中国地质调查局 中国地质科学院主办
科学出版社出版

刚果(金)Manono–Kitotolo含锂−铯−钽伟晶岩地质与矿化特征研究

曾瑞垠, 祝新友, 王蓉, 李庆哲, 詹勇, 张雄, 孙宁, 李亮, 谭康雨, 黄建业. 2024. 刚果(金)Manono–Kitotolo含锂−铯−钽伟晶岩地质与矿化特征研究[J]. 中国地质, 51(2): 443-456. doi: 10.12029/gc20200819002
引用本文: 曾瑞垠, 祝新友, 王蓉, 李庆哲, 詹勇, 张雄, 孙宁, 李亮, 谭康雨, 黄建业. 2024. 刚果(金)Manono–Kitotolo含锂−铯−钽伟晶岩地质与矿化特征研究[J]. 中国地质, 51(2): 443-456. doi: 10.12029/gc20200819002
ZENG Ruiyin, ZHU Xinyou, WANG Rong, LI Qingzhe, ZHAN Yong, ZHANG Xiong, SUN Ning, LI Liang, TAN Kangyu, HUANG Jianye. 2024. Geological and mineralization characteristics of Manono–Kitotolo Li−Cs−Ta pegmatite in the Democratic Republic of Congo[J]. Geology in China, 51(2): 443-456. doi: 10.12029/gc20200819002
Citation: ZENG Ruiyin, ZHU Xinyou, WANG Rong, LI Qingzhe, ZHAN Yong, ZHANG Xiong, SUN Ning, LI Liang, TAN Kangyu, HUANG Jianye. 2024. Geological and mineralization characteristics of Manono–Kitotolo Li−Cs−Ta pegmatite in the Democratic Republic of Congo[J]. Geology in China, 51(2): 443-456. doi: 10.12029/gc20200819002

刚果(金)Manono–Kitotolo含锂−铯−钽伟晶岩地质与矿化特征研究

  • 基金项目: 国家自然科学基金项目(41363002)、国家重点研发计划“深地资源勘查开采”重点专项项目课题(2017YFC0602403)联合资助。
详细信息
    作者简介: 曾瑞垠,男,1991年生,硕士生,工程师,矿物学、岩石学、矿床学专业;E-mail: zengqingqin0428@sina.com
    通讯作者: 祝新友,男,1965年生,教授级高级工程师,主要从事矿床学研究工作;E-mail: zhuxinyou@outlook.com
  • 中图分类号: P618.6

Geological and mineralization characteristics of Manono–Kitotolo Li−Cs−Ta pegmatite in the Democratic Republic of Congo

  • Fund Project: Supported by National Natural Science Foundation of China (No.41363002) and the subject of the Key Special Project of the National Key Research and Development Program “Exploitation of Deep Resources” (No.2017YFC0602403).
More Information
    Author Bio: ZENG Ruiyin, male, born in 1991, master candidate, engineer, majors in mineralogy, petrology, deposits; E-mail: zengqingqin0428@sina.com .
    Corresponding author: ZHU Xinyou, male, born in 1965, professor level senior engineer, mainly engaged in the study of mineral deposit; E-mail: zhuxinyou@outlook.com.
  • 研究背景

    Manono–Kitotolo伟晶岩位于刚果(金)中元古代Kibaran稀有金属成矿带,属于锂–铯–钽伟晶岩(LCT),主要由含锂辉石伟晶岩(40%~70%)构成。通过野外地质调查发现:伟晶岩在横向上由外至内依次发育有:花岗细晶岩带(Ⅰ)—白云母长石石英带(Ⅱ)—石英钠长石带(Ⅲ)—锂辉石带(Ⅳ)—石英内核(Ⅴ)。

    研究方法

    通过电子探针(EPMA)法测试,获得伟晶岩中云母、锂辉石、锡石和铌钽铁矿的主量成分,对伟晶岩的分异演化特征、锂矿化、铌钽矿化和锡矿化特征进行了讨论,并对Manono–Kitotolo伟晶岩型稀有金属矿床的成矿作用进行了分析。

    研究结果

    白云母由外向内Rb、Li和F含量逐渐升高,K/Rb值逐渐降低,锂云母石英带(Ⅴ−1)中产出的锂云母FeO和Rb2O含量相对高于白云母,表明伟晶岩由外向内结晶的分异演化程度较高。

    结论

    锂矿化主要分布在锂辉石伟晶岩(Ⅳ)中,锂辉石粒度呈巨晶—粗粒—中粒变化,主量成分较稳定,但近地表的氧化淋滤作用与黏土化、云英岩化等蚀变作用造成锂元素发生流失;锡矿化分布于Ⅲ—Ⅳ带中,锡石Nb和Ta含量相对较高,属于稀有金属伟晶岩成因,但粗粒锡石主要形成于云英岩化阶段;铌钽矿化分布于Ⅱ—Ⅳ带中,根据元素含量比值显示其为铌铁矿–钽铁矿–锰钽铁矿系列,随着分异作用的进行,铌钽矿物中的钽和锰的含量增加,铌、铁和钛的含量降低,形成富钽、富锰的铌钽铁矿。

  • 加载中
  • 图 1  Kibaran成矿带区域地质图(据Melcher et al., 2015修改)

    Figure 1. 

    图 2  Manono地区地质简图(a)、Manono–Kitotolo矿区地质图(b)(据Ferguson et al., 2019修改)和Malata伟晶岩脉剖面示意图(c)

    Figure 2. 

    图 3  Manono−Kitotolo伟晶岩的岩石标本照片

    Figure 3. 

    图 4  Manono–Kitotolo伟晶岩的岩石显微照片

    Figure 4. 

    图 5  Manono–Kitotolo伟晶岩中云母的K/Rb vs. Li、F、Rb、Cs、Fe、Mn相关图解(Li数据来源于Dewaele et al., 2016;Rb、Cs、Fe、Mn元素含量根据表1中氧化物的含量换算)

    Figure 5. 

    图 6  Mpete伟晶岩脉的稀有元素含量变化特征图(数据来源于Eckhof, 2017

    Figure 6. 

    图 7  Manono–Kitotolo伟晶岩中锡石的背散射图像和元素含量变化图

    Figure 7. 

    图 8  Manono–Kitotolo伟晶岩中铌钽铁矿的背散射图像和元素含量变化图

    Figure 8. 

    表 1  Manono–Kitotolo伟晶岩中云母元素组成分析结果

    Table 1.  Analytical data of major composition of mica in the Manono–Kitotolo pegmalite

    结构带 矿物 样品号/点位 测试结果/% K/Rb 备注
    SiO2 TiO2 Al2O3 FeO MnO Na2O K2O Rb2O Cs2O F 总量
    Ms bgk1-1① 46.72 0.34 34.06 2.49 0.04 0.65 10.64 0.14 bdl 0.85 95.81 69.20
    Ms RG16811 47.89 0.03 35.80 0.04 1.08 9.37 0.54 100.56 39.71
    Ms bgn2-1① 46.11 0.03 36.85 0.82 0.07 0.40 10.41 0.73 0.02 0.34 95.44 12.98
    Ms RG5826 46.56 0.03 33.60 0.05 0.48 10.66 0.21 100.84 45.17
    Ms RG9699 47.53 0.03 33.49 0.27 0.54 10.31 bdl 99.44 43.69
    Ms bgn1-3③ 46.69 bdl 34.90 2.68 0.25 0.53 10.28 0.55 0.02 0.81 95.94 17.02
    Ms B34① 46.42 0.05 35.09 2.68 0.34 0.33 10.71 0.71 0.02 0.62 96.40 13.73
    Ms RG15992 47.46 0.03 34.73 0.30 0.92 9.85 0.56 100.16 15.06
    Ms RG16005 46.90 0.04 33.70 0.27 0.62 10.32 1.19 100.16 16.30
    Ⅳ−1 Ms bgn2-3① 45.62 0.02 38.35 0.05 0.13 0.46 10.45 1.15 bdl 0.00 96.27 8.27
    Ms bgn2-3③ 46.15 bdl 36.89 0.08 0.14 0.35 10.62 1.90 bdl 0.63 96.18 5.09
    Ⅴ−1 Lpd bgn2-5① 52.57 bdl 24.83 0.10 1.36 0.07 10.20 2.92 0.08 4.44 92.33 3.18
    Lpd RG14 55.47 0.01 25.65 0.04 0.39 0.37 9.02 4.05 99.79 5.13
    Ⅴ−1 Ms bgn2-5⑤ 46.44 bdl 37.93 0.05 0.07 0.24 9.90 0.75 bdl 0.00 95.38 12.02
    Ms bgn2-5② 46.18 bdl 37.92 0.02 0.05 0.21 10.21 1.27 bdl 0.00 95.90 7.32
    Ms bgn2-5③ 46.71 0.02 37.89 0.02 bdl 0.17 10.97 0.85 bdl 0.00 96.79 11.75
    Ms bgn2-5⑥ 45.33 bdl 37.99 bdl 0.03 0.17 10.06 0.73 0.03 0.00 94.34 12.55
    G Ms bgs1-2① 46.82 0.05 32.59 3.57 0.43 0.23 10.61 0.96 bdl 1.43 95.41 10.06 云英岩化
    Ms RG16747 58.64 0.04 28.12 0.12 0.52 7.96 0.68 101.71 15.85
    Ms RG16777 46.44 0.03 34.82 0.20 0.66 9.91 1.24 98.91 14.21
    Ms RG16958 45.81 0.02 37.40 0.16 0.75 10.17 0.61 99.87 14.49
      注:RG系列样品的分析结果来自Dewaelea et al.(2016);K/Rb比中的K和Rb含量根据氧化物计算;Ms—白云母;Lpd—锂云母;“bdl”表示低于检出限,“—”表示未检测。
    下载: 导出CSV

    表 2  Manono–Kitotolo伟晶岩中锂辉石元素组成分析结果

    Table 2.  Analytical data of major composition of spodumene in the Manono–Kitotolo pegmalite

    样品号/点位 测试结果/%
    SiO2 Al2O3 FeO MnO Na2O K2O CaO Ta2O5 SnO2 总量
    bgn1-3① 64.16 27.58 0.48 0.10 0.16 bdl bdl bdl 0.05 92.53
    B34③ 63.91 27.54 0.43 0.10 0.14 bdl bdl 0.05 bdl 92.17
    B34④ 64.30 27.42 0.19 0.06 0.11 0.02 0.02 bdl bdl 92.12
    平均值 64.12 27.51 0.37 0.09 0.14 0.02 0.02 0.05 0.05 92.27
    下载: 导出CSV

    表 3  Manono–Kitotolo伟晶岩中锡石和铌钽铁矿元素组成分析结果

    Table 3.  Analytical data of major composition of cassiterite and columbite-tantalite in the Manono–Kitotolo pegmalite

    结构带 矿物 点位 铌钽铁矿和锡石测试结果/% Mn/(Fe+Mn) Ta/(Ta+Nb)
    SiO2 TiO2 FeO MnO Rb2O Nb2O5 Ta2O5 SnO2 WO3 总量
    Clb bgn1-1① 0.40 1.62 7.01 8.59 0.40 26.34 52.59 1.00 0.78 99.97 0.55 0.66
    Clb bgn1-1② 0.41 0.39 6.22 9.82 1.70 28.85 51.38 0.07 0.58 99.42 0.61 0.65
    Clb bgn1-1③ 0.36 0.24 6.37 10.19 1.45 36.66 43.98 0.27 0.32 99.84 0.61 0.55
    Clb bgn1-1④ 0.41 1.39 5.93 9.57 1.51 27.64 51.99 0.85 0.32 99.61 0.62 0.66
    Clb bgn1-1⑤ 0.41 1.87 6.18 8.98 1.56 25.83 52.67 0.99 0.42 98.95 0.59 0.68
    Clb bgn1-1⑥ 0.34 0.26 6.31 9.89 1.51 36.05 45.27 0.05 0.42 100.1 0.61 0.56
    不明 Clb P25 0.15 0.08 0.06 0.34 0.18
    不明 Clb P75 0.67 0.31 0.30 0.72 0.5
    均值 0.39 0.82 6.34 9.51 1.56 30.23 49.65 0.45 0.40 99.65 0.58 0.56
    G Cst bgs1-2① 0.62 0.03 0.50 0.05 bdl 1.52 1.93 94.96 bdl 100 0.09 0.57
    G Cst bgs1-2② 0.62 0.09 0.25 bdl bdl 0.65 0.7 96.32 bdl 99.06 bdl 0.52
    G Cst bgs1-2③ 0.60 0.07 0.08 bdl bdl 0.25 0.43 98.26 bdl 100.1 bdl 0.64
    G Cst bgs1-2④ 0.60 0.06 0.25 0.03 bdl 0.56 0.65 94.1 bdl 96.8 0.11 0.54
    G Cst bgs1-2⑤ 0.55 0.11 0.71 0.04 bdl 2.38 2.02 93.58 bdl 99.88 0.05 0.47
    均值 0.598 0.072 0.36 0.04 bdl 1.072 1.146 95.44 bdl 99.18 0.08 0.55
      注:P25、P75分析结果来自Melcher et al.(2015);Spd—锂辉石;Cst—锡石;Clb—铌钽铁矿。
    下载: 导出CSV
  • [1]

    Beurlen H, Da Silva M R R, Thomas R, Soares D R, Olivier P. 2008. Nb–Ta–(Ti–Sn) oxide mineral chemistry as tracer of rare–element granitic pegmatite fractionation in the Borborema Province Northeastern Brazil[J]. Mineralium Deposita, 43: 207−228. doi: 10.1007/s00126-007-0152-4

    [2]

    Bradley D C, McCauley A D, Stillings L M. 2017. Mineral–Deposit Model for Lithium–Cesium–Tantalum Pegmatites: Chapter O of Mineral Deposit Models for Resource Assessment[R]. Reston, Virginia: U.S. Geological Survey, 1–48.

    [3]

    Cahen L, Delhal J, Vail J R, Bonhomme M, Ledent D. 1984. The Geochronology and Evolution of Africa[M]. Oxford: Clarendon Press, 1–512.

    [4]

    Chen Guojian. 2014. Geological characteristics and genesis of the Nanping granitic pegmatite type Ta–Nb deposit, Fujian Province[J]. Geological Bulletin of China, 33(10): 1550−1561 (in Chinese with English abstract).

    [5]

    Cryns Y. 2013. Petrographical, Mineralogical and Geochemical Study of the Sn, Nb–Ta, Li–Mineralized Pegmatites of Manono–Kitotolo, Katanga (D. R. Congo)[D]. Leuven: Katholieke Universiteit Leuven.

    [6]

    Dewaele S, De Clerq F, Muchez P, Schneider J, Burgess R, Boyce A, Fernandez–Alonso M. 2010. Geology of the cassiterite mineralization in the Rutongo area, Rwanda (Central Africa): Current state of knowledge[J]. Geologica Belgica, 13(1/2): 91−112.

    [7]

    Dewaele S, Henjes–Kunst F, Melcher F, Sitnikova M, Burgess R, Gerdes A, Fernandez–Alonso M, De Clerq F, Muchez P, Lehmann B. 2011. Late Neoproterozoic overprinting of the cassiterite and columbite–tantalite bearing pegmatites of the Gatumba area, Rwanda (Central Africa)[J]. Journal of African Earth Sciences, 61: 10−26. doi: 10.1016/j.jafrearsci.2011.04.004

    [8]

    Dewaele S, Hulsbosch N, Cryns Y, Boyce A, Burgess R, Muchez P. 2016. Geological setting and timing of the world–class Sn Nb–Ta and Li mineralization of Manono–Kitotolo (Katanga, Democratic Republic of Congo)[J]. Ore Geology Reviews, 72: 373−390. doi: 10.1016/j.oregeorev.2015.07.004

    [9]

    Dill H G. 2015. Pegmatites and aplites: Their genetic and applied ore geology[J]. Ore Geology Reviews, 69: 417−561. doi: 10.1016/j.oregeorev.2015.02.022

    [10]

    Eckhof K. 2017. High–grade Lithium Mineralization Now Drill Confirmed over A Strike Length of 4 km within Three Pegmatites at the Kitotolo Sector, Manono Project, DRC[R]. Perth, Western Australia: AVZ Minerals Limited, 1–29.

    [11]

    Ferguson N, Johnston G, Chen H L, Brans R, Huljich P. 2019. AVZ 2019 Annual Report[R]. Perth, Western Australia: AVZ Minerals Limited, 1–77.

    [12]

    Gerards J, Ledent D L. 1970. Grands traits de la géologie du Rwanda, différents types de roches granitiques et premières données sur les ages de ces roches[J]. Annal es de la Sociéte Géologique de Belgique, 93: 477−489.

    [13]

    Kokonyangi J W, Kampunzu A B, Armstrong R, Yoshida M, Okudaira T, Arima M, Ngulube D A. 2006. The Mesoproterozoic Kibaride belt (Katanga, SE D R Congo)[J]. Journal of African Earth Sciences, 46: 1−35. doi: 10.1016/j.jafrearsci.2006.01.017

    [14]

    Linnen R L, Keppler H. 1997. Columbite solubility in granitic melts: Consequences for the enrichment and fractionation of Nb and Ta in the earth's crust[J]. Contributions to Mineralogy and Petrology, 128: 213−227. doi: 10.1007/s004100050304

    [15]

    Liu Lijun, Wang Denghong, Liu Xifang, Li Jiankang, Dai Hongzhang, Yan Weidong. 2017. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine[J]. Geology in China, 44(2): 263−278 (in Chinese with English abstract).

    [16]

    London D. 2018. Ore–forming processes within granitic pegmatites[J]. Ore Geology Reviews, 101: 349−383. doi: 10.1016/j.oregeorev.2018.04.020

    [17]

    Melcher F, Graupner T, Gäbler H E, Sitnikova M, Henjes–Kunst F, Oberthür T, Gerdes A, Dewaele S, 2015. Tantalum–(niobium–tin) mineralization in African pegmatites and rare metal granites: Constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology[J]. Ore Geology Reviews, 64: 667–719.

    [18]

    Mulja T, Williams–Jones A E, Martin R F, Wood S A. 1996. Compositional variation and structural state of columbite–tantalite in rare–element granitic pegmatites of the Preissac–Lacorne batholith, Quebec, Canada[J]. American Mineralogist, 81: 146−157. doi: 10.2138/am-1996-1-219

    [19]

    Pirajno F. 2010. Hydrothermal Processes and Mineral Systems[M]. Australia: Geological Survey of Western Australia, 1–1243.

    [20]

    Qin Kezhang, Zhou Qifeng, Tang Dongmei, Wang Chunlong. 2019. Types, internal structural patterns, mineralization and prospects of rare–element pegmatites in East Qinling Mountain in comparison with features of Chinese Altay[J]. Mineral Deposits, 38(5): 970−982 (in Chinese with English abstract).

    [21]

    Shearer C K, Papike J J, Jolliff B L. 1992. Petrogenetic links among granites and pegmatites in the Harney Peak rare–element granite–pegmatite system, Black Hills, South Dakota[J]. Canadian Mineralogist, 30: 785−809.

    [22]

    Tack L, Wingate M, DeWaele B, Meert J, Belousova E A, Griffin B, Tahon A, Fernandez–Alonso. 2010. The 1375 Ma “Kibaran event” in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime[J]. Precambrian Research, 180: 63−84. doi: 10.1016/j.precamres.2010.02.022

    [23]

    Tindle A G, Breaks F W. 1998. Oxide minerals of the separation rapids rare element granitic pegmatite group, northwestern Ontario[J]. Canadian Mineralogist, 36(2): 609−635.

    [24]

    Vieira R, Roda–Robles E, Pesquera A, Lima A. 2011. Chemical variation and significance of micas from the Fregeneda–Almendra pegmatitic field (Central–Iberian Zone, Spain and Portugal)[J]. American Mineralogist, 96(4): 637−645. doi: 10.2138/am.2011.3584

    [25]

    Wang Denghong, Liu Lijun, Hou Jianglong, Dai Hongzhang, YuYang, Dai Jingjing, Tian Shihong. 2017a. A preliminary review of the application of “Five levels+ Basement” model for Jiajika style rare metal deposits[J]. Earth Science Frontiers, 24(5): 1−17 (in Chinese with English abstract).

    [26]

    Wang Denghong, Liu Lijun, Dai Hongzhang, Liu Shanbao, HouJianglong, Wu Xishun. 2017b. Discussion on particularity and prospecting direction of large and superlarge spodumene deposits[J]. Earth Science, 42(12): 2243−2257 (in Chinese with English abstract).

    [27]

    Wang Panxi, Zhu Likuang, Liu Lu, Guo Jungang, Wu Qiushen. 2017. Geological and geochemical characteristics of grainitic pegmatite in Guanpo, Henan Province[J]. Geological Survey of China, 4(6): 40−49 (in Chinese with English abstract).

    [28]

    Wang Rucheng, Xie Lei, Zhu Zeying, Hu Huan. 2019. Micas: Important indicators of granite–pegmatite–related rare–metal mineralization[J]. Acta Petrologica Sinica, 35(1): 69−75 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.01.04

    [29]

    Wen Chunhua. 2017. Mineralogical–geochemical characteristics and ore potentiality studies of pegmatite in southern margin of the Mufushan area, Hunan Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(1): 67–74 (in Chinese with English abstract).

    [30]

    Wu Fuyuan, Liu Xiaochi, Ji Weiqiang, Wang Jiamin, Yang Lei. 2017. Highly fractionated granites: Recognition and research[J]. Science China: Earth Sciences, 47(7): 745−765 (in Chinese with English abstract).

    [31]

    Xiao Huiliang, Li Haili, Fan Feipeng, Zeng Zailin, Chen Lezhu, Zhou Yan, Sun Jiandong, Xiao Fan, Chen Xiaoyong, Chen Binfeng. 2023. The mineral prospecting direction of Li−Be−Nb−Ta deposits in East Nanling region[J]. Geology in China, 50(3): 653–676 (in Chinese with English abstract).

    [32]

    Yang Yueqing, Wang Denghong, Liu Shanbao, Liu Lijun, Wang Chenghui, Guo Weiming. 2020. The co–occurrence mechanism of two types of spodumene ore bodies and their prospecting significance in Jiajikan, Sichuan Province[J]. Acta Geologica Sinica, 94(1): 287−302 (in Chinese with English abstract).

    [33]

    Zhang A C, Wang R C, Hu H, Zhang H, Zhu J C, Chen X M. 2004. Chemical evolution of Nb–Ta oxides and zircon from the Koktokay No. 3 granitic pegmatite, Altai, northwestern China[J]. Mineralogical Magazine, 68(5): 739−756. doi: 10.1180/0026461046850216

    [34]

    Zhao Ruyi, Wang Denghong, Feng Yonggang, Wang Chenghui, Liang Ting, Li Kaixuan, Dai Hongzhang, Shi Yu, Gao Jinggang. 2024. Characteristics of granitic pegmatite type lithium deposits in different mineralization epochs and its enlightenment for prospecting prediction, China[J]. Geology in China, 51(1): 17−41 (in Chinese with English abstract).

    [35]

    Zhou Qifeng, Qin Kezhang, Tang Dongmei, Ding Jiangang, Guo Zhenglin. 2013. Mineralogy and significance of micas and feldspars from the Koktokay No. 3 pegmatitic rare–element deposit, Altai[J]. Acta Petrologica Sinica, 29(9): 3004−3022 (in Chinese with English abstract).

    [36]

    陈国建. 2014. 福建南平花岗伟晶岩型钽铌矿床地质特征与成因[J]. 地质通报, 33(10): 1550−1561. doi: 10.3969/j.issn.1671-2552.2014.10.011

    [37]

    刘丽君, 王登红, 刘喜方, 李建康, 代鸿章, 闫卫东. 2017. 国内外锂矿主要类型、分布特点及勘查开发现状[J]. 中国地质, 44(2): 263−278. doi: 10.12029/gc20170204

    [38]

    秦克章, 周起凤, 唐冬梅, 王春龙. 2019. 东秦岭稀有金属伟晶岩的类型、内部结构、矿化及远景—兼与阿尔泰地区对比[J]. 矿床地质, 38(5): 970−982.

    [39]

    王登红, 刘丽君, 侯江龙, 代鸿章, 于扬, 代晶晶, 田世洪. 2017a. 初论甲基卡式稀有金属矿床“五层楼+地下室”勘查模型[J]. 地学前缘, 24(5): 1−17.

    [40]

    王登红, 刘丽君, 代鸿章, 刘善宝, 侯江龙. 吴西顺. 2017b. 试论国内外大型超大型锂辉石矿床特殊性与找矿方向[J]. 地球科学, 42(12): 2243−2257.

    [41]

    王盘喜, 朱黎宽, 刘璐, 郭俊刚, 武秋生. 2017. 河南官坡花岗伟晶岩地质与地球化学特征[J]. 中国地质调查, 4(6): 40−49.

    [42]

    王汝成, 谢磊, 诸泽颖, 胡欢. 2019. 云母: 花岗岩—伟晶岩稀有金属成矿作用的重要标志矿物[J]. 岩石学报, 35(1): 69−75. doi: 10.18654/1000-0569/2019.01.04

    [43]

    文春华. 2017. 幕阜山南缘地区伟晶岩矿物学、地球化学特征及含矿性分析[J]. 矿物岩石地球化学通报, 36(1): 67−74. doi: 10.3969/j.issn.1007-2802.2017.01.008

    [44]

    吴福元, 刘小驰, 纪伟强, 王佳敏, 杨雷. 2017. 高分异花岗岩的识别与研究[J]. 中国科学:地球科学, 47(7): 745−765.

    [45]

    肖惠良, 李海立, 范飞鹏, 曾载淋, 陈乐柱, 周延, 孙建东, 肖凡, 陈小勇, 陈斌锋. 2023. 论南岭东段地区锂铍铌钽矿找矿方向[J]. 中国地质, 50(3): 653–676.

    [46]

    杨岳清, 王登红, 刘善宝, 刘丽君, 王成辉, 郭唯明. 2020. 四川甲基卡两类锂辉石矿体共存机制及其找矿意义[J]. 地质学报, 94(1): 287−302.

    [47]

    赵如意, 王登红, 凤永刚, 王成辉, 梁婷, 李凯旋, 代鸿章, 石煜, 高景刚. 2024. 中国不同时代典型花岗伟晶岩型锂矿特征及其对找矿预测的启示[J]. 中国地质, 51(1): 17−41.

    [48]

    周起凤, 秦克章, 唐冬梅, 丁建刚, 郭正林. 2013. 阿尔泰可可托海3号脉伟晶岩型稀有金属矿床云母和长石的矿物学研究及意义[J]. 岩石学报, 29(9): 3004−3022.

  • 加载中

(8)

(3)

计量
  • 文章访问数:  159
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2020-08-19
修回日期:  2020-10-05
刊出日期:  2024-03-25

目录