中国地质调查局 中国地质科学院主办
科学出版社出版

四川攀枝花大田地区铀矿化透镜地质体特征、成因及其对深源铀成矿的启示

王凤岗, 姚建, 吴玉, 陈友良, 孙泽轩, 张玉顺, 李秋实. 2024. 四川攀枝花大田地区铀矿化透镜地质体特征、成因及其对深源铀成矿的启示[J]. 中国地质, 51(3): 912-931. doi: 10.12029/gc20200409004
引用本文: 王凤岗, 姚建, 吴玉, 陈友良, 孙泽轩, 张玉顺, 李秋实. 2024. 四川攀枝花大田地区铀矿化透镜地质体特征、成因及其对深源铀成矿的启示[J]. 中国地质, 51(3): 912-931. doi: 10.12029/gc20200409004
WANG Fenggang, YAO Jian, WU Yu, CHEN Youliang, SUN Zexuan, ZHANG Yushun, LI Qiushi. 2024. Characteristics and genesis of uranium mineralized lenses and its implications for deep−source uranium metallogenesis in Datian area of Panzhihua, Sichuan Province[J]. Geology in China, 51(3): 912-931. doi: 10.12029/gc20200409004
Citation: WANG Fenggang, YAO Jian, WU Yu, CHEN Youliang, SUN Zexuan, ZHANG Yushun, LI Qiushi. 2024. Characteristics and genesis of uranium mineralized lenses and its implications for deep−source uranium metallogenesis in Datian area of Panzhihua, Sichuan Province[J]. Geology in China, 51(3): 912-931. doi: 10.12029/gc20200409004

四川攀枝花大田地区铀矿化透镜地质体特征、成因及其对深源铀成矿的启示

  • 基金项目: 中国核工业地质局铀矿地质科研项目(201807–03、202346–4)与国家自然科学基金项目(41472073)联合资助。
详细信息
    作者简介: 王凤岗,男,1977年生,正高级工程师,主要从事岩石矿物学及铀矿地质研究;E-mail: wfg9818@163.com
  • 中图分类号: P619.14

Characteristics and genesis of uranium mineralized lenses and its implications for deep−source uranium metallogenesis in Datian area of Panzhihua, Sichuan Province

  • Fund Project: Supported by the projects of China Nuclear Geology (No.201807–03, No.202346–4) and National Natural Science Foundation of China (No.41472073).
More Information
    Author Bio: WANG Fenggang, male, born in 1977, professor level senior engineer, mainly engaged in uranium geology and petromineralogy; E-mail: wfg9818@163.com .
  • 研究目的

    近期在四川省攀枝花大田地区发现了呈雁列式展布铀矿化透镜体群,无论是在铀矿化特征上还是在成因上均极为特殊,具有重要的研究价值。

    研究方法

    通过对铀矿化透镜体开展岩石学、矿物学、岩石地球化学、同位素地质学及年代学、铀赋存状态及铀矿化与透镜体之间的成因联系等研究。

    研究结果

    铀矿化透镜体基本由斜长石组成并发生了强烈钠黝帘石化,具有岩浆岩常见的镶嵌结构,形成年龄为821 Ma(SIMS锆石U–Pb)。化学组成上具有富Na2O(含量3.95%~5.68%,平均为5.09%)、CaO(含量4.40%~7.35%,平均为5.46%),贫SiO2(含量51.52%~55.09%,平均为53.34%)的特征。微量元素分析结果显示铀矿化透镜体具有极低的ΣREE含量(含量9.96×10−6~33.63×10−6,平均为22.03×10−6),特殊的铕正异常(δEu=1.59~5.51,平均为2.68)稀土配分模式。ISr值介于0.7060~0.7088,平均为0.7074,具有地幔来源特征。透镜体中铀主要呈独特的“铀钛矿物聚集体”形式存在,主要由“金红石+铀钛混合物+钛铀矿+晶质铀矿+锆石”等矿物组成,且上述矿物具有由“金红石(Ti)→铀钛混合物(Ti>U)→钛铀矿(Ti<U)→晶质铀矿(U)”的演化特征。

    结论

    根据铀矿物与透镜体的关系及铀矿物稀土元素示踪等综合判断,铀矿化具有岩浆成因属性,推测在深部高温(>700℃)高压(>15 kbar)的环境中,U与Ti具有极强的亲和性,形成以NaU4+(Ti4+)[TiO4]4+(F,Cl)为主要形式的络合物,并在熔体中向富钠的部位迁移、富集。铀与透镜体具有同源、同成因特征,而“铀钛矿物聚集体”是在等压降温过程中因温度降低从浆状体中分离出来所形成。攀枝花大田地区铀矿化透镜体的发现提供了深源铀成矿的地质实例,为探讨深源铀成矿提供了参考。

  • 加载中
  • 图 1  攀枝花大田地区地质简图

    Figure 1. 

    图 2  铀矿化透镜体产出特征

    Figure 2. 

    图 3  变质围岩(DT–2)锆石CL图像及年龄谐和图

    Figure 3. 

    图 4  铀矿化透镜体(DT–1)锆石CL图像及年龄图

    Figure 4. 

    图 5  铀矿化透镜体镜下特征

    Figure 5. 

    图 6  铀矿化透镜体稀土配分模式(球粒陨石标准化据Boynton, 1984

    Figure 6. 

    图 7  攀枝花大田地区雁列式铀矿化透镜体形成示意图

    Figure 7. 

    图 8  铀矿化透镜体中铀的存在形式

    Figure 8. 

    图 9  斜长石晶粒中包裹的铀钛矿物聚集体

    Figure 9. 

    图 10  铀钛矿物聚集体中矿物分布特征

    Figure 10. 

    图 11  铀钛矿物聚集体中铀矿物LA–ICP–MS年龄谐和图

    Figure 11. 

    图 12  UO2−TiO2−H2O (20 MPa)图解

    Figure 12. 

    图 13  铀矿化透镜体中铀矿物稀土配分形式(据Boynton, 1984

    Figure 13. 

    图 14  铀矿化透镜体中铀矿物(U/Th)–ΣREE(a)和(ΣLREE/HLREE)–ΣREE(b)图解

    Figure 14. 

    表 1  变质围岩(DT-2)SIMS锆石U–Pb同位素年龄测试结果

    Table 1.  SIMS zircon U–Pb isotope dating of metamorphic wall rock (DT-2)

    测点号 含量/10−6 Th/U 同位素比值 年龄/Ma
    U Th Pb 207Pb/206Pb ±σ 207Pb/235U ±σ 206Pb/238U ±σ 207Pb/206Pb ±σ 207Pb/235U ±σ 206Pb/238U ±σ
    1 113 84 18 0.74 0.065339 0.0136 1.114168 0.0261 0.123673 0.0222 785 28 760 14 752 16
    2 114 89 18 0.78 0.063662 0.0122 1.098217 0.0227 0.125115 0.0192 730 26 753 12 760 14
    3 421 51 55 0.12 0.064595 0.0062 1.046947 0.0194 0.117550 0.0184 761 13 727 10 716 13
    4 216 244 38 1.13 0.064603 0.0087 1.094873 0.0213 0.122916 0.0194 761 18 751 11 747 14
    5 140 148 23 1.06 0.065125 0.0117 1.056525 0.0222 0.117661 0.0189 778 25 732 11 717 13
    6 126 136 21 1.08 0.064630 0.0143 1.061736 0.0248 0.119146 0.0203 762 30 735 13 726 14
    7 171 101 26 0.59 0.064952 0.0096 1.069895 0.0213 0.119468 0.0190 773 20 739 11 728 13
    8 413 698 80 1.69 0.064392 0.0074 1.078229 0.0230 0.121445 0.0218 755 16 743 12 739 15
    9 246 69 34 0.28 0.063904 0.0093 1.064494 0.0212 0.120812 0.0190 739 20 736 11 735 13
    10 77 58 12 0.75 0.064779 0.0180 1.111879 0.0276 0.124486 0.0210 767 38 759 15 756 15
    11 175 163 30 0.93 0.064332 0.0120 1.147164 0.0228 0.129330 0.0194 753 25 776 13 784 14
    12 275 33 38 0.12 0.062906 0.0110 1.102831 0.0228 0.127151 0.0199 705 23 755 12 772 15
    13 81 53 13 0.66 0.064076 0.0191 1.174118 0.0292 0.132897 0.0220 744 40 789 16 804 17
    14 176 185 30 1.05 0.064081 0.0161 1.092138 0.0253 0.123607 0.0195 744 34 750 14 751 14
    下载: 导出CSV

    表 2  含铀透镜体(DT-1)SIMS锆石U–Pb同位素年龄测试结果

    Table 2.  SIMS zircon U–Pb isotope dating of uranium lenses (DT-1)

    测点号含量/10-6Th/U同位素比值年龄/Ma
    UThPb207Pb/206Pb±σ207Pb/235U±σ206Pb/238U±σ207Pb/206Pb±σ207Pb/235U±σ206Pb/238U±σ
    1746819410980.020.0667390.00501.2600300.01650.1369310.015883011828982712
    21108542415650.020.0668130.00521.1753520.01840.1321100.0170759157891080013
    359362808070.020.0665450.00911.1610590.02040.1265430.0183824197831176813
    41056320112080.020.0646450.00530.9520470.01650.1068120.015776311679865410
    51191558815890.050.0669780.00481.0452120.02300.1242590.0175640327271275513
    6702243512510.020.0659220.00451.4704250.01910.1669350.0177738159181299516
    7902328213180.030.0661180.00461.2384320.01910.1358470.0185810108181182114
    842962216320.030.0666660.00761.2580760.02310.1368670.0218827168271382717
    971723219060.030.0648720.00551.0510220.01710.1175030.016177012729971611
    10952628514370.030.0676180.00471.3064530.01760.1401290.0170857108491084513
    111455167118040.040.0649030.00411.0291290.01740.1150010.01697719719970211
    121094265015240.040.0647450.00501.1533060.01920.1291930.0186766107791178314
    13758653610190.030.0679800.00751.1674870.01820.1245580.0166868167861075712
    1449731207210.010.0667820.00881.2471610.01880.1354450.0166831188221181913
    15733017310630.020.0659600.00511.2289280.01670.1351280.015980511814981712
    16984841514280.040.0664870.00441.2321580.01680.1344090.016382298151081312
    171078930813740.030.0658390.00461.0760430.02470.1185340.0242801107421372217
    18970934314800.040.0661970.00621.2919390.01820.1415470.0171813138421185314
    191020030012830.030.0660750.00691.0659580.01710.1170040.015780914737971311
    201141839316020.030.0655530.00421.1791980.01780.1304650.017379297911079113
    211482666018600.040.0653300.00541.0466110.04740.1161900.0471785117272570932
    22906117812940.020.0662420.00581.2161460.01770.1331540.0167814128081080613
    2359704257920.020.0651090.00601.1113810.01670.1238000.015677813759975211
    下载: 导出CSV

    表 3  铀矿化透镜体中铀矿物LA–ICP–MS分析测试结果

    Table 3.  LA–ICP–MS uranium minerals U–Pb isotope dating in uranium mineralized lenses

    测点号 含量/10-6 Th/U 同位素比值 年龄/Ma
    Pb Th U 207Pb/206Pb ±σ 207Pb/235U ±σ 206Pb/238U ±σ 207Pb/206Pb ±σ 207Pb/235U ±σ 206Pb/238U ±σ
    1 107121 37396 355430 0.11 0.0702 0.0007 1.4690 0.0217 0.1522 0.0021 1000 16 918 9 914 12
    2 101757 25535 370757 0.07 0.0687 0.0006 1.4180 0.0179 0.1495 0.0020 900 17 897 8 898 11
    3 96551 16004 418428 0.04 0.0677 0.0009 1.4230 0.0244 0.1482 0.0026 859 28 899 10 891 15
    4 107833 22899 375017 0.06 0.0693 0.0005 1.4090 0.0240 0.1473 0.0025 906 12 893 10 886 14
    5 108231 30893 357977 0.09 0.0680 0.0009 1.3955 0.0171 0.1459 0.0017 878 26 887 7 878 10
    6 105995 18317 359693 0.05 0.0656 0.0013 1.4315 0.0281 0.1492 0.0028 792 41 902 12 896 16
    7 95977 17063 392995 0.04 0.0690 0.0005 1.3956 0.0244 0.1469 0.0027 898 19 887 10 884 15
    8 93035 26014 410504 0.06 0.0686 0.0005 1.3911 0.0168 0.1468 0.0017 887 17 885 7 883 9
    9 92078 33643 406029 0.08 0.0692 0.0006 1.4034 0.0157 0.1468 0.0015 906 18 890 7 883 9
    10 94893 30854 415944 0.07 0.0694 0.0006 1.3910 0.0217 0.1450 0.0021 911 19 885 9 873 12
    下载: 导出CSV

    表 9  透镜体中铀矿物稀土元素分析结果(10−6

    Table 9.  Rare earth element compositions (10−6) of uranium minerals in lenses

    序号 1 2 3 4 5 6 7 8 9 10 平均
    La 371.72 500.34 423.74 406.09 458.40 665.50 700.97 348.26 316.64 318.42 451.008
    Ce 3441.81 4221.64 3530.02 3389.01 6542.06 5291.22 5482.48 2865.09 3535.91 3327.44 4162.668
    Pr 568.89 617.49 547.99 597.94 908.07 678.84 770.02 462.60 566.36 544.68 626.288
    Nd 3029.19 3439.32 2828.33 2818.08 5063.87 3783.62 3903.13 2749.19 3017.51 3272.96 3390.52
    Sm 881.44 1120.31 704.59 720.79 1339.27 861.17 844.24 773.24 870.27 974.48 908.98
    Eu 74.83 70.36 58.83 58.96 179.19 70.72 70.40 61.34 93.79 68.00 80.642
    Gd 966.50 1023.55 755.06 736.90 1573.49 762.47 812.69 841.66 960.32 1018.34 945.098
    Tb 161.76 191.74 115.53 128.15 226.64 135.21 125.47 130.65 155.91 165.74 153.68
    Dy 1278.82 1119.52 874.02 888.57 1750.00 926.86 871.52 964.92 1227.45 1229.65 1113.133
    Ho 241.46 279.24 166.53 176.06 343.05 186.54 164.34 185.24 229.66 232.74 220.486
    Er 817.47 843.05 597.44 600.77 1219.04 548.10 560.79 614.05 782.29 783.35 736.635
    Tm 88.98 87.91 65.31 70.01 142.85 63.00 64.69 71.37 84.84 88.16 82.712
    Yb 649.31 751.15 488.08 485.80 968.48 474.31 436.16 488.16 566.24 601.02 590.871
    Lu 57.00 57.06 43.23 47.87 92.17 44.14 42.12 40.53 50.62 56.11 53.085
    Y 5916 6385 4115 4622 8801 4389 4307 4632 5971 5845 5498
    U 355430 370757 418428 375017 357977 359693 392995 410504 430114 415944 388686
    Th 37396 25535 16004 22899 30893 18317 17063 26014 36928 30854 26190
    U/Th 9.5 14.5 26.1 16.4 11.6 19.6 23.0 15.8 11.6 13.5 16.2
    ΣREE 12629.2 14322.7 11198.7 11125.0 20806.6 14491.7 14849.0 10596.3 12457.8 12681.1 13515.8
    LREE/HREE 1.96 2.29 2.61 2.55 2.29 3.61 3.82 2.18 2.07 2.04 2.54
    下载: 导出CSV

    表 4  金红石成分(%)及其Zr温度计算结果

    Table 4.  Electron–microprobe analyses of rutiles (%) and the calculation results of Zr–in–rutile

    测点 SiO2 UO2 FeO Nd2O3 ThO2 TiO2 Al2O3 CaO MoO3 Nb2O5 PbO Ta2O5 SeO2 SO3 P2O5 ZrO2 Ce2O3 Y2O3 总量 T1 max/℃ T2/℃
    1 0.02 0.11 0.47 0.07 0.00 98.69 0.05 / / 1.70 0.01 0.06 0.02 0.01 0.05 0.06 / 0.05 101.36 769.10 796.17
    2 0.04 0.12 0.56 0.03 / 97.23 0.02 0.01 0.02 2.30 / 0.17 / 0.03 0.04 0.08 / 0.06 100.68 805.87 834.92
    3 0.01 0.11 1.21 0.03 0.04 99.28 / 0.07 0.13 0.23 0.01 0.02 0.02 / / 0.03 0.11 0.01 101.31 680.52 702.80
    4 / 0.03 0.42 0.04 0.01 98.08 0.02 0.02 0.04 1.49 0.05 0.10 / / 0.02 0.06 0.02 0.03 100.43 769.10 796.17
    5 0.03 0.18 0.44 / / 99.92 0.04 0.04 0.06 1.04 / 0.08 0.03 0.03 0.03 0.02 / / 101.91 628.70 648.18
    6 0.01 0.15 0.52 / 0.03 97.90 0.01 0.01 / 2.06 / 0.24 0.04 0.02 0.03 / 0.03 101.05 680.52 702.80
    7 0.04 0.11 0.23 / 0.05 99.42 0.02 0.02 / 1.05 / 0.22 / 0.02 0.03 0.05 / / 101.24 745.80 771.61
    8 / 0.11 0.35 0.01 / 99.83 / / / 0.62 0.07 0.02 / / / 0.14 0.02 0.02 101.19 877.39 910.30
    下载: 导出CSV

    表 5  含铀钛矿物电子探针分析结果(%)

    Table 5.  Electron–microprobe analyses (%) of Ti–U mixture

    测点FSiO2UO2FeOMgOThO2TiO2Al2O3CaOMnOK2OCe2O3PbOTa2O5ClCr2O3Nb2O5NiO总量
    10.1010.4424.381.160.030.2743.520.500.63/0.160.4613.980.110.04/0.420.0596.25
    2/8.2825.172.650.060.0647.750.680.590.060.22/12.370.290.02/0.51/98.71
    3/11.6921.294.76//43.860.350.55/0.12/13.120.110.730.060.87/97.56
    4/9.9524.873.380.02/42.680.320.53/0.12/14.500.180.65/0.800.0498.04
    5/10.8922.854.31//42.410.300.590.050.13/14.530.140.73/0.760.0497.73
    6/9.9524.873.380.02/42.680.320.53/0.12/14.500.180.65/0.800.0498.04
    7/10.8922.854.31//42.410.300.590.050.13/14.530.140.73/0.760.0497.73
    下载: 导出CSV

    表 6  钛铀矿电子探针分析结果(%)

    Table 6.  Electron–microprobe analyses (%) of brannerite

    测点SiO2UO2FeONa2OMgOThO2TiO2Al2O3CaOMnOK2OCe2O3PbOTa2O5ClCr2O3Nb2O5NiOYb2O3总量
    12.1462.411.070.040.021.2316.91/1.16/1.030.477.130.330.10/0.28//94.32
    22.3560.701.580.07/1.3417.220.071.130.051.05/7.110.470.13/0.290.090.1393.78
    34.0852.492.430.050.050.3723.520.180.890.041.01/9.250.210.30/0.36//95.23
    42.1960.711.590.070.051.4718.140.071.10/1.19/7.630.460.20/0.27/0.2095.34
    52.4756.990.760.030.052.1418.820.151.05/0.84/8.260.190.05/1.13//92.93
    62.6958.621.160.06/1.9017.340.121.17/0.810.238.160.510.04/1.07//93.88
    72.3359.911.24//1.5917.280.041.20/0.86/7.710.320.03/0.81//93.32
    82.9257.791.700.060.072.1317.010.091.19/0.77/7.480.130.170.120.43/0.2892.34
    92.9257.791.700.060.072.1317.010.091.19/0.77/7.480.130.170.120.43/0.2892.34
    下载: 导出CSV

    表 7  铀矿化透镜体化学组成(%)

    Table 7.  Major compositions (%) of uranium mineralized lenses

    样号SiO2TiO2Al2O3Fe2O3FeOMnOMgOCaONa2OK2OP2O5LOITotleDIMFSIAn
    II-154.830.3919.548.030.550.030.385.453.950.810.095.2899.3355.40.382.7942.7
    II-255.090.0621.746.600.250.020.204.635.241.480.054.1299.4762.90.201.4532.5
    II-351.900.0323.186.770.240.030.157.355.470.740.283.8099.9453.10.151.1241.4
    II-451.520.0618.434.791.660.010.014.405.681.260.105.7993.7127.44.2415.0459.3
    平均53.340.1420.726.550.680.020.195.465.091.070.134.7598.1149.71.245.1044.0
    下载: 导出CSV

    表 8  铀矿化透镜体稀土元素含量(10−6

    Table 8.  Rare earth element compositions (10−6) of uraniferous mineralized lenses

    样号LaCePrNdSmEuGdTbDyHoErTmYbLuΣREELREEHREELREE/HREEδEu
    II-12.825.050.7733.450.910.5200.750.191.230.300.920.171.180.1918.4413.524.912.751.87
    II-21.892.630.3581.480.360.6740.380.090.630.160.550.090.590.089.967.392.572.885.51
    II-35.249.611.476.241.630.8811.400.392.370.501.530.281.850.2533.6325.078.562.931.74
    II-44.156.971.345.591.380.6771.170.281.620.340.980.181.220.1826.0820.115.973.371.59
    平均3.536.070.994.191.070.6880.930.241.460.331.000.181.210.1822.0316.525.502.982.68
    下载: 导出CSV

    表 10  铀矿化透镜体Rb–Sr同位素测试结果

    Table 10.  Rb–Sr isotope dating of uranium mineralized lenses

    样号 岩性 Rb/10−6 Sr/10−6 87Rb/86Sr 87Sr/86Sr 标准误差 (2σ) ISr
    Ⅱ-1 蚀变斜长岩 33.3 248 0.3884 0.713783 0.00002 0.708849
    Ⅱ-2 蚀变斜长岩 50.4 377 0.3865 0.713125 0.000016 0.708215
    Ⅱ-3 蚀变斜长岩 40.3 176 0.6635 0.715125 0.000017 0.706696
    Ⅱ-4 蚀变斜长岩 52.1 211 0.7134 0.715037 0.000016 0.705974
    平均 44.03 253 0.5380 0.7143 0.000017 0.707434
    下载: 导出CSV
  • [1]

    Alexandre P, Kyser T K, Layton M K, Joy B, Uvarova Y. 2015. Chemical compositions of natural uraninite[J]. Canadian Mineralogist, 53(4): 595−622.

    [2]

    Arndt N. 2013. The formation of massif anorthosite: Petrology in reverse[J]. Geoscience Frontiers, 4(2): 195−198.

    [3]

    Ashwal L D. 1982. Mineralogy of mafic and Fe−Ti oxide−rich differentiates of the Marcy anorthosites massif, New York[J]. American Mineralogist, 67: 14−27.

    [4]

    Ashwal L D, Seifert K E. 1980. Rare−earth−element geochemistry of anorthosite and related rocks from the Adirondacks, New York, and other massif−type complexes[J]. Geological Society of America Bulletin, 91(2): 659−684.

    [5]

    Ashwal L D, Wooden J L. 1983. Sr and Nd isotope geochronology, geologic history, and origin of the Adirondack Anorthosite[J]. Geochimica et Cosmochimica Acta, 47: 1875−1885.

    [6]

    Ashwal L D, Wooden J L, Phinney W C, Morrison D A. 1985. Sm−Nd and Rb−Sr isotope systematics of an Archean anorthosite and related rocks from the Superior Province of the Canadian Shield[J]. Earth and Planetary Science Letters, 74: 338−346.

    [7]

    Barth M G, Foley S F. 2002. Partial melting in Archean subduction zones: Constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions[J]. Precambrian Research, 113: 323−340.

    [8]

    Barton J. 1996. The Messina layered intrusion, Limpopo Belt, South Africa: An example of in−suit contamination of an Archean anorthosite complex by continental crust[J]. Precambrian Research, 78: 139−150.

    [9]

    Boynton W V. 1984. Cosmochemistry of the rare earth elements: Meteorite studies[J]. Developments in Geochemistry, 2: 63−114.

    [10]

    Charlier B, Duchesne J C, Auwera J V. 2006. Magma chamber processes in the Tellnes Ilmenite deposit (Rogaland Anorthosite SW Norway) and the formation of Fe−Ti ores in massif−type anorthosites[J]. Chemical Geology, 234: 264−290.

    [11]

    Chen Wei, Zhao Taiping. 2007. Research progress in the petrogenesis of the Proterozoic anorthosite massifs[J]. Geological Journal of China Universities, 13(1): 117−126 (in Chinese with English abstract).

    [12]

    Cuney M. 2010. Evolution of uranium fractionation processes through time: Driving the secular variation of uranium deposit types[J]. Economic Geology, 105: 553−569.

    [13]

    Demaiffe D, Weis D, Michot J, Duchesne J C. 1986. Isotopic constraints on the genesis of the Rogaland anothositic (Southwest Norway)[J]. Chemical Geology, 57: 167−179.

    [14]

    Deng Ping, Shen Weizhou, Ling Hongfei, Ye Haimin, Wang Xuecheng, Pu Wei, Tan Zhengzhong. 2003. Uranium mineralization related to mantle fluid: A case study of the Xianshi deposit in the Xiazhuang uranium orefield[J]. Geochimica, 32(6): 520−528 (in Chinese with English abstract).

    [15]

    Du Letian, Wang Wenguang. 2005. Occurrence states of uranium in the mantle and their geochemical implication[J]. Earth Science Frontiers, 12(1): 69−78 (in Chinese with English abstract).

    [16]

    Duchesne J C. 1999. Fe−Ti deposit in Rogaland anorthosites (South Norway): Geochemical characteristic and problems of interpretation[J]. Mineralium Deposita, 34: 182−198.

    [17]

    Emslie R F. 1978. Anorthosite massifs, rapakivi granites, and Late Proterozoic rifting of North America[J]. Precambrian Research, 7: 61−98.

    [18]

    Frimmel H E, Schedel S, Brätz H. 2014. Uraninites chemistry as forensic tool for provenance analysis[J]. Applied Geochemistry, 48: 104−121.

    [19]

    Fryer B J, Taylor R P. 1987. Rare−earth element distributions in uraninites implications for ore genesis[J]. Chemical Geology, 63: 101−108.

    [20]

    Geist D J, Frost C D, Kolker A. 1990. Sr and Nd isotopic constraints on the origin of the Laramie Anorthosite Complex, Wyoming[J]. American Mineralogist, 75: 13−20.

    [21]

    Goldberg S A. 1984. Geochemical relationships between anorthosite and associated iron−rich rocks, Laramie Range, Wyoming[J]. Contributions to Mineralogy and Petrology, 87(4): 376−387.

    [22]

    Green D H, Morgan J W. 1968. Thorium, uranium and potassium abundances in peridotite inclusions and their hot basalts[J]. Earth and Planetary Science Letters, 4: 155−166.

    [23]

    Green H W Ⅱ. 1979. Trace elements in the fluid phase of the Earth's mantle[J]. Nature, 277: 465−467.

    [24]

    Green T H, Pearson N J. 1986. Rare−earth element partitioning between sphene and coexisting silicate liquid at high−pressure and temperature[J]. Chemical Geology, 55: 105−119.

    [25]

    Haskin L A, Salpas P A. 1992. Genesis of compositional characteristics of Stillwater AN−Ⅰ and AN−Ⅱ thick anorthosite units[J]. Geochimica et Cosmochimica Acta, 56: 1187−1212.

    [26]

    Heath S A, Fairbairn H W. 1967. 87Sr/86Sr Ratios in Anorthosites and Some Associated Rocks[D]. Cambridge: Massachusetts Institute of Technology.

    [27]

    Heier K S. 1963. Uranium, thorium and potassium in eclogitic rocks[J]. Geochimica et Cosmochimica Acta, 27: 849−860.

    [28]

    Hellman P L, Green T H. 1979. The role of sphene as an accessory phase in the high−pressure partial melting of hydrous mafic compositions[J]. Earth and Planetary Science Letters, 42(2): 191−201.

    [29]

    Herndon J M. 1993. Feasibility of a nuclear fission reactor at the Center of the Earth as the energy source for the geomagnetic field[J]. Journal of Geomagnetism and Geoelectricity, 45: 423−437.

    [30]

    Herndon J M. 2003. Nuclear georeactor origin of oceanic basalt 3He/4He, evidence, and implications[J]. Proceedings of the National Academy of Sciences of the United States of America, 100: 3047−3050.

    [31]

    Herndon J M. 2006. Solar system processes underlying planetary formation, geodynamics, and the georeactor[J]. Earth, Moon and Planets, 99: 53−89.

    [32]

    Herz H. 1969. Anrothosite belt, continental drift and the anorthosite event[J]. Science, 164: 944−947.

    [33]

    Hu Ruizhong, Bi Xianwu, Su Wenchao, Peng Jiantang, Li Chaoyang. 2004. The relationship between uranium metallogenesis and crustal extension during the Cretaceous−Tertiary in South China[J]. Earth Science Frontiers, 11(1): 153−160 (in Chinese with English abstract).

    [34]

    Hu Ruizhong, Li Chaoyang, Ni Shijun, Liu Li. 1993. Research on ΣCO2 Source in ore−forming hydrothermal solution of granite−type uranium deposits, South China[J]. Science in China (Series B), 23(2): 189−196 (in Chinese).

    [35]

    Hu Ruizhong, Luo Jincheng, Chen Youwei, Pan Lichuan. 2019. Several progresses in the study of uranium deposits in South China[J]. Acta Petrologica Sinica, 35(9): 2625−2636 (in Chinese with English abstract).

    [36]

    Hu Shiling, Wang Songshan, Sang Haiqing, Qiu Ji, Ye Donghu, Chui Renhe, Qi Changmou. 1990. The isotopic ages and REE geochemistry of Daomiao anorthosite and their geological implication[J]. Scientia Geologica Sinica, (4): 332−343 (in Chinese with English abstract).

    [37]

    Hu Shouxi, Ye Ying, Fang Changquan. 2004. Petrology of the Metasomatically Altered Rocks and Its Significance in Prospecting[M]. Beijing: Geological Publishing House (in Chinese).

    [38]

    Huang Shijie. 2006. Preliminary discussion on deep−sourced uranium metallogenesis and deep prospecting[J]. Uranium Geology, 22(2): 70−75 (in Chinese with English abstract).

    [39]

    Jiang Yaohui, Jiang Shaoyong, Linghongfei. 2004. Mantle−derived fluids and uranium mineralization[J]. Earth Science Frontiters, 11(2): 491−499 (in Chinese with English abstract).

    [40]

    John T, Klemd R, Klemme S, Pfänder J A, Hoffmann J E, Gao J. 2011. Nb−Ta fractionation by partial melting at the titanite−rutile transition[J]. Contributions to Mineralogy and Petrology, 161: 35−45.

    [41]

    Klemme S, Blundy J D, Wood B J. 2002. Experimental constraints on major and trace element partitioning during partial melting of eclogite[J]. Geochimica et Cosmochimica Acta, 66: 3109−3312.

    [42]

    Komor S C, Elthon D. 1990. Formation of anorthosite−gabbro rhythmic phase layering: An example at North Arm Mountain, bay of islands ophiolite[J]. Journal of Petrology, 31: 1−50.

    [43]

    Kushiro I, Fujii T. 1977. Floatation of plagioclase in magma at high pressures and its bearing on the origin of anorthosite[J]. Proceedings of the Japan Academy Ser B Physical & Biological Sciences, 53(7): 262−266.

    [44]

    Kutty T R N, Iyer G V A, Ramakrishana M, Verma S P. 1984. Geochemical of meta−anorthosites from Holénarasipur, Karnataka, South India[J]. Lithos, 17: 317−328.

    [45]

    Li Ziying. 2006. Hostspot uranium metallogenesis in South China[J]. Uranium Geology, 22(2): 65−69 (in Chinese with English abstract).

    [46]

    Li Ziying, Li Xiuzhen, Lin Jinrong. 1999. On the Meso−Cenozoic mantle plume tectonics, its relationship to uranium metallogenesis and prospecting directions in South China[J]. Uranium Geology, 15(1): 9−17 (in Chinese with English abstract).

    [47]

    Li Z Y, Huang Z Z, Li X Z, Guo J, Fan C. 2015. The discovery of natural native uranium and its significance[J]. Acta Geologica Sinca (English Edition), 89(5): 1561−1567.

    [48]

    Macaudière J, William L, Ohmenstetter D. 1985. Microcrystalline textures resulting from rapid crystallization in a pseudotachylite melt in a meta−anorthosite[J]. Contributions to Mineralogy and Petrology, 89: 39−51.

    [49]

    Maier W D, Karykowski B T, Yang S H. 2016. Formation of transgressive anorthosite seams in the Bushveld Complex via tectonically induced mobilisation of plagioclase−rich crystal mushes[J]. Geoscience Frontiers, 7: 875−889.

    [50]

    Mao Jingwen, Li Xiaofeng, Zhang Ronghua, Wang Yitian, Hao Ying. 2005. Deep Fluids Metallogenic System[M]. Beijing: China Land Press.

    [51]

    Meinhold G. 2010. Rutile and its applications in earth sciences[J]. Earth Science Reviews, 102: 1−28.

    [52]

    Mercadier J, Cuney M, Lach P, Boiron M C, Bonhoure J, Richard A, Leisen M, Kister P. 2011. Origin of uranium deposits revealed by their rare earth element signature[J]. Terra Nova, 23: 264−269.

    [53]

    Pang Yaqin, Fan Honghai, Gao Fei, Wu Jianyong, Xie Xiaozhan. 2019. Helium and argon isotopic compositions of fluid for the south Zhuguang uranium ore field in northern Guangdong Province[J]. Acta Petrologica Sinica, 35(9): 2665−2773 (in Chinese with English abstract).

    [54]

    Pospelov G L. 1973. Paradoksy, Geologo−fizicheskaya Sushchnost'i Mekhanizmy Metasomatoza (Paradoxes, Geological–Physical Essence and Mechanisms of Metasomatism)[M]. Novosibirsk: Publishing House Nauka.

    [55]

    Romey W D. 1968. An evaluation of some ‘differences’ between anorthosite in massifs and in layered complexes[J]. Lithos, 1: 230−241.

    [56]

    Rosenbaum J M, Zindler A, Rubenstone J L. 1996. Mantle fluids: Evidence from fluid inclusions[J]. Geochimica et Cosmochimica Acta, 60(17): 3229−3252.

    [57]

    Scoates J S, Chamberlain K R. 1997. Orogenic to post−orogenic origin for the 1.76 Ga Horse Creek anorthosite complex, Wyoming, USA[J]. The Journal of Geology, 105: 331−343.

    [58]

    Spano T L, Simonetti A, Wheeler T, Carpenter G, Freet D, Balboni E. 2017. A novel nuclear forensic tool involving deposit type normalized rare earth element signatures[J]. Terra Nova, 29: 294−305.

    [59]

    Tian Jianji, Zhang Guoquan, Shang Pengqiang, Qi Youqiang. 2019. Ore−forming material sources of the Dachayuan uranium deposit, Zhejiang Province: Evidence from C–O and Sr–Nd isotopes[J]. Acta Petrologica Sinica, 35(9): 2817−2829 (in Chinese with English abstract).

    [60]

    Varfalvy V, Hebert R, Bedard J H, Lafleche M R. 1997. Petrology and geochemistry of pyroxenite dykes in upper mantle peridotites of the North Arm Mountain Massif, Bay of islands ophiolite, Newfoundland: Implications for the genesis of boninitic and related magmas[J]. The Canadian Mineralogist, 35(2): 543−570.

    [61]

    Wang Zhengqi, Li Ziying. 2007. Discussion on mantle−derived uranium mineralization[J]. Geological Review, 53(5): 608−615 (in Chinese with English abstract).

    [62]

    Wiebe R A, Wild T. 1983. Fractional crystallization and magma mixing in the Tigalak layered intrusion the Nain anorthosite complex, Labrador[J]. Contributions to Mineralogy and Petrology, 84: 327−344.

    [63]

    Wu Dehai, Xia Fei, Pan Jiayong, Liu Guoqi, Huang Guolong, Liu Wenquan, Wu Jianyong. 2019. Characteristics of hydrothermal alteration and material migration of the Mianhuakeng uranium deposit in northern Guangdong Province[J]. Acta Petrologica Sinica, 35(9): 2645−2764 (in Chinese with English abstract).

    [64]

    Xie Guanghong. 1977. Some questions about plagioclase[J]. Geology Geochemistry, 6: 1−11 (in Chinese with English abstract).

    [65]

    Xie Guanghong. 1980. Petrochemical characteristics of the anorthosite suite in Damiao, Hebei Province, China[J]. Geochimica, 3: 263−278 (in Chinese with English abstract).

    [66]

    Xie Guanghong. 2005. Petrology and Geochemistry of the Damiao Anorthosite and the Miyun Rapakivi Granite[M]. Beijing: Science Press (in Chinese).

    [67]

    Yang Zhensheng, Xu Zhongyuan, Liu Zhenghong, Huang Daoling. 2008. The Methods of Geological Survey and Comprehensive Research in Metamorphic Areas[M]. Beijing: Geological Publishing House (in Chinese).

    [68]

    Yuan Q, Cao X, Lü X, Wang X, Yang E, Liu Y, Ruan B, Liu H, Munir M. 2014. LA−ICP−MS U−Pb zircon geochronology and Hf isotope, geochemistry and kinetics of the Daxigou anorthosite from Kuruqtagh block, NW China[J]. Chinese Journal of Geochemistry, 33: 207−220.

    [69]

    Zack T, Moraes R, Kronz A. 2004. Temperature dependence of Zr in rutile: Empirical calibration of a rutile thermometer[J]. Contributions to Mineralogy and Petrology, 148: 471−488.

    [70]

    Zhai Yusheng. 1965. The characteristics and petrogenesis of an anorthosite[J]. Geological Review, 23(3): 186−195 (in Chinese with English abstract).

    [71]

    Zhang Bangtong, Ling Hongfei, Wu Junqi. 2014. New finding of brannerite−uraninite−coffinite−pitchblende micro−assemblage and its genetic significance at the No. 6722 uranium deposit, Southern Jiangxie Province[J]. Geological Review, 60(6): 14187−1424 (in Chinese with English abstract).

    [72]

    Zhang S H, Liu S W, Zhao Y, Yang J H, Song B, Liu X M. 2007. The 1.75−1.68 Ga anorthosite−mangerite−alkali granitoid−rapakivi granite suite from the norther North Chian Craton: Magmatism related to a Paleoproterozoic orogen[J]. Precambrian Research, 155: 287−312.

    [73]

    Zhong Fudao, Xie Guanghong. 1978. The age of anorthosite event and its geological implications[J]. Geochimica, (3): 202−208 (in Chinese with English abstract).

    [74]

    陈伟, 赵太平. 2007. 元古宙岩体型斜长岩的特征及研究现状[J]. 高校地质学报, 13(1): 117−126. doi: 10.3969/j.issn.1006-7493.2007.01.015

    [75]

    邓平, 沈渭洲, 凌洪飞, 叶海敏, 王学成, 濮巍, 谭正中. 2003. 地幔流体与铀成矿作用: 以下庄矿田仙石铀矿床为例[J]. 地球化学, 32(6): 520−528. doi: 10.3321/j.issn:0379-1726.2003.06.002

    [76]

    杜乐天, 王文广. 2005. 地幔中铀的存在状态及其地球化学含义[J]. 地学前缘, 12(1): 69−78. doi: 10.3321/j.issn:1005-2321.2005.01.011

    [77]

    胡瑞忠, 毕献武, 苏文超, 彭建堂, 李朝阳. 2004. 华南白垩纪—第三纪地壳拉张与铀成矿关系[J]. 地学前缘, 11(1): 153−159.

    [78]

    胡瑞忠, 李朝阳, 倪师军, 刘莉, 于津生. 1993. 华南花岗岩型铀矿床成矿热液中CO2来源研究[J]. 中国科学(B辑), 23(2): 189−196.

    [79]

    胡瑞忠, 骆金诚, 陈佑纬, 潘力川. 2019. 华南铀矿床研究若干进展[J]. 岩石学报, 35(9): 2625−2636. doi: 10.18654/1000-0569/2019.09.01

    [80]

    胡世玲, 王松山, 桑海清, 裘冀, 叶东虎, 崔人合, 戚长谋. 1990. 大庙斜长岩同位素地质年龄、稀土地球化学及其地质意义[J]. 地质科学, (4): 332−343.

    [81]

    胡受奚, 叶瑛, 方长泉. 2004. 交代蚀变岩岩石学及其找矿意义[M]. 北京: 地质出版社.

    [82]

    黄世杰. 2006. 略谈深源铀成矿与深部找矿问题[J]. 铀矿地质, 22(2): 70−75. doi: 10.3969/j.issn.1000-0658.2006.02.002

    [83]

    姜耀辉, 蒋少涌, 凌洪飞. 2004. 地幔流体与铀成矿作用[J]. 地学前缘, 11(2): 491−499. doi: 10.3321/j.issn:1005-2321.2004.02.019

    [84]

    李子颖. 2006. 华南热点铀成矿作用[J]. 铀矿地质, 22(2): 65−69. doi: 10.3969/j.issn.1000-0658.2006.02.001

    [85]

    李子颖, 李秀珍, 林锦荣. 1999. 试论华南中新生代地幔柱构造、铀矿成矿作用及其找矿方向[J]. 铀矿地质, 15(1): 9−17. doi: 10.3969/j.issn.1000-0658.1999.01.002

    [86]

    毛景文, 李晓峰, 张荣华, 王义天, 赫英. 2005. 深部流体成矿系统[M]. 北京: 中国大地出版社.

    [87]

    庞雅庆, 范洪海, 高飞, 吴建勇, 谢小占. 2019. 粤北诸广南部铀矿田流体包裹体的氦氩同位素组成及成矿流体来源示踪[J]. 岩石学报, 35(9): 2765−2773. doi: 10.18654/1000-0569/2019.09.09

    [88]

    田建吉, 张国全, 商朋强, 齐有强. 2019. 大茶园铀矿床成矿物质来源: C−O和Sr−Nd同位素证据[J]. 岩石学报, 35(9): 2817−2829. doi: 10.18654/1000-0569/2019.09.13

    [89]

    王正其, 李子颖. 2007. 幔源铀成矿作用探讨[J]. 地质论评, 53(5): 608−615. doi: 10.3321/j.issn:0371-5736.2007.05.005

    [90]

    吴德海, 夏菲, 潘家永, 刘国奇, 黄国龙, 刘文泉, 吴建勇. 2019. 粤北棉花坑铀矿床热液蚀变与物质迁移研究[J]. 岩石学报, 35(9): 2745−2764. doi: 10.18654/1000-0569/2019.09.08

    [91]

    解广轰. 1977. 有关斜长岩的一些问题[J]. 地质地球化学, (6): 1−11.

    [92]

    解广轰. 1980. 大庙斜长岩杂岩体的岩石学特征[J]. 地球化学, (3): 263−278. doi: 10.3321/j.issn:0379-1726.1980.03.006

    [93]

    解广轰. 2005. 大庙斜长岩和密云环斑花岗岩的岩石学和地球化学[M]. 北京: 科学出版社.

    [94]

    杨振升, 徐仲元, 刘正宏, 黄道玲. 2008. 高级变质岩区地质调查与综合研究方法[M]. 北京: 地质出版社.

    [95]

    翟裕生. 1965. 某斜长岩的岩石特征及成因[J]. 地质论评, 23(3): 186−195. doi: 10.3321/j.issn:0371-5736.1965.03.004

    [96]

    章邦桐, 凌洪飞, 吴俊奇. 2014. 赣南6722铀矿床钛铀矿−晶质铀矿−铀石−沥青铀矿显微共生组合的厘定及成因意义[J]. 地质论评, 60(6): 1418−1424.

    [97]

    钟富道, 解广轰. 1978. 斜长岩事件年龄及其地质意义[J]. 地球化学, (3): 202−208. doi: 10.3321/j.issn:0379-1726.1978.03.005

  • 加载中

(14)

(10)

计量
  • 文章访问数:  521
  • PDF下载数:  62
  • 施引文献:  0
出版历程
收稿日期:  2020-04-09
修回日期:  2020-07-25
刊出日期:  2024-05-25

目录