-
摘要:
区域尺度上含水层非均质具有复杂的结构性和随机性,难以准确刻画,造成非均质对区域地下水流系统的影响机制研究不够深入。本文以鄂尔多斯盆地白垩系地下水流系统为研究实例,选择典型剖面,采用剖面二维随机数值模拟方法,通过对比不同非均质刻画方法下地下水流场的变化,探讨含水层层状非均质对地下水流系统的影响机制。结果显示,均质条件下模型各向异性(含水层水平和垂向渗透系数比值Kh/Kv)取值为1000时,地下水流场与实际条件较为接近;非均质条件下,渗透系数方差取值0.91,水平相关长度取值5000 m,Kh/Kv取值150时,接近实际条件。研究表明,在大尺度地下水流模拟研究中,采用水平相关长度、渗透系数方差和各向异性值三个变量生成的随机场能很好地刻画含水层的层状非均质特征及其对水流系统的影响控制作用。由于含水层不同尺度层状非均质的叠加效应,采用均质各向异性介质等效概化含水层层状非均质性会造成等效各向异性值偏大失真的效应。
Abstract:Aquifer heterogeneity is an important factor influencing regional groundwater flow patterns. The complex structural and stochastic characteristics of regional-scale aquifer heterogeneity are difficult to characterize,which leads to insufficient understanding of the effects of heterogeneity on groundwater flow systems in practice. In this paper,the Cretaceous groundwater flow system in the Ordos Basin is studied based on the selected typical geological section. Stochastic numerical simulation of the two-dimensional section is employed to analyze the influence mechanism of aquifer layered heterogeneity on groundwater flow systems by comparing the changes of the groundwater flow field under different heterogeneity conditions. The results show that the groundwater flow net is close to the actual conditions when the ratio of horizontal to vertical conductivity (Kh/Kv) is 1000 in model for homogeneous aquifer. It is close to the actual conditions when the variance of conductivity is 0.91,the horizontal correlation length is 5000 m and Kh/Kv is 150 for heterogeneous aquifers. The stochastic simulated aquifer generated by three parameters (i.e.,horizontal correlation length,variance of permeability coefficient,and anisotropy ratio) can well characterize the layered heterogeneity of aquifer and its influence on the groundwater flow systems. Due to the superposition of layered heterogeneity at different scales,equivalent homogeneous,anisotropic model for conceptualizing layered heterogeneous medium in large-scale groundwater flow simulation may lead to a much larger horizontal-to-vertical anisotropy ratio than the ratio between horizontal and vertical correlation scales.
-
-
Ameli A A, McDonnell J J, Bishop K. 2016. The exponential decline in saturated hydraulic conductivity with depth:A novel method for exploring its effect on water flow paths and transit time distribution[J]. Hydrological Processes, 30(14):2438-2450. doi: 10.1002/hyp.10777
Begg S H, King P R. 1985.Modelling the effects of shales on reservoir performance: Calculation of effective vertical permeability[C]//SPE Reservoir Simulation Symposium. Society of Petroleum Engineers.
Bethke C M. 1989. Modeling subsurface flow in sedimentary basins[J]. Geologische Rundschau, 78(1):129-154. doi: 10.1007/BF01988357
Cai Yuemei, Wang Wenxiang, Zhang Mingjiang, Yin Xiulan, Cai Wutian, Wang Ruijiu, Li Wenpeng. 2016. An analysis of the groundwater flow system based on environmental isotopes in Turpan basin[J]. Geology in China, 43(4):1439-1445(in Chinese).
Cao G, Han D, Currell M J, Zhang C. 2016. Revised conceptualization of the North China Basin groundwater flow system:Groundwater age, heat and flow simulations[J]. Journal of Asian Earth Sciences, 127:119-136. doi: 10.1016/j.jseaes.2016.05.025
Cardenas M B, X W Jiang. 2010. Groundwater flow, transport, and residence times through topography-driven basins with exponentially decreasing permeability and porosity[J]. Water Resouras Research, 46, W11538.
Chen Mengxiong, Ma Fengshan. 2002. China Groundwater Resources and Environment[M].Beijing:Seismological Press (in Chinese).
Deutsch C. 1989. Calculating effective absolute permeability in sandstone/shale sequences[J]. SPE Formation Evaluation, 4(03):343-348. doi: 10.2118/17264-PA
Fogg G E. 1986. Groundwater flow and sand body interconnectedness in a thick, multiple-aquifer system[J]. Water Resources Research, 22(5):679-694. doi: 10.1029/WR022i005p00679
Fogg G E.1986. Groundwater flow and sand body interconnectedness in a thick, multiple-aquifer system[J]. Water Resources Research, 22(5):679-694. doi: 10.1029/WR022i005p00679
Freeze R A, Witherspoon P A. 1967. Theoretical analysis of regional groundwater flow:2. Effect of water-table configuration and subsurface permeability variation[J]. Water Resources Research, 3(2):623-634. doi: 10.1029/WR003i002p00623
Gleeson T, Manning A H. 2008. Regional groundwater flow in mountainous terrain:Three-dimensional simulations of topographic and hydrogeologic controls[J]. Water Resources Research, 44(10):. http://onlinelibrary.wiley.com/doi/10.1029/2008WR006848
Haitjema H M, S Mitchell-Bruker. 2005. Are water tables a subdued replica of the topography?[J]. Ground Water, 43(6):781-786. doi:10.1111/j.1745-6584.2005.00090.x.
Hao Z, Kang S. 2006. Current situation and development trend of numerical simulation of groundwater system[J]. Advances in Science and Technology of Water Resources, 26(1):77-81. http://www.researchgate.net/publication/292779887_Current_situation_and_development_trend_of_numerical_simulation_of_groundwater_system
Hou Guangcai, Zhang Maosheng. 2008.The Research of Groundwater Exploration in the Ordos Basin[M]. Beijing:Geological Publishing House (in Chinese).
James R Craig. 2008. Analytical solutions for 2D topography-driven flow in stratified and syncline aquifers[J]. Advances in Water Resources, 31:1066-1072. doi: 10.1016/j.advwatres.2008.04.011
Jiang X W, Wan L, Ge S, Cao G L, Hou G C, Hu F S, Wang X S, Li H L, Liang S H. 2012. A quantitative study on accumulation of age mass around stagnation points in nested flow systems[J]. Water Resources Research, 48(12):1-14.
Jiang X W, X S. Wang L. Wan, S Ge. 2011. An analytical study on stagnation points in nested flow systems in basins with depthdecaying hydraulic conductivity[J]. Water Resources Research, 47:1-16. doi: 10.1029/2010WR009138
Koltermann C E, Gorelick S M. 1996. Heterogeneity in sedimentary deposits:A review of structure-imitating, process-imitating, and descriptive approaches[J]. Water Resources Research, 32(9):2617-2658. doi: 10.1029/96WR00025
Lee S Y, Carle S F, Fogg G E. 2007. Geologic heterogeneity and a comparison of two geostatistical models:Sequential gaussian and transition probability-based geostatistical simulation[J]. Advances in Water Resources, 30(9):1914-1932. doi: 10.1016/j.advwatres.2007.03.005
Liang X, Quan D, Jin M, Liu Y, Zhang R Q. 2013. Numerical simulation of groundwater flow patterns using flux as upper boundary[J]. Hydrological Processes, 27:3475-3483. doi: 10.1002/hyp.9477
Liang Xin, Zhang Renquan, Niu Hong, Jin Menggui, Sun Ronglin. 2012. Development of the theory and research method of groundwater flow system[J]. Geological Science and Technology Information, 31(5):143-150 (in Chinese with English abstract).
Luo Jie, Wang Wenke, Duan Lei, Li Ying, Zhang Zaiyong. 2020.Dynamic analysis of groundwater level in Yinchuan Plain[J]. Northwestern Geology, (1):195-204(in Chinese with English abstract).
Marklund L, Wörman A. 2007. The impact of hydraulic conductivity on topography driven groundwater flow[J]. Publs Inst. Geophys Pol Acad Sc E-7:159-167.
Sun Houyun, Mao Qigui, Wei Xiaofeng, Zhang Huiqiong, Xi Yuze. 2018. Hydrogeochemical characteristics and formation evolutionary mechanism of the groundwater system in the Hami basin[J]. Geology in China, 45(6):1128-1141(in Chinese with English abstract).
Tóth J. 1963. A theoretical analysis of groundwater flow in small drainage basins[J]. Journal of Geophysical Research, 68(16):4795-4812. doi: 10.1029/JZ068i016p04795
Tóth J. 1999. Groundwater as a geologic agent:An overview of the causes, processes, and manifestations[J]. Hydrogeology Journal, 7(1):1-14.
Winter T C. 1999. Relation of streams, lakes, and wetlands to groundwater flow systems[J]. Hydrogeology Journal, 7(1):28-45.
Yeh T C J, Jin M, Hanna S. 1996. An iterative stochastic inverse method:Conditional effective transmissivity and hydraulic head fields[J]. Water Resources Research, 32(1):85-92. doi: 10.1029/95WR02869
Zech A, Zehner B, Kolditz O, Attinger, S. 2016. Impact of heterogeneous permeability distribution on the groundwater flow systems of a small sedimentary basin[J]. Journal of Hydrology, 532:90-101. doi: 10.1016/j.jhydrol.2015.11.030
Zhang Eryong, Tao Zhengping, Wang Xiaoyong, Cui Xudong, Yin Lihe. 2012. A study of vegetation response to groundwater on regional scale in northern Ordos Basin based on structure chart method[J]. Geology in China, 39(3):811-817(in Chinese with English abstract).
Zhang Jun, Hou Guangcai, Zhao Zhenhong, Yin Lihe, Wang Dong. 2012. Analysis of structural control factors for groundwater flow system based on numerical simulation of profile-Case study of typical northern profile of Ordos Cretaceous Basin[J]. Advances in Science and Technology of Water Resources, 32(2):18-22 (in Chinese with English abstract).
Zhang Jun, Hou Rongzhe, Yin Lihe, Ma Hongyun, Huang Jinting. 2017. Formation and influencing factors of regional groundwater flow systems[J].Hydrogeology & Engineering Geology, 44(4):8-14 (in Chinese with English abstract).
Zhang Jun, Yin Lihe, Hou Guangcai, Jiang Xiaowei. 2014. A recent review of regional groundwater flow theory——International symposium on regional groundwater flow theory, applications and future development[J]. Northwestern Geology, (3):200-204(in Chinese with English abstract).
Zhang Renquan, Liang Xin, Jin Menggui, Zhou Aiguo, Sun Ronglin. 2005. The trends in contemporary hydrogeology[J]. Hydrogeology& Engineering Geology, 32(1):51-56(in Chinese with English abstract).
Zhang Renquan, Liang Xin, Jin Menggui, Wan Li, Yu Qingchun. 2011.Fundamentals of Hydrogeology[M]. Beijing:Geological Publishing House (in Chinese).
Zhou Yangxiao, Li Wenpeng. 2009. Modeling of regional groundwater flow[J]. Hydrogeology & Engineering Geology, 36(1):1-10(in Chinese with English abstract).
蔡月梅, 王文祥, 张明江, 殷秀兰, 蔡五田, 王瑞久, 李文鹏. 2016.基于环境同位素分析吐鲁番盆地地下水流系统[J].中国地质, 43(4):1439-1445.
陈梦熊, 马凤山. 2002.中国地下水资源与环境[M].北京:地震出版社.
郝治福, 康绍忠. 2006.地下水系统数值模拟的研究现状和发展趋势[J].水利水电科技进展, 26(1):77-81. http://d.wanfangdata.com.cn/Periodical/slsdkjjz200601023
侯光才, 张茂省. 2008.鄂尔多斯盆地地下水勘查研究[M].北京:地质出版社.
梁杏, 张人权, 牛宏, 靳孟贵, 孙蓉琳. 2012.地下水流系统理论与研究方法的发展[J].地质科技情报, 31(5):143-150.
罗杰, 王文科, 段磊, 李英, 张在勇. 2020.银川平原地下水位变化特征及其成因分析[J].西北地质, (1):195-204.
孙厚云, 毛启贵, 卫晓锋, 张会琼, 葸玉泽. 2018.哈密盆地地下水系统水化学特征及形成演化[J].中国地质, 45(6):1128-1141. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20180604&flag=1
张二勇, 陶正平, 王晓勇, 崔旭东, 尹立河. 2012.基于植被结构分析法的生态植被与地下水关系研究——以鄂尔多斯盆地内蒙古能源基地为例[J].中国地质, 39(3):811-817. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20120323&flag=1
张俊, 侯光才, 赵振宏, 尹立河, 王冬. 2012.基于剖面数值模拟的地下水流系统结构控制因素——以鄂尔多斯白垩系盆地北部典型剖面为例[J].水利水电科技进展, 32(2):18-22.
张俊, 尹立河, 侯光才, 蒋小伟. 2014.区域地下水流理论最新进展——区域地下水流理论、应用与发展国际研讨会综述[J].西北地质, (3):200-204.
张俊, 侯荣哲, 尹立河, 马洪云, 黄金廷. 2017.盆地地下水流系统形成与影响因素分析[J].水文地质工程地质, 44(4):8-14.
张人权, 梁杏, 靳孟贵, 周爱国, 孙蓉琳. 2005.当代水文地质学发展趋势与对策[J].水文地质工程地质, 32(1):51-56.
张人权, 梁杏, 靳孟贵, 万力, 于青春. 2011.水文地质学基础[M].北京:地质出版社.
张志远, 蒋小伟, 王俊智, 万力. 2016.基于二维和三维模型的盆地典型剖面流场对比[J].水文地质工程地质, 43(3):1-6.
周仰效, 李文鹏. 2009.区域地下水流模拟[J].水文地质工程地质, 36(1):1-10.
-