Geochemical characteristics of sandstone (mudstone) of Saihan Formation in Erennur Sag, Inner Mongolia and their constraints on uranium mineralization
-
摘要:
研究目的 查明二连盆地额仁淖尔凹陷赛汉组含铀砂(泥)岩的岩石矿物及地球化学特征,探讨铀成矿作用。
研究方法 包括野外地质编录、偏光显微镜、电子探针能谱分析、主微元素、环境地球化学及铀的价态分析等。
研究结果 (1)铀矿物以吸附态和独立铀矿物的形式存在,常与炭屑和黄铁矿共(伴)生并发现闪锌矿。(2)矿石具有高C有、S、CO2的特征,泥岩U6+/U4+平均为1.01,砂岩U6+/U4+平均为0.57。(3)砂(泥)岩的CIA值为50.83~66.34,稀土元素特征与蚀源区花岗岩一致,主微量元素特征均显示存在明显的后期沉积−成岩阶段的水岩作用。
结论 (1)海西期花岗岩是赛汉组砂(泥)岩的主要物源,沉积环境为半干旱—半湿润古气候。(2)吸附作用和氧化还原作用是研究区铀富集的主要机理,泥岩型铀矿以吸附作用为主,砂岩型铀矿以氧化还原作用为主。(3)深部流体可能参与了成矿作用。
Abstract:This paper is the result of mineral exploration engineering.
Objective This study aims to ascertain the petrological, mineralogical, and geochemistrial signatures of the sandstone (mudstone) of the uranium bearing target layer in Erennur Sag, Erlian Basin, and to discuss uranium mineralization.
Methods Research methods include field geological cataloging, polarized light microscopy, electron probe spectroscopy analysis, major trace elements, environmental geochemistry, and uranium valence analysis.
Results (1) Uranium minerals exist in the form of adsorbed and independent uranium minerals, often co-existing (associated) with carbon chips and pyrite, with occasionally with presence of sphalerite. (2) The ore exhibits the characteristics of high organic carbon, S and CO2. The average U6+/U4+ of mudstone is 1.01, and the average U6+/U4+ of sandstone is 0.57. (3) The CIA value of sandstone (mudstone) is 50.83 to 66.34. The characteristics of rare earth elements are consistent with those of granite in the erosion source area, the characteristics of main and trace elements all show that there is obvious water−rock interaction in the late sedimentation−diagenesis stage.
Conclusions The following conclusions can be drawn: (1) The Hercynian granite is the dominant source of the sandstone (mudstone) of the Saihan Formation. The sedimentary environment is a semi−arid−semi−humid paleo−climate. (2) Adsorption and oxidation−reduction are the main mechanisms of uranium enrichment in the study area. Mudstone−type uranium enrichment is mainly in the form of adsorption, while sandstone−type uranium enrichment is mainly in the form of oxidation−reduction. (3)The deep fluid may have participated in the mineralization.
-
-
图 4 研究区赛汉组砂(泥)岩稀土配分模式图(北美页岩标准化数据来自于Haskin and Haskin, 1966)
Figure 4.
图 6 研究区赛汉组砂(泥)岩A−CN−K图解(底图据Fedo et al., 1995)
Figure 6.
图 8 额仁淖尔凹陷赛汉组砂(泥)岩主量元素构造环境判别图解(底图据Roser and Korsch,1986)
Figure 8.
表 1 额仁淖尔凹陷砂(泥)岩主量元素测试结果(%)
Table 1. Results of major elements of sandstone (mudstone) in Erennur Sag (%)
样品编号 铀矿化砂岩 铀矿化泥岩 氧化砂岩 原生砂岩 原生泥岩 N463-319-U21 N22-139-U9 N85-3-U5 N6-13-U8 N463-319-U22 N6-13-U12 N85X-U5 N399-159-U9 N85X-U3 351-U4 N80-U3 N6-13-H2 N85-4-H4 N6-13-H1 N85-1-H2 N85-1-H1 N85-1-H3 N85-5-H1 N6-13-U16 N6-13-U10 N6-13-U11 N80-U2 SiO2 67.87 63.11 66.94 60.76 68.16 60.75 65.59 62.05 64.57 62.41 58.39 69.44 71.96 69.3 71.43 79.06 73.95 71.69 55.12 61.85 57.39 60.91 Al2O3 15.15 16.74 17.24 18.23 13.63 17 13.2 14.38 13.76 16.17 14.96 14.85 13.51 15.69 14.53 10.58 13.71 14.25 14.58 14.2 18.69 14.98 MgO 0.2 1.26 0.63 1.73 0.43 1.57 0.62 0.97 0.65 1.6 2.01 0.44 0.39 0.48 0.47 0.31 0.24 0.38 1.48 0.99 1.95 2.07 CaO 4.45 0.82 0.85 0.86 2.4 1.6 0.45 0.76 0.48 0.86 1.27 1.22 0.77 0.87 0.81 0.54 0.87 0.63 5.53 3.3 1 1.22 Na2O 2.38 3.44 2.8 2.39 3.36 2.46 2.03 2.79 2.09 2.97 1.75 2.72 2.57 2.88 2.53 1.55 3.17 2.06 2 2.56 2.32 1.96 K2O 3.28 3.62 3.14 3.7 3.55 3.52 3.78 3.68 3.91 3.53 3.76 4.3 4.24 4.41 3.8 3.77 3.88 3.84 3 3.8 3.5 3.59 P2O5 0.05 0.12 0.06 0.15 0.07 0.16 0.05 0.14 0.06 0.17 0.39 0.06 0.07 0.05 0.03 0.02 0.09 0.03 0.43 0.15 0.13 0.29 MnO 0.08 0.06 0.02 0.03 0.05 0.1 0.03 0.02 0.02 0.03 0.04 0.04 0.02 0.03 0.01 0.01 0.01 0.01 0.74 0.22 0.36 0.05 TiO2 0.23 0.74 0.5 0.73 0.31 0.65 0.43 0.44 0.49 0.61 0.65 0.45 0.4 0.41 0.32 0.2 0.19 0.34 0.54 0.41 0.69 0.65 FeO 0.93 2.28 1.55 1.04 2.03 1.22 2.02 1.26 1.34 2.74 3.8 2.48 2.03 4.03 1.01 Fe2O3 1.44 2.18 2.36 5.82 0.98 5.38 0.89 1.67 0.98 1.94 2.53 2.45 3.1 2.55 2.82 1.62 1.75 2.16 5.07 4.39 6.83 2.73 TFe2O3 2.47 4.71 2.14 3.15 3.03 3.22 3.34 4.02 4.01 3.85 SO3 0.59 0.25 1.3 0.71 1.74 1.04 0.67 1.57 2.04 LOI 3.63 4.44 0.53 5.56 3.99 7.09 9.38 9.41 9.27 7.03 10.55 3.05 0.06 3.06 0.31 0.06 0.32 0.13 11.09 7.3 7.17 7.75 H3O+ 3 5.42 4.64 2.4 1.82 2.58 2.42 1.74 1.32 3.18 5.3 3.72 6.08 H2O 6.61 0.385 0.72 0.46 0.37 0.64 表 2 额仁淖尔凹陷砂(泥)岩稀土元素测试结果(10−6)
Table 2. Results of REE in sandstone (mudstone) in Erennur Sag (10−6)
样品编号 氧化砂岩 铀矿化泥岩 铀矿化砂岩 原生砂岩 原生泥岩 N6-13-H1 N6-13-H2 N85-4-H4 N6-13-U12 N85X-U3 N85X-U5 N399-159-U9 N80-U3 N22-139-U9 N351-U4 N463-319-U21 N463-319-U22 N85-3-U5 N6-13-U8 N399-159-U6 N80-U2 N6-13-U16 N6-13-U11 N85-1-H1 N85-1-H2 N85-3-U1 N85-3-U4 N22-55X-H1 La 41.5 51.5 35.4 58.9 38.4 29.2 31.8 44.6 56.4 45.7 24.9 28.9 47.3 70.8 45.1 46.4 56.9 75.6 19.5 42.5 27.1 19.8 61.7 Ce 77.1 97.5 76.2 109 72 54.6 50.1 91.6 105 86.6 45.8 70 91.1 129 85.4 93.1 106 139 42.3 84.2 49.8 36.3 116 Pr 9.48 11.6 6.94 12.9 7.73 5.63 5.74 9.87 11.7 9.61 4.76 8.38 12 17 9.3 10 13 15.6 2.91 8.19 6.77 4.8 14.9 Nd 31.5 37.8 24.5 42.5 24.8 17.5 19.1 34.2 37.7 32.4 16 27.4 38.1 55.4 30.2 34.9 42.6 50.8 14.4 27.9 21.2 15.5 50.3 Sm 5.65 6.66 3.89 7.07 3.79 2.85 3.96 6.7 6.53 6.5 3.29 4.41 6.05 10.5 5.57 6.75 7.78 9.09 2.27 4.74 3.29 2.51 8.45 Eu 1.33 1.24 1 1.49 0.68 0.62 0.67 1.16 1.22 1.04 0.74 0.73 1.4 2.33 0.95 1.15 1.66 1.86 0.66 1.07 0.9 0.8 1.71 Gd 5.71 6.3 3.87 6.62 3.26 2.37 3.77 5.84 6.05 5.78 2.94 3.94 6.03 11.2 4.84 5.85 7.93 8.64 2.06 4.5 3.19 2.6 8.12 Tb 0.93 0.93 0.54 0.99 0.31 0.26 0.46 0.74 0.82 0.73 0.38 0.47 0.96 1.81 0.61 0.72 1.15 1.24 0.34 0.63 0.46 0.43 1.21 Dy 4.66 4.47 2.37 4.8 1.63 1.41 2.98 4.68 5.39 4.58 2.49 2.6 5.06 9.38 3.75 4.52 5.68 5.45 1.54 2.69 2.32 2.41 5.9 Ho 0.94 0.9 0.49 0.99 0.26 0.23 0.5 0.87 1.02 0.79 0.43 0.46 0.96 1.94 0.67 0.78 1.2 1.1 0.32 0.52 0.42 0.49 1.17 Er 2.9 2.71 1.45 2.93 0.78 0.69 1.51 2.63 2.86 2.4 1.25 1.38 2.85 5.87 1.97 2.45 3.33 3.37 0.97 1.48 1.27 1.46 3.7 Tm 0.42 0.37 0.25 0.42 0.1 0.1 0.23 0.37 0.41 0.34 0.18 0.2 0.44 0.75 0.3 0.35 0.46 0.44 0.15 0.23 0.2 0.23 0.52 Yb 2.48 2.27 1.6 2.38 0.83 0.68 1.46 2.62 2.77 2.49 1.31 1.4 3.01 4.28 2.29 2.46 2.8 2.67 1 1.41 1.45 1.53 3.22 Lu 0.39 0.4 0.24 0.42 0.11 0.096 0.22 0.35 0.39 0.35 0.17 0.19 0.44 0.72 0.34 0.32 0.46 0.44 0.16 0.22 0.22 0.23 0.55 Y 24.1 23.6 12.5 23.4 8.41 7.17 19.3 30.5 36.1 28.8 15.6 17.3 27.9 47.2 23.9 26.3 27 26.7 8.74 14.2 16.7 21.1 30 ΣREE 184.99 224.65 158.74 251.41 154.68 116.24 122.50 206.23 238.26 199.31 104.64 150.46 215.70 320.98 191.29 209.75 250.95 315.30 88.58 180.28 118.59 89.09 277.45 LREE 166.56 206.30 147.93 231.86 147.40 110.40 111.37 188.13 218.55 181.85 95.49 139.82 195.95 285.03 176.52 192.30 227.94 291.95 82.04 168.60 109.06 79.71 253.06 HREE 18.43 18.35 10.81 19.55 7.28 5.84 11.13 18.10 19.71 17.46 9.15 10.64 19.75 35.95 14.77 17.45 23.01 23.35 6.54 11.68 9.53 9.38 24.39 LREE/HREE 9.04 11.24 13.68 11.86 20.25 18.92 10.01 10.39 11.09 10.42 10.44 13.14 9.92 7.93 11.95 11.02 9.91 12.50 12.54 14.43 11.44 8.50 10.38 La/Yb) N 1.58 2.14 2.09 2.33 4.36 4.05 2.05 1.61 1.92 1.73 1.79 1.95 1.48 1.56 1.86 1.78 1.92 2.67 1.84 2.84 1.76 1.22 1.81 δEu 1.10 0.90 1.21 1.02 0.91 1.12 0.81 0.87 0.91 0.80 1.12 0.82 1.09 1.01 0.86 0.86 0.99 0.99 1.43 1.09 1.30 1.47 0.97 δCe 0.92 0.95 1.15 0.94 0.99 1.01 0.88 1.04 0.97 0.98 1.00 1.07 0.91 0.88 0.99 1.03 0.92 0.96 1.33 1.07 0.87 0.88 0.91 表 3 额仁淖尔凹陷砂(泥)岩伴生元素地球化学测试结果(10−6)
Table 3. Geochemical test results of associated elements of sandstone (mudstone) in Erennur Sag (10−6)
样品编号 原生砂(泥)岩 铀矿化砂岩 铀矿化泥岩 N6-13-U13 N6-13-U15 N85-3-U4 N85-4-U2 N6-13-U9 N22-55X-U2 N6-13-U10 N6-13-U6 N85-3-U3 N80-U2 N399-159-U6 N351-U3 N463-319-U21 N22-139-U9 N85-3-U5 N6-13-U8 N463-319-U22 N85-4-U7 N85X-U3 N85X-U5 N399-159-U9 N80-U3 N6-13-U11 N351-U4 U 7.79 12.2 13.2 15.6 21.3 25.5 27.2 38.8 42.3 42.6 46.9 49.9 120 142 344 558 942 1100 102 230 136 114 364 108 V 3.41 10.5 5.59 47.9 6.76 11.5 12.4 9.63 11.8 90.6 53.4 70.4 17.8 75.8 7.03 14.7 23 58.5 59.3 54.5 56.2 158 10.5 55.9 Ga 9.82 16.6 15.2 22.2 15.5 20.9 23.3 17.8 32.8 20.8 27.5 25.4 16.5 24.5 27.8 24.5 19.3 25.2 20.6 19 22.8 21.5 18.5 24.1 Sc 25.3 57.2 15 12.1 41.7 61.5 80.6 54.8 104 11.3 7.81 10.2 2.46 10.7 72 88 3.69 14.9 7.37 6.17 6.78 13.2 65.6 9.58 Mo 1.89 3.6 1.18 1.77 3.65 1.1 0.86 0.51 1.64 3.45 13.5 2.53 3.83 1.52 2.05 1.35 6.64 230 1079 1040 33.5 4.04 1.39 2.71 Re 0.005 0.095 0.11 0.17 0.089 0.12 0.19 0.018 0.089 0.089 0.089 0.13 0.2 Ge 0.17 0.35 2.8 0.96 0.28 1.23 0.74 1.04 4.45 1.18 1.29 4.5 2.48 2.01 6.32 1.47 5.14 8.1 16.1 22.5 0.62 1.19 0.41 6.89 Se 1 1.35 0.13 0.16 1.36 0.19 1.36 1.07 11.1 0.49 0.17 21.6 3.85 0.13 2.43 0.31 1.7 0.18 0.58 0.51 0.83 3.1 1.5 31.9 表 4 额仁淖尔凹陷砂(泥)岩环境地球化学测试结果
Table 4. Environmental geochemical test results of sandstone (mudstone) in Erennur Sag
样品编号 泥岩型铀矿石 砂岩型铀矿石 氧化砂岩 原生砂岩 原生泥岩 N351-U8 N463-319-U5 N85X-U5 N351-U18 N85X-U4 N85X-U1 N463-319-U22 N463-319-U11 N463-319-U19 N85X-U7 N463-319-U29 N351-U16 N463-319-H15 N22-139-U6 N463-319-U14 N463-319-U26 N85X-H9 N85X-H12 N80-U1 N85-1-U1 N85-1-U9 N80-H1 N85X-U8 U 179 204 230 1220 2577 571 942 155 156 239 287 4.72 6.73 10.1 11.3 11.8 2.78 4.52 6.1 4.18 12.1 12.3 9.29 Th 30.7 32.4 16.2 29.6 18.6 23 16.6 17.2 20.6 4.83 39.6 27.5 24.7 13.1 8.21 31.2 9 27 25.6 13.2 Ra 4.33 4.81 22.4 13.8 58.2 15.5 18 3.62 3.15 5.27 9.66 0.74 0.803 0.649 0.438 1.46 0.14 0.54 0.689 0.616 K 2.71 2.81 3.14 2.51 2.9 3.19 2.98 2.75 3.08 2.94 2.87 2.85 3.24 2.95 2.72 2.74 3.26 2.75 3.23 3.41 C有 1.04 0.04 3.33 0.9 1.6 1.49 0.39 0.04 0.03 0.05 0.26 0.1 0.05 0.15 0.06 0.03 0.07 0.44 0.06 0.077 1.11 0.19 0.49 CO2 0.45 0.54 0.11 0.61 0.05 0.07 1.41 2.65 0.37 8.51 0.33 0.29 0.29 0.26 0.4 0.21 0.13 0.17 0.38 <0.50 <0.50 1.73 0.07 S全 0.4 0.94 0.45 0.092 1.08 0.56 0.35 0.43 0.52 1.64 0.48 0.016 0.067 0.071 0.53 0.39 0.014 0.02 0.11 0.13 0.065 0.4 0.17 Fe2+ 1.11 0.79 0.93 1.22 1.34 0.74 0.47 0.39 0.52 0.23 0.54 0.39 0.61 0.77 0.43 0.32 0.15 0.25 0.29 0.5 0.5 0.69 0.2 Fe3+ 1.99 2.53 0.78 2.36 0.9 1.3 0.85 1.88 1.44 2.11 1.8 2.29 1.19 1.68 1.62 1.51 1.97 1.18 3.62 1.09 2 2.12 0.78 Fe3+/Fe2+ 1.8 3.2 0.8 1.9 0.7 1.8 1.8 4.8 2.8 9.2 3.3 5.9 2 2.2 3.8 4.7 13.1 4.7 12.5 2.2 4 3.1 3.9 S2- 72.84 49.1 10.64 13.91 52.7 1.96 18 33.55 15.71 43.38 46.98 4.58 9.49 18.99 17.02 15.22 1.31 4.18 11.78 37.5 21.5 30.33 8.51 Eh值 682 700 645 695 643 656 700 715 708 701 699 727 715 708 701 708 731 705 712 712 668 694 691 ∆Eh值 64 46 103 51 103 90 46 31 38 45 47 19 31 38 45 38 15 39 34 32 75 52 55 pH 8.8 9.65 6.85 9.1 5.9 7.7 9.4 9.86 9.76 8.5 9.68 9.16 9.61 9.4 9.77 9.8 9.5 9.7 9.45 9.22 9.03 9.4 8.8 表 5 额仁淖尔凹陷砂(泥)岩价态U测试结果(10−6)
Table 5. Valence U test results of sandstone (mudstone) in Erennur Sag(10−6)
岩性 样品编号 U U6+ U4+ U6+/U4+ 泥岩 ZKN85-1-U9 12.1 6.26 5.83 1.07 ZKN85-1-U7 23 10.6 12.4 0.85 ZKN85-1-U3 51 23.1 28 0.83 YZK399-159-U8 110 52.9 56.8 0.93 ZK淖80-U7 122 72.2 49.8 1.45 ZK淖85X-U6 187 100 87 1.15 ZK淖80-U4 350 65.2 285 0.23 砂岩 ZK淖85X-U1 571 329 242 1.36 YZK399-159-U7 624 417 207 2.01 ZK淖85X-U4 2577 512 2065 0.25 ZK351-U11 55.5 19.8 35.7 0.55 YZK463-319-U27 66.8 16.3 50.5 0.32 YZK463-319-U22 942 328 614 0.53 YZK463-319-U21 120 65.2 54.8 1.19 ZK淖22-139-U2 154 40 114 0.35 ZK淖22-139-U3 118 38.7 79.3 0.49 -
[1] Bhatia M R. 1983. Plate tectonics and geochemical composition of sandstones[J]. The Journal of Geology, 91(6): 611−627. doi: 10.1086/628815
[2] Bhatia M R. 1985. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks. Provenance and tectonic control[J]. Sedimentary Geology, 45(1/2): 97−113. doi: 10.1016/0037-0738(85)90025-9
[3] Bhatia M R, Crook K A W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins[J]. Contributions to Mineralogy and Petrology, 92(2): 181−193. doi: 10.1007/BF00375292
[4] Charles N, Augier R, Gumiaux C, Monié P, Chen Y, Faure M, Zhu R. 2013. Timing, duration and role of magmatism in wide rift systems: Insights from the Jiaodong Peninsula (China, East Asia)[J]. Gondwana Research, 24: 412−428. doi: 10.1016/j.gr.2012.10.011
[5] Chen Junqiang, Zeng Wei, Wang Jiaying, Ma Liang, Yang Jun. 2021. Analysis of supply and demand situation of uranium resources in the world and China[J]. North China Geology, 44(2): 25−34 (in Chinese with English abstract).
[6] Chen Lulu, Tang Chao, Li Jianguo, Zhong Yanqiu, Gu Shefeng, Wei Jialin, Xiao Peng, Xu Zenglian, Zeng Hui, Liu Huajian, Chen Yin. 2018. Petrology characteristics of the uranium−bearing layer of Sifantai Formation in Daqing placanticline of Songliao basin and their geological implications[J]. Geological Survey and Research, 161(1): 33−39 (in Chinese with English abstract).
[7] Chen Zhaobo, Chen Zuyi, Li Shengxiang. 2003. Comparison of metallogenic geological characteristics between interlayer oxidation zone sandstone type and paleovalley sandstone type uranium deposits[J]. Word Nuclear Geoscience, 20(1): 1−10 (in Chinese with English abstract).
[8] Cheng Yinhang, Jin Ruoshi, Cuney M, Petrov V A, Miao Peisen. 2024. The strata constrainton large scale sandstone-type uranium mineralization in Meso-Cenozoic basins, northern China[J]. Acta Geologica Sinica, 1–25. https://doi.org/10.19762/j.cnki.dizhixuebao.2023299 (in Chinese with English abstract).
[9] Ding Bo, Liu Hongxu, Zhang Bin, Yi Chao, Liu Hongjun, Wang Gui, Ren Zhiyong. 2020. The formation mechanism of Tabular orebody of sandstone−type uranium in the northern Ordos Basin: Constraints on the study of kaolinite content from different zones of ore−bearing sandstone[J]. Acta Geologica Sinica, 94(10): 80−88 (in Chinese with English abstract).
[10] Fan Xiujun, Nie Fengjun, Chen Yiping, Wang Wei. 2008. Discussion on age and paleogeographical environment of ore bearing strata for sandstone type uranium deposits in Bayanwula area, Erlian basin[J]. Uranium Geology, 24(3): 150−154 (in Chinese with English abstract).
[11] Fedo C M, Nesbitt H W, Young G. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance[J]. Geology, 23(10): 921−921. doi: 10.1130/0091-7613(1995)023<0921:UTEOPM>2.3.CO;2
[12] Feng Lianjun, Chu Xuelei, Zhang Tonggang, Huang Jing. 2006. Liantuo sandstone: Sedimentary record of climate cooling before the great glacial age in Nanhua[J]. Acta Petrologica Sinica, (9): 141−147 (in Chinese with English abstract).
[13] Feng Xiaoxi, Teng Xueming, Chen Lulu, Chen Yin, Zhao Hualei, Zhang Tianfu. 2023. Identification of provenance on uranium-bearing rocks from the Zhiluo Formation in the Nanlinggou uranium deposit, northern Ordos Basin[J]. Geology in China, 50(6): 1765−1787(in Chinese with English abstract).
[14] Floyd P A, Leveridge B E. 1987. Tectonic environment of the Devonian Gramscatho basin, south Comwall: Framework mode and geochemical evidence from Turbiditic sandstones[J]. Journal of the Geological Society, 144(4): 531−542.
[15] Guo Hongwei. 2014. Study on Metallogenic Characteristics and Metallogenic Law of Bayan Wula Uranium Deposit, Inner Mongolia[D]. Beijing: China University of Geosciences (Beijing) (in Chinese).
[16] Haskin M A, Haskin L A. 1966. Rare earths in European shales: A redetermination[J]. Science, 154: 507−509. doi: 10.1126/science.154.3748.507
[17] Hu Junjie, Ma Yinsheng, Wu Yi, Li Zongxing, Peng Bo, Wei Xiaojie. 2019. Jurassic palaeoclimate evolution of the Qaidam Basin: Evidence from chemical weathering analyses[J]. Geological Journal of China Universities, 25(4): 548−557 (in Chinese with English abstract).
[18] Hu Junjun, Nie Fengjun, Deng Juzhi, Kang Shihu. 2011. Study on occurrence state of sandstone type uranium deposit in Saihan Gaobi area, Erlian Basin[J]. Mining Technology, 11(2): 35−37 (in Chinese with English abstract).
[19] Jaireth S, McKay A, Lambert I. 2008. Association of large sandstone uranium deposits with hydrocarbons[J]. AusGeo News, 89: 1−6.
[20] Jaireth S, Roach I C, Bastrakov E, Liu S F. 2015. Basin−related uranium mineral systems in Australia: A review of critical features[J]. Ore Geology Reviews, 76: 360−394.
[21] Jiang Zhe, Han Xiaozhong, Hu Hang, Wu Zhaojian, Li Zinan, Lai Qiang, Guo Peng. 2020. Geological characteristics and ore−forming process of the engeriyin large sandstone−type uranium deposit in the manite Sag, Erlian Basin[J]. Geotectonica et Metallogenia, 44(4): 184−195 (in Chinese with English abstract).
[22] Jiao Guihao, Wang Tonghe, Xing Housong. 2003. Tectonic Evolution and Oil & Gas in the Erlian Basin[M]. Beijing: Petroleum Industry Press.
[23] Jin R S, Feng X X, Teng X M, Nie F J, Cao H Y, Hou H Q, Liu H X, Miao P S, Zhao H L, Chen L L, Zhu Q, Zhou X X. 2020. Genesis of green sandstone/mudstone from Middle Jurassic Zhiluo Formation in the Dongsheng Uranium orefield, Ordos basin and its enlightenment for uranium mineralization[J]. China Geology, 3(1): 52−66. doi: 10.31035/cg2020002
[24] Li Huaming, Li Ling, Yang Jianxin. 2015. Grain size characteristics of clasts in the upper Saihan Formation of Bayan Wula uranium deposit, Inner Mongolia[J]. Geological Review, 61(S1): 333−334 (in Chinese with English abstract).
[25] Li Xide, Liu Jungang. 2020. Study on weathering feature of Wejing Pluton in Erlian Basin, Inner Mongolia[J]. Uranium Geology, 36(5): 14−23 (in Chinese with English abstract).
[26] Li Yuexiang, Yu Jinshui, Qin Mingkuan, Chen Daisheng, Cao Jianying, Wei Sanyuan. 2009. Exploration orientation of leachable sandstone type uranium deposit in Erlian basin[J]. Uranium Geology, 25(6): 20−25 (in Chinese with English abstract).
[27] Li Ziying, Chen Anping, Fang Xiheng, Ou Guangxi, Xia Yuliang, Sun Ye. 2010. Origin and superposition metallogenic model of the sandstone−type uranium deposit in the northeastern Ordos basin, China[J]. Acta Geologica Sinica, 82(4): 745−749.
[28] Liu Dameng, Yang Qi, Zhou Chunguang, Tang Dazhen, Kang Xidong. 1999. Occurrence and geological genesis of Pyrites in Late Paleozoic coals in North China[J]. Geochimica, 28(4): 340−350 (in Chinese with English abstract).
[29] Liu Hanbin, Xia Yuliang, Lin Jinrong, Fan Guang. 2004. Isotope geology of the sandstone type uranium deposit in Turpan−Hami Basin[J]. Acta Geoscientica Sinica, 25(2): 196−198 (in Chinese with English abstract).
[30] Liu Jinhui, Sun Zhanxue. 2004. A new method to determine the position of sandstone type uranium ore−body−Water rock system Eh−pH method[J]. Journal of Jilin University(Earth Science Edition ), 34(1): 44−48 (in Chinese with English abstract).
[31] Liu Wusheng, Kang Shihu, Jia Licheng, Shi Qingping, Peng Cong. 2013. Characteristics of paleo−valley sandstone type uranium mineralization in the middle of Erlian Basin[J]. Uranium Geology, 29(6): 328−335 (in Chinese with English abstract).
[32] Liu Wusheng, Kang Shihu, Zhao Xingqi, Shi Qingping, Zhang Zinan. 2015. Metallogenic mechanism and prospecting direction of paleochannel sandstone type uranium deposit in the middle of Erlian Basin[J]. Uranium Geology, 31(1): 40−51 (in Chinese with English abstract).
[33] Liu Wusheng, Zhao Xingqi, Kang Shihu, Shi Qingping, Zhang Zinan. 2018. Inversion structure and its relationship with sandstone type uranium metallization in Erlian Basin[J]. Uranium Geology, 34(2): 81−89 (in Chinese with English abstract).
[34] Liu Xiaoxue, Tang Chao, Sima Xianzhang, Zhu Qiang, Li Guangyao, Chen Yin, Chen Lulu. 2016. Major elements geochemical characteristics of sandstone−type uranium deposit in north−east Ordos basin and its geological implactions[J]. Geological Survey and Research, 39(3): 169−176 (in Chinese with English abstract).
[35] Lu Chao, Jiao Yangquan, Peng Yunbiao, Yang Jianxin, Chen Fazheng. 2016. Effect of the episodic rifting in the western Manite Sag in Erlian Basin on sandstone−type uranium mineralization[J]. Acta Geologica Sinica, 90(12): 3483−3491 (in Chinese with English abstract).
[36] Lu Chao, Peng Yunbiao, Liu Xinyang, Jiao Yangquan, Yang Jianxin, Chen Fazheng, Shen Kefeng, Li Ronglin. 2013. Sedimentary backgrounds of sandstone type uranium deposits in Western Manite Sag of Erlian Basin[J]. Uranium Geology, 29(6): 336−343 (in Chinese with English abstract).
[37] Lu Chao. 2019. Tectonic Ore Controlling Mechanism and Metallogenic Model of Bayanwula Uranium Ore Field in Erlian Basin[D]. Wuhan: China University of Geosciences (in Chinese with English abstract).
[38] Luo Yi, He Zhongbo, Ma Hanfeng, Sun Xiang. 2012. Metallogenic characteristics of Qianjiadian sandstone uranium deposit in Songliao basin[J]. Mineral Deposits, 31(2): 391−400 (in Chinese with English abstract).
[39] Mao Shidong, Yang Rongsheng, Qin Yan, Guo Junhua. 2009. Characteristics of gold−bearing mineral and occurrence of gold in the Yangshan gold feld, Gansu Province[J]. Acta Petrologica Sinica, 25(11): 2776−2790 (in Chinese with English abstract).
[40] McLennan S M, Hemming S R, Taylor S R, Eriksson K A. 1995. Early Proterozoic crustal evolution: Geochemical and Nd Pb isotopic evidence from metasedimentary rocks, southwestern North America[J]. Geochimica et Cosmochimica Acta, 59(6): 1153−1177. doi: 10.1016/0016-7037(95)00032-U
[41] McLennan S M, Taylor S R, McCulloch M T, Maynard J B. 1990. Geochemical and Nd−Sr isotopic composition of deep−sea turbidites: Crustal evolution and plate tectonic associations[J]. Geochimica et Cosmochimica Acta, 54(7): 2015−2050. doi: 10.1016/0016-7037(90)90269-Q
[42] Miao Peisen, Chen Yin, Cheng Yinhang, Zhao Hualei, Chen Lulu, Li Jianguo, Jin Ruoshi, Tang Chao, Yu Reng’an, Yang Tao, Hu Yongxing. 2020. New deep exploration discoveries of sandstone−type Uranium deposits in North China[J]. Geotectonica et Metallogenia, 44(4): 563−575 (in Chinese with English abstract).
[43] Min Maozhong, Peng Xinjian, Wang Guo, Yin Jianhua. 2006. Existing state of uranium in ore from interlayer oxidation zone sandstone−hosted uranium deposits, NW China[J]. Uranium Geology, 22(4): 193−201 (in Chinese with English abstract).
[44] Nesbitt H W, Young G M. 1982. Early proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature, 299(5885): 715−717. doi: 10.1038/299715a0
[45] Nie Fengjun. 2010. Paleochannel Sandstone Type Uranium Deposit in Erlian Basin[M]. Beijing: Geological Publishing House(in Chinese).
[46] Nie Fengjun, Chen Anping, Hu Qinghua, Shen Kefeng, Qin Minkuan, Li Mangen, Li Meizhu. 2007. Discussion on the Early Cretaceous sandstone type uranium deposits, Erlian Basin, Inner Mongolia[J]. Journal of Stratigraphy, 31(3): 272−279 (in Chinese with English abstract).
[47] Nie Fengjun, Lin Shuangxing, Yan Zhaobin, Rao Minghui, Zhang Chengyong, Yan Yongjie. 2010. Hydrothermal mineralization of uranium in sandstone, Teguida, Niger[J]. Acta Geoscientica Sinica, 31(6): 819−831 (in Chinese with English abstract).
[48] Nie Fengjun, Yan Zhaoshan, Li Manyin, Peng Yunbiao, Xia Fei. 2019. Multi Type Uranium Deposit in Erlian Rift Basin[M]. Beijing: Geological Publishing House (in Chinese).
[49] Peng Yunbiao, Jiao Yangquan, Zhang Jindai, Kang Shihu. 2015. Synsedimentary Mudstone-Type Uranium Deposit – Analysis of the typical Nuheting super-large uranium deposit in the Erlian Basin [M]. Beijing: Geological Publishing House (in Chinese).
[50] Peng Yunbiao, Li Huaming, Li Ling, Kang Shihu. 2018. Influence of paleoclimate transition on the mineralization of sandstone−type uranium deposit: A case study of 2081 uranium deposit in the Erlian Basin, Inner Mongolia China[J]. Acta Minerailogica Sinica, 38(5): 490−498 (in Chinese with English abstract).
[51] Peng Yunbiao, Lu Chao. 2019. Metallogenic model of sandstone−type uranium deposits in the lower section of Saihantala Formation, Western Ulanchabu Depression, Erlian Basin[J]. Northwestern Geology, 52(3): 46−57 (in Chinese with English abstract).
[52] Qi Tianjiao, Li Xide, Liu Xu, Lü Yonghua, Xu Bixia. 2020. Geochemical characteristics of the hosting rocks in Manglai sandstone−type uranium deposit, Erlian Basin[J]. Uranium Geology, 36(5): 40−50 (in Chinese with English abstract).
[53] Ren J, Tamaki K, Li S, Zhang J. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas[J]. Tectonophysics, 344: 175−205. doi: 10.1016/S0040-1951(01)00271-2
[54] Ren Jianye, Li Sitian, Jiao Guihao. 1998. Extensional tectonic system of Erlian fault basin group and its deep background[J]. Earth Science—Journal of China University of Geosciences, 23(6): 567−572 (in Chinese with English abstract).
[55] Roser B P, Korsch R J. 1986. Determination of tectonic setting of sandstone−mudstone suites using SiO2 content and K2O/Na2O ratio[J]. Journal of Geology, 94(5): 635−650. doi: 10.1086/629071
[56] Sun S S, Mcdonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society of London Special Publications, 42: 313−345. doi: 10.1144/GSL.SP.1989.042.01.19
[57] Tang Chao, Xiao Peng, Wei Jialin, Xu Zenglian, Liu Huajian, Zhao Lijun. 2021. Geological and geochemical characteristics of uranium mineralization in Anding Formation in Zhidan Area, Ordos basin[J]. North China Geology, 44(2): 4−13.
[58] Taylor S R, McLennan S M. 1985. The continental crust: Its composition and evolution: An examination of the geochemical record preserved in sedimentary rocks[J]. Oxford: Blackwell Scientific Publications.
[59] Tong Bolin, Tang Dawei, Liu Bo. 2017. Paleovalley tectonic formation and uranium prospecting model in Wulanchabu sag, Erlian Basin[J]. Western Resources, (2): 21−25 (in Chinese).
[60] Wang Zhengbang. 2002. Current status and prospects of uranium geology developments of foreign in−situ leachable sandstone type uranium depoits[J]. Uanium Geology, 18(1): 9−21 (in Chinese with English abstract).
[61] Wei Sanyuan, Qin Mingkuan, Li Yuexiang, He Zhongbo, Chen Anping, Shen Kefeng, Cao Jianying. 2006. Tectono−sedimentary evolution of Erlian basin since Late Mesozoic and sandstone−hosted uranium metallogenesis[J]. Uranium Geology, 22(2): 76−82 (in Chinese with English abstract).
[62] Wen Sibo, Zhu Qiang, Cheng Yinhang. 2023. The northwestern boundary location on Langshan area of North China Craton and its tectonic significance[J]. North China Geology, 46(3): 1−11 (in Chinese with English abstract).
[63] Wu F Y, Sun D Y, Lin Q. 1999. Petrogenesis of the Phanerozoic granites and crustal growth in northeast China[J]. Acta Petrologica Sinica, 15(2): 181−189.
[64] Yu R G, Wang S B, Zhu Q, Si Q H, Teng X M, Liu X X, Liu H N, Tang Y X. 2021. Zircon U−Pb ages and provenance characteristic of sandstone from Zhiluo Formation and debating of formation background of uranium deposit in Huangling area, Ordos Basin, China[J]. China Geology, 4(1): 1−16.
[65] Zhang Bo, Li Jianguo, Miao Peisen, Zhao Long, Si Qinghong, Li Hongliang, Cao Minqiang, Zhu Qiang, Wei Jialin. 2021. The occurrence state and origin of uranium in Qianjiadian uranium deposit, Kailu Basin[J]. North China Geology, 44(2): 40−48 (in Chinese with English abstract).
[66] Zhang Guangrong, Nie Haikuan, Tang Xuan, Du Wei, Sun Chuanxiang, Chen Song. 2020. Pyrite type and its effect on shale gas accumulation: A case study of Wufeng−Longmaxi shale in Sichuan Basin and its periphery[J]. Petroleum Geology & Experiment, 42(3): 459−466 (in Chinese with English abstract).
[67] Zhang Jindai. 2015. Major Progress and Breakthrough in Uranium Exploration in China Since The Beginning of the New Century−Major Progress and Breakthrough in Uranium Exploration in China[M]. Beijing: Geological Publishing House, 3−19 (in Chinese).
[68] Zhang Tianfu, Sun Lixin, Zhang Yun. 2016. Geochemical characteristics of the Jurassic Yan'an and Zhiluo Formations in the northern margin of Ordos Basin and their paleoenvironmental implications[J]. Acta Geologica Sinica, 90(12): 3454−3472 (in Chinese with English abstract).
[69] Zhang Tianfu, Zhang Yun, Miao Peisen, Yu Reng’an, Li Jianguo, Jin Ruoshi, Sun Lixin. 2018. Study on the chemical index of alteration of the Middle and Late Jurassic Strata in the western margin of Ordos basin and its implications[J]. Geological Survey and Research, 41(4): 258−262, 279 (in Chinese with English abstract).
[70] Zhang Weijie, Li Shujing. 1998. Petrological characteristics and age of the Gejigeyin volcanic edifice on the western margin of the Abag basalt in the Xinlin Gol League, Inner Mongolia[J]. Regional Geology of China, 17(4): 25−29 (in Chinese with English abstract).
[71] Zhang Wendong, Liu Wusheng, Zhang Zinan, Shi Qingping, Liu Chiheng. 2020. Geochemical characteristics of Hadatu paleo channel sandstone type uranium deposit in Erlian Basin[J]. Journal of East China University of Technology (Natural Science), 152(4): 27−38 (in Chinese with English abstract).
[72] Zhao H L, Li J G, Xiao Z B, Miao P S, Si Q H, Chen L L, Yu R G, Chen Yin. 2021. Determination of formation age of the Pengyang sandstone−type uranium deposit in the Ordos Basin, China: Using in situ femtosecond LA−MC−ICP−MS method[J]. China Geology, 4(4): 2.
[73] Zhao Lijun, Liu Xiaoxue, Zhang Chao, Feng Ping, Si Dan. 2023. Analysis on the metallogenic conditions and prospecting direction of sandstone-type uranium deposits in Yuejin area northwestern margin of Qaidam Basin[J]. North China Geology, 46(3): 12−20 (in Chinese with English abstract).
[74] 陈军强, 曾威, 王佳营, 马亮, 杨君. 2021. 全球和我国铀资源供需形势分析[J]. 华北地质, 44(2): 25−34.
[75] 陈路路, 汤超, 李建国, 钟延秋, 谷社峰, 魏佳林, 肖鹏, 徐增连, 曾辉, 刘华建. 2018. 松辽盆地大庆长垣南端四方台组含铀砂岩岩石学特征及地质意义[J]. 地质调查与研究, 161(1): 33−39. doi: 10.3969/j.issn.1672-4135.2018.01.005
[76] 陈肇博, 陈祖伊, 李胜祥. 2003. 层间氧化带砂岩型与古河谷砂岩型铀矿成矿地质特征对比[J]. 世界核地质科学, 20(1): 1−10.
[77] 程银行, 金若时, Cuney M, Petrov V A, 苗培森. 2024. 中国北方盆地大规模铀成矿作用:地层篇[J]. 地质学报, 1–25. https://doi.org/10.19762/j.cnki.dizhixuebao.2023299.
[78] 丁波, 刘红旭, 张宾, 易超, 刘洪军, 王贵, 任志勇. 2020. 鄂尔多斯盆地北缘砂岩型铀矿板状矿体形成机制: 来自含矿层不同分带砂岩中高岭石含量研究的约束[J]. 地质学报, 94(10): 80−88.
[79] 凡秀君, 聂逢君, 陈益平, 王维. 2008. 二连盆地巴彦乌拉地区砂岩型铀矿含矿地层时代与古地理环境探讨[J]. 铀矿地质, 24(3): 150−154. doi: 10.3969/j.issn.1000-0658.2008.03.004
[80] 冯连君, 储雪蕾, 张同钢, 黄晶. 2006. 莲沱砂岩—南华大冰期前气候转冷的沉积记录[J]. 岩石学报, 22(9): 141−147. doi: 10.3321/j.issn:1000-0569.2006.09.015
[81] 冯晓曦, 滕雪明, 陈路路, 陈印, 赵华雷, 张天福. 2023. 鄂尔多斯盆地北部纳岭沟铀矿直罗组含铀岩系蚀源区识别[J]. 中国地质, 50(6): 1765−1787.
[82] 郭宏伟. 2014. 内蒙古巴彦乌拉铀矿床成矿特征及成矿规律研究[D]. 北京: 中国地质大学(北京).
[83] 胡俊杰, 马寅生, 吴祎, 李宗星, 彭博, 魏小洁. 2019. 柴达木盆地侏罗纪古气候演变过程: 来自化学风化特征的证据[J]. 高校地质学报, 25(4): 548−557.
[84] 胡珺珺, 聂逢君, 邓居智, 康世虎. 2011. 二连盆地赛汉高毕地区砂岩型铀矿赋存状态研究[J]. 采矿技术, 11(2): 35−37. doi: 10.3969/j.issn.1671-2900.2011.02.014
[85] 蒋喆, 韩效忠, 胡航, 吴兆剑, 李紫楠, 来强, 郭鹏. 2020. 二连盆地恩格日音砂岩型铀矿床地质特征及成矿作用初探[J]. 大地构造与成矿学, 44(4): 184−195.
[86] 焦贵浩, 王同和, 邢厚松. 2003. 二连裂谷构造演化与油气[M]. 北京: 石油工业出版社.
[87] 李华明, 李玲, 杨建新. 2015. 内蒙古巴彦乌拉铀矿床赛汉组上段碎屑物粒度特征研究[J]. 地质论评, 61(S1): 333−334.
[88] 李西得, 刘军港. 2020. 二连盆地卫镜岩体风化作用地球化学特征研究[J]. 铀矿地质, 36(5): 14−23. doi: 10.3969/j.issn.1000-0658.2020.05.002
[89] 李月湘, 于金水, 秦明宽, 陈戴生, 曹建英, 卫三元. 2009. 二连盆地可地浸砂岩型铀矿找矿方向[J]. 铀矿地质, 25(6): 20−25. doi: 10.3969/j.issn.1000-0658.2009.06.003
[90] 李子颖, 陈安平, 方锡珩, 欧光习, 夏毓亮, 孙晔. 2010. 鄂尔多斯盆地东北部砂岩型铀矿床成因和叠合成矿模式[J]. 世界核地质科学, 27(3): 177−177.
[91] 刘大锰, 杨起, 周春光, 汤达祯, 康西栋. 1999. 华北晚古生代煤中黄铁矿赋存特征与地质成因研究[J]. 地球化学, 28(4): 340−350. doi: 10.3321/j.issn:0379-1726.1999.04.004
[92] 刘汉彬, 夏毓亮, 林锦荣, 范光. 2004. 吐哈盆地砂岩型铀矿U−Pb同位素地质特征[J]. 地球学报, 25(2): 196−198. doi: 10.3321/j.issn:1006-3021.2004.02.019
[93] 刘金辉, 孙占学. 2004. 确定砂岩型铀矿体定位新方法—水岩体系Eh−pH法[J]. 吉林大学学报(地球科学版), 34(1): 44−48.
[94] 刘武生, 康世虎, 贾立城, 史清平, 彭聪. 2013. 二连盆地中部古河道砂岩型铀矿成矿特征[J]. 铀矿地质, 29(6): 328−335. doi: 10.3969/j.issn.1000-0658.2013.06.002
[95] 刘武生, 康世虎, 赵兴齐, 史清平, 张梓楠. 2015. 二连盆地中部古河道砂岩型铀矿成矿机理及找矿方向[J]. 铀矿地质, 31(1): 164−175.
[96] 刘武生, 赵兴齐, 康世虎, 史清平, 张梓楠. 2018. 二连盆地反转构造与砂岩型铀矿成矿作用[J]. 铀矿地质, 34(2): 81−89.
[97] 刘晓雪, 汤超, 司马献章, 朱强, 李光耀, 陈印, 陈路路. 2016. 鄂尔多斯盆地东北部砂岩型铀矿常量元素地球化学特征及地质意义[J]. 地质调查与研究, 39(3): 169−176. doi: 10.3969/j.issn.1672-4135.2016.03.002
[98] 鲁超, 焦养泉, 彭云彪, 杨建新, 陈法正. 2016. 二连盆地马尼特坳陷西部幕式裂陷作用对铀成矿的影响[J]. 地质学报, 90(12): 3483−3491. doi: 10.3969/j.issn.0001-5717.2016.12.015
[99] 鲁超, 彭云彪, 刘鑫扬, 焦养泉, 杨建新, 陈法正, 申科峰, 李荣林. 2013. 二连盆地马尼特坳陷西部砂岩型铀矿成矿的沉积学背景[J]. 铀矿地质, 29(6): 336−343. doi: 10.3969/j.issn.1000-0658.2013.06.003
[100] 鲁超. 2019. 二连盆地巴彦乌拉铀矿田构造控矿机制和成矿模式[D]. 武汉: 中国地质大学.
[101] 罗毅, 何中波, 马汉峰, 孙祥. 2012. 松辽盆地钱家店砂岩型铀矿成矿地质特征[J]. 矿床地质, 31(2): 391−400. doi: 10.3969/j.issn.0258-7106.2012.02.018
[102] 毛世东, 杨荣生, 秦艳, 郭俊华. 2009. 甘肃阳山金矿田载金矿物特征及金赋存状态研究[J]. 岩石学报, 25(11): 2776−2790.
[103] 苗培森, 陈印, 程银行, 赵华雷, 陈路路, 李建国, 金若时, 汤超, 俞礽安, 杨涛, 胡永兴. 2020. 中国北方砂岩型铀矿深部探测新发现及其意义[J]. 大地构造与成矿学, 44(4): 563−575.
[104] 闵茂中, 彭新建, 王果, 殷建华. 2006. 我国西北地区层间氧化带砂岩型铀矿床中铀的赋存形式[J]. 铀矿地质, 22(4): 193−201. doi: 10.3969/j.issn.1000-0658.2006.04.001
[105] 聂逢君. 2010. 二连盆地古河道砂岩型铀矿[M]. 北京: 地质出版社.
[106] 聂逢君, 陈安平, 胡青华, 申科峰, 秦明宽, 李满根, 姜美珠. 2007. 内蒙古二连盆地早白垩世砂岩型铀矿目的层时代探讨[J]. 地层学杂志, 31(3): 272−279. doi: 10.3969/j.issn.0253-4959.2007.03.010
[107] 聂逢君, 林双幸, 严兆彬, 饶明辉, 张成勇, 严永杰. 2010. 尼日尔特吉达地区砂岩中铀的热流体成矿作用[J]. 地球学报, 31(6): 819−831.
[108] 聂逢君, 严兆彬, 李满根, 彭云彪, 夏菲. 2019. 二连裂陷盆地“同盆多类型”铀矿[M]. 北京: 地质出版社.
[109] 彭云彪, 焦养泉, 张金带, 康世虎. 2015. 同沉积泥岩型铀矿床—二连盆地超大型努和廷铀矿床典型分析[M]. 北京: 地质出版社.
[110] 彭云彪, 李华明, 李玲, 康世虎. 2018. 古气候转换对砂岩型铀矿成矿的影响—以内蒙古二连盆地2081砂岩型铀矿床为例[J]. 矿物学报, 38(5): 490−498.
[111] 彭云彪, 鲁超. 2019. 二连盆地乌兰察布坳陷西部赛汉塔拉组下段砂岩型铀矿成矿模式[J]. 西北地质, 52(3): 46−57.
[112] 齐天骄, 李西得, 刘旭, 吕永华, 许碧霞. 2020. 二连盆地芒来铀矿赋矿砂岩地球化学特征[J]. 铀矿地质, 36(5): 40−50. doi: 10.3969/j.issn.1000-0658.2020.05.005
[113] 任建业, 李思田, 焦贵浩. 1998. 二连盆地群伸展构造系统及其发育的深部背景[J]. 地球科学, 23(6): 567−572. doi: 10.3321/j.issn:1000-2383.1998.06.005
[114] 汤超, 肖鹏, 魏佳林, 徐增连, 刘华建, 赵丽君. 2021. 鄂尔多斯盆地志丹地区安定组铀矿化地质地球化学特征[J]. 华北地质, 44(2): 4−13.
[115] 童波林, 唐大伟, 刘波. 2017. 二连盆地乌兰察布凹陷古河谷构造建造及铀矿找矿模式[J]. 西部资源, (2): 21−25. doi: 10.3969/j.issn.1672-562X.2017.02.009
[116] 王正邦. 2002. 国外地浸砂岩型铀矿地质发展现状与展望[J]. 铀矿地质, 18(1): 9−21. doi: 10.3969/j.issn.1000-0658.2002.01.002
[117] 卫三元, 秦明宽, 李月湘, 何中波, 陈安平, 申科锋, 曹建英. 2006. 二连盆地晚中生代以来构造−沉积演化与铀成矿作用[J]. 铀矿地质, 22(2): 76−82. doi: 10.3969/j.issn.1000-0658.2006.02.003
[118] 文思博, 朱强, 程银行. 2023. 鄂尔多斯盆地砂岩型铀矿成矿时代及铀富集时空规律[J]. 华北地质, 46(3): 1–11.
[119] 张博, 李建国, 苗培森, 赵龙, 司庆红, 里宏亮, 曹民强, 朱强, 魏佳林. 2021. 开鲁盆地钱家店铀矿床铀的赋存状态及成因探[J]. 华北地质, 44(2): 40−48.
[120] 张光荣, 聂海宽, 唐玄, 杜伟, 孙川翔, 陈松. 2020. 页岩中黄铁矿类型及其对页岩气富集的影响—以四川盆地及其周缘五峰组—龙马溪组页岩为例[J]. 石油实验地质, 42(3): 459−466. doi: 10.11781/sysydz202003459
[121] 张金带. 2015. 进入新世纪以来我国铀矿勘查的重大进展和突破—我国铀矿勘查的重大进展和突破[M]. 北京: 地质出版社, 3−19.
[122] 张天福, 孙立新, 张云, 程银行, 李艳锋, 马海林, 鲁超, 杨才, 郭根万. 2016. 鄂尔多斯盆地北缘侏罗纪延安组、直罗组泥岩微量、稀土元素地球化学特征及其古沉积环境意义[J]. 地质学报, 90(12): 3454−3472. doi: 10.3969/j.issn.0001-5717.2016.12.013
[123] 张天福, 张云, 苗培森, 俞礽安, 李建国, 金若时, 孙立新. 2018. 鄂尔多斯盆地西缘中晚侏罗世地层化学蚀变指数(CIA)研究及其意义[J]. 地质调查与研究, 41(4): 258−262,279. doi: 10.3969/j.issn.1672-4135.2018.04.002
[124] 张维杰, 李述靖. 1998. 内蒙古格吉格音乌拉火山机构的岩石特征及时代[J]. 中国区域地质, 17(4): 25−29.
[125] 张文东, 刘武生, 张梓楠, 史清平, 刘持恒. 2020. 二连盆地哈达图古河道砂岩型铀矿成矿地球化学特征研究[J]. 东华理工大学学报(自然科学版), 152(4): 27−38.
[126] 赵丽君, 刘晓雪, 张超, 冯平, 司丹. 2023. 柴达木盆地西北缘跃进地区砂岩型铀矿成矿条件和潜力分析[J]. 华北地质, 46(3): 12–20.
-