S C, Peng T P, Chen X Y. 2007. Indosinian high-strain deformation for the Yunkaidashan tectonic belt, south China: Kinematics and 40Ar/39Ar geochronological constraints[J]. Tectonics, 26(6): 229-247.

    Wang Y J, Zhang F F, Fan W M, Zhang G W, Chen X Y, Cawood P A, Zhang A M. 2010. Tectonic setting of the South China Block in the early Paleozoic: Resolving intracontinental and ocean closure models from detrital zircon U-Pb geochronology[J]. Tectonics, 29(10): 1-16.

    Wang Yuejun, Liao Chaolin, Fan Weiming, Peng Touping. 2004. Early Mesozoic OIB-type alkaline basalt in central Jiangxi Province and its tectonic implications[J]. Geochimica, 33(2): 109-117 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2004.02.001

    Wang Yunliang, Zhang Chengjiang, Xiu Shuzhi. 2001. Th/Hf-Ta/Hf identification of tectonic setting of basalts[J]. Acta Petrologica Sinica, 17(3): 413-421 (in Chinese with English abstract).

    Wendlant R F, Eggler D H. 1980. The origins of potassic magmas: Stability of phlogopite in natural spinel lherzolite and in the system KAlSiO4-MgO-SiO2-H2O-CO2 at high pressures and high temperatures[J]. American Journal of Science, 280(5): 421-458. doi: 10.2475/ajs.280.5.421

    Wu Genyao, Li Yuejun. 2011. The Mashan Indosinian oceanic island basalt outcropping along the Lingshan fracture in Southeast Guangxi and its tectonic implications[J]. Geoscience, 25(4): 682-691 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2011.04.009

    Xia P, Xu Y G. 2005. Domains and enrichment mechanism of the lithospheric mantle in western Yunnan: A comparative study on two types of Cenozoic ultrapotassic rocks[J]. Science in China, 48(3): 326-337. doi: 10.1360/102004-15

    Xu Yigang. 2006. Using basalt geochemistry to constrain Mesozoic-Cenozoic evolution of the lithosphere beneath North China Craton[J]. Earth Science Frontiers, 13(2): 93-104 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2006.02.008

    Yang J H, Chung S L, Wilde S A, Wu F W, Chu M F, Lo C H, Fan H R. 2005. Petrogenesis of post- orogenic syenites in the Sulu Orogenic Belt, East China: Geochronological, geochemical and Nd-Sr isotopic evidence[J]. Chemical Geology, 214(1/2): 99-125.

    Yang Zhuliang, Shen Weizhou, Tao Kuiyuan, Shen Jiaolin. 1999. Sr, Nd and Pb isotopic characteristics of Lower Cretaceous basalts from the coast of Zhejiang and Fujian, China: Evidence for ancient enriched mantle source[J]. Scientia Geologica Sinica, 34(1): 59-68 (in Chinese with English abstract).

    Yu Xinqi, Shu Liangshu, Deng Guohui, Wang Bin, Zhu Fuping. 2005. Geochemical features and tectonic significance of the alkali-basalts from Ji'an-Taihe basin, Jiangxi Province[J]. Geoscience, 19(1): 133-140 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2005.01.020

    Yuan H L, Wu F Y, Gao S, Liu X M, Xu P, Sun D Y. 2003. Determination of U-Pb age and rare earth element concentrations of zircons from Cenozoic intrusions in northeastern China by laser ablation ICP-MS[J]. Chinese Science Bulletin, 48(22): 2411-2421.

    Zhao Hui, Yang Jingsui, Liu Fei, Xiong Fahui, Zhang Lan, Lian Dongyang. 2015. Geochemical and chronological studies of the alkaline basalt in Saga along the Yarlung Zangbo suture zone, Tibet[J]. Geology in China, 42(5): 1242-1256 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2015.05.006

    Zhao Zhenhua, Bo Zhiwei, Zhang Boyou. 1998. Geochemistry of the Mesozoic basaltic rocks in southern Hunan Province[J]. Scientia Sinica(Terrae), 28(S2): 7-14 (in Chinese).

    Zhou Dai, Hu Jun, Yang Wenqiang, Chen Qi, Wang Xiangdong, Wang Lei, Xu Deming. 2021. Formation age and petrogenesis of the Xinxing pluton in western Guangdong: Constraint on the closure of the East Paleo-Tethys Ocean[J]. Geology in China, 48(6): 1896-1923 (in Chinese with English abstract).

    Zinder A, Hart S R. 1986. Chemical geodynamics[J]. Annual Review of Earth and Planetary Sciences, 14(1): 493-571. doi: 10.1146/annurev.ea.14.050186.002425

    曹建劲. 2006. 广东沿海地区及海南岛中新生代基性岩脉地球化学与岩石圈演化[D]. 贵阳: 中国科学院地球化学研究所, 1-126.

    陈立辉, 曾罡, 胡森林, 俞恂, 陈霞玉. 2012. 地壳再循环与大陆碱性玄武岩的成因: 以山东新生代碱性玄武岩为例[J]. 高校地质学报, 18(1): 16-27. doi: 10.3969/j.issn.1006-7493.2012.01.002

    郭新生, 陈江峰, 张巽, 汤加富, 谢智, 周泰禧, 刘玉龙. 2001. 桂东南富钾岩浆杂岩的Nd同位素组成: 华南中生代地幔物质上涌事件[J]. 岩石学报, 17(1): 19-27.

    厉子龙, 杨树锋, 陈汉林, 余星, Langmuir C H. 2008. 塔西南玄武岩年代学和地球化学特征及其对二叠纪地幔柱岩浆演化的制约[J]. 矿物岩石地球化学通报, 27(S1): 959-970.

    刘勇, 李廷栋, 肖庆辉, 耿树方, 王涛, 陈必河. 2010. 湘南宁远地区碱性玄武岩形成时代的新证据: 锆石LA-ICP-MS U-Pb定年[J]. 地质通报, 29(6): 833-941. doi: 10.3969/j.issn.1671-2552.2010.06.005

    路远发, 李文霞. 2021. 花岗岩类自然矿物岩石化学换算及程序设计[J]. 华南地质, 37(4): 445-457. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC202104011.htm

    彭少梅, 彭松柏, 邵建国. 1995. 云开地块周边断裂带的地质特征与构造演化[J]. 广东地质, 10(2): 9-16.

    舒良树. 2006. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带[J]. 高校地质学报, 12(4): 418-431. doi: 10.3969/j.issn.1006-7493.2006.04.002

    王晓地. 2013. 桂东南马山杂岩的年代学、地球化学及成因研究[D]. 成都: 成都理工大学, 1-129.

    王银喜, 杨杰东, 陶仙聪, 李惠民. 1988. 化石、矿物和岩石样品的Sm-Nd同位素实验方法研究及其应用[J]. 南京大学学报(自然科学版), 24(2): 297-308. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ198802017.htm

    王岳军, 廖超林, 范蔚茗, 彭头平. 2004. 赣中地区早中生代OIB碱性玄武岩的厘定及构造意义[J]. 地球化学, 33(2): 109-117. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200402000.htm

    汪云亮, 张成江, 修淑芝. 2001. 玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别[J]. 岩石学报, 17(3): 413-419. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103008.htm

    吴根耀, 李曰俊. 2011. 桂东南马山沿灵山断裂出露的印支期洋岛玄武岩及其区域构造意义[J]. 现代地质, 25(4): 682-691. doi: 10.3969/j.issn.1000-8527.2011.04.009

    徐义刚. 2006. 用玄武岩组成反演中-新生代华北岩石圈的演化[J]. 地学前缘, 13(2): 93-104. doi: 10.3321/j.issn:1005-2321.2006.02.008

    杨祝良, 沈渭洲, 陶奎元, 沈加林. 1999. 浙闽沿海早白垩世玄武岩锶、钕、铅同位素特征——古老富集型地幔的证据[J]. 地质科学, 34(1): 59-68. doi: 10.3321/j.issn:0563-5020.1999.01.007

    余心起, 舒良树, 邓国辉, 王彬, 祖辅平. 2005. 江西吉泰盆地碱性玄武岩的地球化学特征及其构造意义[J]. 现代地质, 19(1): 133-140. doi: 10.3969/j.issn.1000-8527.2005.01.020

    赵慧, 杨经绥, 刘飞, 熊发挥, 张岚, 连东洋. 2015. 西藏雅鲁藏布江缝合带萨嘎碱性玄武岩地球化学和年代学研究[J]. 中国地质, 42(5): 1242-1256. doi: 10.3969/j.issn.1000-3657.2015.05.006 http://geochina.cgs.gov.cn/geochina/article/abstract/20150506?st=search

    赵振华, 包志伟, 张伯友. 1998. 湘南中生代玄武岩类地球化学特征[J]. 中国科学(D辑: 地球科学), 28(S2): 7-14.

    周岱, 胡军, 杨文强, 陈奇, 王祥东, 王磊, 徐德明. 2021. 粤西新兴岩体的形成时代与成因研究: 对古特提斯洋东支关闭时间的约束[J]. 中国地质, 48(6): 1896-1923. http://geochina.cgs.gov.cn/geochina/article/abstract/20210618?st=search

  • 加载中

(8)

(3)

计量
  • 文章访问数:  1805
  • PDF下载数:  55
  • 施引文献:  0
出版历程
收稿日期:  2019-04-29
修回日期:  2019-09-10
刊出日期:  2023-04-25

目录