中国地质调查局 中国地质科学院主办
科学出版社出版

南海与台湾岛东部海域浅地层碳酸盐旋回

张江勇, 赵利, 李波, 李学杰, 钟和贤, 田成静. 2020. 南海与台湾岛东部海域浅地层碳酸盐旋回[J]. 中国地质, 47(5): 1486-1500. doi: 10.12029/gc20200514
引用本文: 张江勇, 赵利, 李波, 李学杰, 钟和贤, 田成静. 2020. 南海与台湾岛东部海域浅地层碳酸盐旋回[J]. 中国地质, 47(5): 1486-1500. doi: 10.12029/gc20200514
ZHANG Jiangyong, ZHAO Li, LI Bo, LI Xuejie, ZHONG Hexian, TIAN Chengjing. 2020. Carbonate cycle in sub-bottom strata in the South China Sea and the east sea area of Taiwan Island[J]. Geology in China, 47(5): 1486-1500. doi: 10.12029/gc20200514
Citation: ZHANG Jiangyong, ZHAO Li, LI Bo, LI Xuejie, ZHONG Hexian, TIAN Chengjing. 2020. Carbonate cycle in sub-bottom strata in the South China Sea and the east sea area of Taiwan Island[J]. Geology in China, 47(5): 1486-1500. doi: 10.12029/gc20200514

南海与台湾岛东部海域浅地层碳酸盐旋回

  • 基金项目:
    中国地质调查局海洋区域地质调查项目(DD20160138、DD20190209、GZH201400203、GZH201400202、DD20190378)和南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0209)联合资助
详细信息
    作者简介: 张江勇,男,1978年生,博士,教授级高级工程师,主要从事古海洋学与海洋地质学调查研究;E-mail:zjy905@hotmail.com
  • 中图分类号: P736.22+3

Carbonate cycle in sub-bottom strata in the South China Sea and the east sea area of Taiwan Island

  • Fund Project: Supported joint by regional marine geological survey projects of China Geological Survey (No. DD20160138, No. DD20190209, No. GZH201400203, NO. GZH201400202, No. DD20190378) and Key Special Project for Introduced Talents Team of Southem Marine Science and Engineering Guangdong Laboratory (Guangzhou) (No. GML2019ZD0209)
More Information
    Author Bio: ZHANG Jiangyong. male, bom in 1978, senior engineer, mainly engages in survey and research on paleooceanography and marine geology,E-mail:zjy905@hotmail.com .
  • 前人提出南海晚第四纪碳酸钙含量变化存在“大西洋型”和“太平洋型”两种基本类型,本文利用δ18O、CaCO3含量、Al2O3含量、SiO2含量、浮游有孔虫丰度及钙质超微化石丰度,来表征南海与台湾东部海域13个柱状样的碳酸盐旋回特征。CaCO3含量和SiO2含量通常是表征碳酸盐旋回的良好指标,二者的变化常呈相互消长关系。研究区碳酸盐旋回包括“大西洋型”和“太平洋型”两种标准型式,但也存在不规则形态。“大西洋型”碳酸盐旋回与海平面冰期-间冰期升降旋回密切相关,本文研究的具有该旋回特征的柱状样主要分布在南海水深3000 m以浅区域,其中南海北部碳酸盐旋回很可能伴随着海平面下降(上升)期间富集陆源较粗(细)颗粒物的过程。“太平洋型”碳酸盐旋回在南海现今碳酸钙溶跃面上下很大水深范围都有分布,碳酸钙溶解作用旋回不是“太平洋型”碳酸盐旋回的根本原因。本文研究的台湾东部海域柱状样碳酸盐旋回既不属于大西洋型,也不属于太平洋型。研究区浅地层沉积速率变化与碳酸盐旋回的型式关系不大,主要受控于水深和冰期旋回中海平面变化。随着水深增大,沉积速率趋于增加。MIS2期平均沉积速率大约是MIS1期平均沉积速率的2倍多。

  • 加载中
  • 图 1  柱状样站位

    Figure 1. 

    图 2  柱状样TP86和HYD235地层划分、CaCO3含量、Al2O3含量、SiO2含量、比值Al2O3/SiO2比值、浮游有孔虫丰度及钙质超微化石丰度的变化

    Figure 2. 

    图 3  柱状样TP71地层划分、CaCO3含量、Al2O3含量、SiO2含量、Al2O3/SiO2比值、浮游有孔虫丰度及钙质超微化石丰度的变化

    Figure 3. 

    图 4  柱状样BKAS81PC地层划分、CaCO3含量、Al2O3含量、SiO2含量、Al2O3/SiO2比值、浮游有孔虫丰度、钙质超微化石丰度的变化以及Al2O3与SiO2含量之间散点图

    Figure 4. 

    图 5  南海西北部4个柱状样地层划分、CaCO3含量、Al2O3含量、SiO2含量、Al2O3/SiO2比值、浮游有孔虫丰度及钙质超微化石丰度的变化

    Figure 5. 

    图 6  南海东北部4个柱状样地层划分、CaCO3含量、Al2O3含量、SiO2含量、Al2O3/SiO2比值、浮游有孔虫丰度及钙质超微化石丰度的变化

    Figure 6. 

    图 7  台湾东部柱状样GX15地层划分、CaCO3含量、Al2O3含量、SiO2含量、Al2O3/SiO2比值、浮游有孔虫丰度及钙质超微化石丰度的变化

    Figure 7. 

    图 8  南海深海平原北部柱状样SO50-29KL地层划分与CaCO3含量变化(引自汪品先等,1995

    Figure 8. 

    图 9  南海及台湾岛东南部陆坡碳酸盐旋回型式对应的柱状样及其水深

    Figure 9. 

    图 10  南海及台湾东部陆坡MIS1期、MIS2期柱状样平均沉积速率与水深之间的散点图

    Figure 10. 

    表 1  站位信息

    Table 1.  Information of sites

    下载: 导出CSV
  • Barkmann W, Schafer- Neth C, Balzer W. 2010. Modelling aggregate formation and sedimentation of organic and mineral particles[J]. Journal of Marine Systems, 82(3): 81-95. doi: 10.1016/j.jmarsys.2010.02.009

    Beaulieu S E. 2003. Resuspension of phytodetritus from the sea floor: A laboratory fl ume study[J]. Limnology and Oceanography, 48(3): 1235-1244. doi: 10.4319/lo.2003.48.3.1235

    Bintanja R, van de Wal R S W, Oerlemans J. 2005. Modelled atmospheric temperatures and global sea levels over the past million years[J]. Nature, 437: 125-128. doi: 10.1038/nature03975

    Biscaye P E, Eittreim S L. 1977. Suspended particulate loads and transports in the nepheloid layer of the abyssal Atlantic Ocean[J]. Marine Geology, 23(1/2): 155-172. http://www.sciencedirect.com/science/article/pii/0025322777900871

    Bowden K F. 1978. Physical problems of the benthic boundary layer[J]. Geophysical Surveys, 3(3): 255-296. doi: 10.1007/BF01449556

    Crowley T J. 1983. Calcium- carbonate preservation patterns in the central North Atlantic during the last 150, 000 years[J]. Marine Geology, 51(1/2): 1-14. http://www.sciencedirect.com/science/article/pii/0025322783900853

    Dadson S J, Hovius N, Chen H, Dade W B, Hsieh M, Willett S D, Hu J, Horng M, Chen M, Stark C P, Lague D, Lin J. 2003. Links between Erosion, Runoff Variability and Seismicity in the TaiwanOrogen[J]. Nature, 426:648-651. doi: 10.1038/nature02150

    Jin Bingfu, Lin Zhenhong, Ji Fuwu. 2003. Interpretation of element geochemical[J]. Advances in Marine Science, 21(1): 99- 106 (in Chinese with English abstract). https://www.britannica.com/science/chemical-element/Geochemical-distribution-of-the-elements

    Lan Xianhong, Li Rihui, Wang Zhongbo, Chen Xiaohui, Gu Zhaofeng, Xu Xiaoda. 2017. Geochmical records of surface sediments in the western Bohai Sea[J]. Marine Geology & Quaternary Geology, 37 (3): 75-85 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201703008

    Lea D W, Martin P A, Pak D K. Spero H J. 2002. Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core[J]. Quaternary Science Reviews, 21: 283-293. doi: 10.1016/S0277-3791(01)00081-6

    Li Xiaojie, Liang Lianji, Wu Feng, Sun Youbin. 2015. Variations of major elements and carbonate cycle of the northern South China Sea sediments and their paleoenviromental significance[J]. Quaternary Sciences, 35(2): 411- 421 (in Chinese with English abstract). https://link.springer.com/article/10.1007%2Fs10872-011-0043-2

    Liu Guanghu, Li Jun, Chen Daohua, Liu Jian. 2006. Geochemistry of surface sediments in the Taixinan (southwestern Taiwan) Sea area in the northeastern South China Sea[J]. Marine Geology & Quaternary Geology, 26(5): 61-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200605008

    Liu Shengfa, Shi Xuefa, Liu Yanguang, Zhu Aimei, Song Xiaohong.2010. Geochemical characteristics and geological significance of major elements in the surface sediments from the inner shelf mud area of the East China Sea[J]. Advances in Marine Science, 28(1): 80-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbhhy201001011

    Liu Z, Zhao Y, Colin C, Stattegger K, Wiesner M G, Huh C, Zhang Y, Li X, Sompongchaiyakul P, You C, Huang C, Liu J T, Siringan F P, Le K P, Sathiamurthy E, Hantoro W S, Liu J, Tuo, S, Zhao S, Zhou S, He Z, Wang Y, Bunsomboonsakul S, Li Y. 2016. Source- to- sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 153: 238-273. doi: 10.1016/j.earscirev.2015.08.005

    Luz B, Shackleton J N. 1975. CaCO3 solution in the tropical East Pacific during the past 130, 000 years[J]. Cushman Foundation for Foraminiferal Research, 13: 142-150. http://www.researchgate.net/publication/230890238_CaCO3_Solution_in_the_Tropical_East_Pacific_During_the_Past_130000_Years

    Martinson D G, Pisias W G, Hays J D, Imbrie J, Moore Jr T C, Shackleton N J. 1987. Age dating and the orbital theory of the ice age: Development of a high- resolution 0 to 300, 000- year chronostratigraphy[J]. Quaternary research, 27: 1-29. doi: 10.1016/0033-5894(87)90046-9

    McPhee- Shaw E. 2006. Boundary- interior exchange: reviewing the idea that internal- wave mixing enhances lateral dispersal near continental margins[J]. Deep Sea Research Part Ⅱ, 53(1/2): 42-59. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=20033204&site=ehost-live

    Milliman J D, Syvitski J P M. 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers[J]. Journal of Geology, 100(5): 525-544. doi: 10.1086/629606

    Poulton A J, Adey T R, Balch W M, Holligan P M. 2007. Relating coccolithophore calcification rates to phytoplankton community dynamics: Regional differences and implications for carbon export[J]. Deep-Sea Research Ⅱ, 54(5/7): 538-557. http://www.sciencedirect.com/science/article/pii/S0967064507000355

    Rohling E J, Fenton M, Jorissen F J. Bertrand P, Ganssen G, Caulet j P.1998. Magnitudes of sea- level lowstands of the past 500, 000 years[J]. Nature, 394: 162-165. doi: 10.1038/28134

    Schluter L, Henriksen P, NielsenT G. jakobsen H H. 2011.Phytoplankton composition and biomass across the Southern Indian Ocean[J]. Deep-Sea Research Ⅰ, 58(5): 546-556. doi: 10.1016/j.dsr.2011.02.007

    Shackleton N J. 2000. The 100, 000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity[J]. Science, 289: 1897-1902. doi: 10.1126/science.289.5486.1897

    Siddall M, Rohling E J, Almogi-Labin A. Hemleben C, Meischner D, Schmelzer Ⅰ, Smeed D A. 2003. Sea- level fluctuations during the last glacial cycle[J]. Nature, 423: 853-858. doi: 10.1038/nature01690

    Sun Youbin, Wu Feng, Clemens S C, Oppo D W. 2008. Processes controlling the geochemical composition of the South China Sea sediments during the last climatic cycle[J]. Chemical Geology, 257 (3/4): 240-246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aa9909f562356ab15ab1777fd174885f

    Taylor S R, McLennan S M. 1985 The Continental Crust: Its Composition and Evolution[M]. Carlton: Blackwell Scientific Publication.

    Thomsen L, Gust G. 2000. Sediment erosion thresholds and characteristics of resuspended aggregates on the western European continental margin[J]. Deep-Sea Research Ⅰ, 47(10): 1881-1897. doi: 10.1016/S0967-0637(00)00003-0

    Thomsena L, van Weering Tj C E. 1998. Spatial and temporal variability of particulate matter in the benthic boundary layer at the N.W. European Continental Margin (Goban Spur) [J]. Progress in Oceanography, 42(1): 61-76. http://www.sciencedirect.com/science/article/pii/S0079661198000287

    Waelbroeck C, Labeyrie L, Michel E. Duplessy J C, McManus J F, Lambeck K, Balbon E, Labracherie M. 2002. Sea- level and deep water temperature changes derived from benthic foraminiferaisotopic records[J]. Quaternary Science Reviews, 21: 295-305. doi: 10.1016/S0277-3791(01)00101-9

    Wakeham S G, Lee C, Peterson M L, Liu Z, Szlosek J, Putnam Ⅰ F, Xue J. 2009. Organic biomarkers in the twilight zone——Time series and settling velocity sediment traps during MedFlux[J]. Deep-Sea Research Ⅱ, 56(18):1437-1453. doi: 10.1016/j.dsr2.2008.11.030

    Wang Pinxian, et al. 1995. The South China Sea during the Last 150000 Years[M]. Shanghai: Tongji University Publishing House (in Chinese).

    Wehausen R, Brumsack H- J. 2002. Astronomical forcing of the East Asian monsoon mirrored by the composition of Pliocene South China Sea sediments[J]. Earth and Planetary Science Letters, 201 (3):621-636. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=687bd0468fd21d647fb1dfcaaa50b248

    Winterwerp J C, van Kesteren W G M. 2004. Introduction to the Physics of Cohesive Sediment Dynamics in the Marine Environment[M]. Amsterdam: Elsevier, 1-466.

    Wu G, Berger W H. 1989. Planktonic foraminifera: Differential dissolution and the Quaternary stable isotope Record in the west equatorial Pacific[J]. Paleoceanography, 4(2): 181-198. doi: 10.1029/PA004i002p00181

    Zhang J, Wang P, Li Q, Cheng X, Jin H, Zhang S. 2007. Western equatorial Pacific productivity and carbonate dissolution over the last 550 kyr: Foraminiferal and nannofossil evidence from ODP Hole 807A[J]. Marine Micropaleontology, 64:121-140. doi: 10.1016/j.marmicro.2007.03.003

    Zhang Jiangyong, Zhou Yang, Chen Fang, Gao Hongfang, Zhang Xin, Duan Xiao. 2015. Distribution of carbonate contents and the abundances of major carbonate components in surface sediment from the northern South China Sea[J]. Quaternary Sciences, 35(6): 1366-1382 32(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201506006

    Ziveri P, de Bernardi B, Baumann K, Stoll H M, Mortyn P G. 2007.Sinking of coccolith carbonate and potential contribution to organic carbon ballasting in the deep ocean[J]. Deep- Sea Research Ⅱ, 54 (5/7): 659-675. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=092f48cd2fe2e499bd37e975890ee552

    金秉福, 林振宏, 季福武. 2003.海洋沉积环境和物源的元素地球化学记录释读[J].海洋科学进展, 21(1): 99-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbhhy200301013

    蓝先洪, 李日辉, 王中波, 陈晓辉, 顾兆峰, 徐晓达. 2017.渤海西部表层沉积物的地球化学记录[J].海洋地质与第四纪地质, 37(3): 75-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201703008

    李小洁, 梁莲姬, 吴枫, 孙有斌. 2015.南海北部沉积物常量元素变化、碳酸盐旋回及其古环境意义[J].第四纪研究, 35(2): 411-421. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201502016

    刘升发, 石学法, 刘焱光, 朱爱美, 宋晓红. 2010.东海内陆架泥质区表层沉积物常量元素地球化学及其地质意义[J].海洋科学进展, 28(1): 80-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbhhy201001011

    刘光虎, 李军, 陈道华, 刘坚. 2006.台西南海域表层沉积物元素地球化学特征及其物源指示意义[J].海洋地质与第四纪地质, 26(5):61-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200605008

    汪品先等. 1995.十五万年来的南海[M].上海:同济大学出版社.

    张江勇, 周洋, 陈芳, 高红芳, 张欣, 段虓. 2015.南海北部表层沉积物碳酸钙含量及主要钙质微体化石丰度分布[J].第四纪研究, 35(6): 1366-1382. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201506006

  • 加载中

(10)

(1)

计量
  • 文章访问数:  3358
  • PDF下载数:  308
  • 施引文献:  0
出版历程
收稿日期:  2020-02-16
修回日期:  2020-07-18
刊出日期:  2020-10-25

目录