中国地质调查局 中国地质科学院主办
科学出版社出版

东昆仑造山带岩浆镍钴硫化物矿床形成构造背景探讨

张照伟, 钱兵, 王亚磊, 李文渊. 2024. 东昆仑造山带岩浆镍钴硫化物矿床形成构造背景探讨[J]. 中国地质, 51(2): 371-384. doi: 10.12029/gc20200829001
引用本文: 张照伟, 钱兵, 王亚磊, 李文渊. 2024. 东昆仑造山带岩浆镍钴硫化物矿床形成构造背景探讨[J]. 中国地质, 51(2): 371-384. doi: 10.12029/gc20200829001
ZHANG Zhaowei, QIAN Bing, WANG Yalei, LI Wenyuan. 2024. Tectonic settings discussion of magmatic nickel−cobalt sulfide deposits in the eastern Kunlun orogenic belt[J]. Geology in China, 51(2): 371-384. doi: 10.12029/gc20200829001
Citation: ZHANG Zhaowei, QIAN Bing, WANG Yalei, LI Wenyuan. 2024. Tectonic settings discussion of magmatic nickel−cobalt sulfide deposits in the eastern Kunlun orogenic belt[J]. Geology in China, 51(2): 371-384. doi: 10.12029/gc20200829001

东昆仑造山带岩浆镍钴硫化物矿床形成构造背景探讨

  • 基金项目: 国家自然科学基金地质联合基金项目“昆仑成矿带及西延镍钴锂矿产境内外对比与跨境成矿规律研究”(U2244204)、第二次青藏高原综合科学考察研究“稀贵金属(金、镍、钴、铬铁矿、铂族元素)科学考察与远景评估”(2019QZKK0801)及中国地质调查局项目(DD20240128)联合资助。
详细信息
    作者简介: 张照伟,男,1976年生,博士,研究员,主要从事岩浆铜镍硫化物矿床成矿理论研究与矿产资源调查评价工作;E-mail: zhaoweiz@126.com
  • 中图分类号: P588.1; P597

Tectonic settings discussion of magmatic nickel−cobalt sulfide deposits in the eastern Kunlun orogenic belt

  • Fund Project: Supported by the projects of the National Natural Science Foundation of China "Comparative study of across national border metallogeny of Ni−Co−Li deposits in the Kunlun orogenic belt and its western extension" (No.U2244204), the Second Comprehensive Scientific Investigation and Research Project of the Qinghai−Tibet Plateau (No.2019QZKK0801), and China Geological Survey (No.DD20240128).
More Information
    Author Bio: ZHANG Zhaowei, male, born in 1976, doctor, researcher, mainly engaged in magmatic Ni−Co sulfide deposits and ore exploration; E-mail: zhaoweiz@126.com .
  • 研究目的

    青海省夏日哈木超大型岩浆镍钴硫化物矿床是世界范围内造山带背景发现的最大岩浆镍钴硫化物矿床。此外在东昆仑造山带夏日哈木外围还发现了石头坑德等岩浆镍钴硫化物矿床,初步显示东昆仑造山带良好的镍钴硫化物矿床形成条件和巨大的找矿潜力。

    研究方法

    通过野外地质调查,室内开展岩石学、矿相学、主微量元素分析、同位素地球化学等。

    研究结果

    精确锆石U−Pb测年发现,东昆仑造山带夏日哈木等含矿镁铁—超镁铁质岩体基本形成于425~330 Ma,沿柴达木盆地南缘昆北断裂和昆中断裂自西向东依次展布。含矿岩体的岩性主要为辉石橄榄岩、辉石岩、二辉橄榄岩、纯橄岩等,其SiO2含量31.52%~53.31%,MgO含量7.5%~39.03%,Al2O3含量0.1%~16.01%,CaO含量0.23%~13.85%,MgO与SiO2、Al2O3、Na2O、K2O均呈负相关关系。稀土总量介于6.36×10−6~81.5×10−6,平均为29.92×10−6,LREE/HREE平均值为5.34,(La/Sm)N、(La/Yb)N、(Sm/Nd)N、(Gd/Yb)N平均值分别为2.58、5.99、0.76、1.78,轻重稀土分异程度较高。含矿超镁铁质岩普遍具有较为一致的微量元素分布曲线,且与镁铁质岩石表现特征类似,亏损高场强元素Ta、Nb、Ti、P等,而相对富集大离子亲石元素Rb、Th、U等。Sr、Nd同位素研究指示夏日哈木、石头坑德等岩体岩浆源区来源于软流圈地幔,同时δ34S均表现出较高的正值,揭示地壳物质同化混染是形成岩浆镍钴硫化物矿床的关键因素。

    结论

    结合区域最新构造演化认识,认为东昆仑夏日哈木等超大型岩浆镍钴硫化物矿床是伴随古特提斯裂解岩浆活动的成矿表现。该认识对丰富造山带内岩浆镍钴硫化物矿床成矿理论研究、拓展岩浆镍钴矿床找矿空间与潜力、支撑引领区域找矿实践实现新突破,均具有重要的研究价值和意义。

  • 加载中
  • 图 1  东昆仑造山带区域地质及岩浆铜镍硫化物矿床分布略图(据Zhang et al., 2019

    Figure 1. 

    图 2  浪木日镁铁—超镁铁质岩体平面(a)及剖面(b、d)地质简图和矿石岩心照片(c、e、f)及显微照片(g)

    Figure 2. 

    图 3  东昆仑镍钴硫化物矿床成矿模式简图

    Figure 3. 

    表 1  东昆仑造山带典型铜镍硫化物矿床特征对比

    Table 1.  Characteristics of magmatic Ni−Cu sulfide deposits in eastern Kunlun orogenic belt

    矿床名称 冰沟南 夏日哈木 石头坑德 浪木日
    产出位置 造山带 造山带 造山带 造山带
    形成时代 427 Ma(辉长岩)
    378 Ma(辉石岩)
    431 Ma(辉长岩)
    411 Ma(橄榄辉石岩)
    425 Ma(辉长岩)
    334 Ma(辉石岩)
    430 Ma (辉长岩)
    419 Ma(辉石岩)
    岩体面积 0.024 km² 0.9 km² 4.71 km² 0.08 km²
    主要岩性 斜长橄榄辉石岩、辉长岩、辉长辉绿岩脉 辉长岩、二辉橄榄岩、纯橄岩、辉石岩、二辉岩、方辉岩 辉石岩、橄榄二辉岩、橄榄岩、辉长岩 辉橄岩、辉石岩、辉长岩
    含矿岩相 斜长橄榄辉石岩 橄榄岩相、辉石岩相 辉石岩、含长橄辉岩及橄榄岩 辉石岩相、橄榄岩相
    矿石类型 稠密浸染状 海绵陨铁状、块状、稠密浸染状 浸染状、半块状 浸染状、海绵陨铁状、珠滴状
    围岩特征 狼牙山组大理岩及石英片岩 金水口岩群片麻状花岗岩(含星点状硫化物)和大理岩 金水口群白沙河岩组及万保沟大理岩凝灰岩 金水口岩群白沙河岩组中深变质岩系
    数据来源 张照伟等,20172018 张照伟等,2015Li et al., 2015; Song et al., 2016 Zhang et al., 2018 Namkha et al., 2020
    下载: 导出CSV
  • [1]

    Chen Xuanhua, Shao Zhaogang, Xiong Xiaosong, Gao Rui, Liu Xuejun, Wang Caifu, Li Bing, Wang Zengzhen, Zhang Yiping. 2019. Fault system, deep structure and tectonic evolution of the Qilian Orogenic Belt, Northwest China[J]. Geology in China, 46(5): 995−1020 (in Chinese with English abstract).

    [2]

    Dong Jun, Huang Hualiang, Yin Jianhua, Li Shijin, Tian Chengsheng. 2017. Geological characteristics of the Shitoukengde mafic–ultramafic rocks in East Kunlun and related metallogenic conditions[J]. Northwestern Geology, 50(2): 49−60 (in Chinese with English abstract).

    [3]

    Fan Likun, Cai Yanping, Liang Haichuan, Li Honglu. 2009. Characteristics of geological tectonic and geodynamics evolution in eastern Kunlun orogenic belt[J]. Geological Survey and Research, 33(3): 181−186 (in Chinese with English abstract).

    [4]

    He Chengguang, Wang Shiyan, Fang Huaibin, Chai Jianyu, Su Jiancang, Chang Yongwei, Wang Liulin, Chen Denghui. 2019. Redefination and ore forming significance of Maeryang Forming, Taxkorgan, Western Kunlun Mountains[J]. Geology in China, 46(3): 517−536 (in Chinese with English abstract).

    [5]

    He Shuyue, Li Dongsheng, Bai Guolong, Liu Yongle, Liu Zhigang, Sun Feifei, Zhang Yong, Qu Guangju. 2018. The report on 40Ar/39Ar age of muscovite from the Qunli Fe–polymetallic deposit in the Qimantag area, Qinghai Province[J]. Geology in China, 45(1): 201−202 (in Chinese with English abstract).

    [6]

    Jiang Changyi, Ling Jinlan, Zhou Wei, Du Wei, Wang Zixi, Fan Yazhou, Song Yanfang, Song Zhongbao. 2015. Petrogenesis of the Xiarihamu Ni–bearing layered mafic–ultramafic intrusion, east Kunlun: Implications for its extensional island arc environment[J]. Acta Petrologica Sinica, 31(4): 1117−1136 (in Chinese with English abstract).

    [7]

    Kong Huilei, Li Jinchao, Guo Xianzheng, Yao Xuegang, Jia Qunzi. 2019. The discovery of Early Devonian pyroxene peridotite from the Xiwanggou magmatic Ni–Cu sulfide ore spot in East Kunlun Mountains[J]. Geology in China, 46(1): 205−206 (in Chinese with English abstract).

    [8]

    Li C S, Ripley E M. 2009. Sulfur contents at sulfide–liquid or anhydrite saturation in silicate melts: Empirical equations and example applications[J]. Economic Geology, 104(3): 405−412. doi: 10.2113/gsecongeo.104.3.405

    [9]

    Li C S, Ripley E M, Thakurta J. 2013. Variations of olivine Fo–Ni contents and highly chalcophile element abundances in arc ultramafic cumulates, southern Alaska[J]. Chemical Geology, 351: 15−28. doi: 10.1016/j.chemgeo.2013.05.007

    [10]

    Li C S, Zhang Z W, Li W Y, Wang Y L, Sun T, Ripley E M. 2015. Geochronology, petrology and Hf–S isotope geochemistry of the newly–discovered Xiarihamu magmatic Ni–Cu sulfide deposit in the Qinghai–Tibet plateau, western China[J]. Lithos, 216–217: 224–240.

    [11]

    Li Rongshe, Ji Wenhua, Yang Yongcheng. 2008. Geology of Kunlun Orogenic Belt and Its Adjacent Area[M]. Beijing: Geological Publishing House, 1–309 (in Chinese).

    [12]

    Li Tingdong, Xiao Qinghui, Pan Guitang, Lu Songnian, Ding Xiaozhong, Liu Yong. 2019. A consideration about the development of ocean plate geology[J]. Earth Science, 44(5): 1441−1451 (in Chinese with English abstract).

    [13]

    Li Wenyuan. 2018. The primary discussion on the relationship between Paleo–Asian Ocean and Paleo–Tethys Ocean[J]. Acta Petrologica Sinica, 34(8): 2201−2210 (in Chinese with English abstract).

    [14]

    Lightfoot P C, Evans–Lamswood D. 2015. Structural controls on the primary distribution of mafic–ultramafic intrusions containing Ni–Cu–Co–(PGE) sulfide mineralization in the roots of large igneous provinces[J]. Ore Geology Reviews, 64: 354−386. doi: 10.1016/j.oregeorev.2014.07.010

    [15]

    Ling Jinlan. 2014. Metallogenesis of Nickel Deposits in Eastern Kunlun Orogenic Belt, Qinghai Province[D]. Xi'an: Chang'an University, 1–214 (in Chinese with English abstract).

    [16]

    Liu Y G, Li W Y, Lü X B. 2017. Sulfide saturation mechanism of the Poyi magmatic Cu–Ni sulfide deposit in Beishan, Xinjiang, Northwest China[J]. Ore Geology Reviews, 91: 419−431. doi: 10.1016/j.oregeorev.2017.09.013

    [17]

    Liu Y G, Li W Y, Jia Q Z, Zhang Z W. 2018. The dynamic sulfide saturation process and a possible slab break–off model for the giant Xiarihamu magmatic nickel ore deposit in the East Kunlun Orogenic Belt, Northern Qinghai–Tibet Plateau, China[J]. Economic Geology, 113(6): 1383−1417. doi: 10.5382/econgeo.2018.4596

    [18]

    Liu Y G, Lü X B, Wu C M. 2016. The migration of Tarim plume magma toward the northeast in Early Permian and its significance for the exploration of PGE–Cu–Ni magmatic sulfide deposits in Xinjiang, NW China: As suggested by Sr–Nd–Hf isotopes, sedimentology and geophysical data[J]. Ore Geology Reviews, 72: 538−545. doi: 10.1016/j.oregeorev.2015.07.020

    [19]

    Liu Jinlong, Li Zhumin, Zhou Yongheng, Wang Li, Wang Guan, Jiang Ping, Chen Liangxi, Dong Cunjie. 2023. Distribution, geology and development status of nickel deposits[J]. Geology in China, 50(1): 118–132 (in Chinese with English abstract).

    [20]

    Maier W D, Barnes S J. 2010. The Kabanga Ni sulfide deposits, Tanzania: Ⅱ. Chalcophile and siderophile element geochemistry[J]. Mineralium Deposita, 45(5): 443−460. doi: 10.1007/s00126-010-0283-x

    [21]

    Maier W D, Groves D I. 2011. Temporal and spatial controls on the formation of magmatic PGE and Ni–Cu deposits[J]. Mineralium Deposita, 46(8): 841−857. doi: 10.1007/s00126-011-0339-6

    [22]

    Mao Y W, Qin K Z, Li C S. 2014. Petrogenesis and ore genesis of the Permian Huangshanxi sulfide ore–bearing mafic–ultramafic intrusion in the Central Asian Orogenic Belt, western China[J]. Lithos, 200: 111−125.

    [23]

    Meng F C, Cui M H, Wu X K, Ren Y F. 2015. Heishan mafic–ultramafic rocks in the Qimantage area of Eastern Kunlun, NW China: Remnants of an early Paleozoic incipient island arc[J]. Gondwana Research, 27: 745−759. doi: 10.1016/j.gr.2013.09.023

    [24]

    Meng F C, Zhang J X, Cui M H. 2013. Discovery of Early Paleozoic eclogite from the East Kunlun, Western China and its tectonic significance[J]. Gondwana Research, 23(2): 825−836. doi: 10.1016/j.gr.2012.06.007

    [25]

    Meng Fancong, Jia Lihui, Ren Yufeng, Liu Qiang, Duan Xuepeng. 2017. Magmatic and metamorphic events recrded in the gneisses of the Wenquan region, east Kunlun Mountains, Northwestern China: Evidence from the zircon U–Pb geochronology[J]. Acta Petrologica Sinica, 32(12): 3691−3709 (in Chinese with English abstract).

    [26]

    Mo Xuanxue. 2019. Magmatism and deep geological process[J]. Earth Science, 44(5): 1487−1493 (in Chinese with English abstract).

    [27]

    Naldrett A J. 2004. Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration[M]. Berlin: Springer–Verlag, 1–366.

    [28]

    Naldrett A J. 2011. Fundamentals of magmatic sulfide deposits[J]. Reviews in Economic Geology, 17: 1−50.

    [29]

    Namkha N, Li J C, Liu Y G, Jia Q Z, Kong H L. 2020. Tectonomagmatic setting and Cu−Ni mineralization potential of the Gayahedonggou Complex, northern Qinghai–Tibetan Plateau[J]. Minerals, 10(11): 950. doi: 10.3390/min10110950

    [30]

    Pan Guitang, Xiao Qinghui, Zhang Kexin, Yin Fuguang, Ren Fei, Peng Zhimin, Wang Jiaxuan. 2019. Recognition of the oceanic subduction–accretion zones from the orogenic belt in continents and its important scientific significance[J]. Earth Science, 44(5): 1544−1561 (in Chinese with English abstract).

    [31]

    Pan Tong. 2015. The prospecting for magmatic liquation type nickel deposits on the southern and northern margin of Qaidam Basin, Qinghai Province: A case study of the Xiarihamu Ni–Cu sulfide deposit[J]. Geology in China, 42(3): 713−723 (in Chinese with English abstract).

    [32]

    Qi Shengsheng, Song Shuguang, Shi Lianchang, Cai Hangjia, Hu Jichun. 2014. Discovery and its geological significance of Early Paleozoic eclogite in Xiarihamu–Suhaitu area, western part of the East Kunlun[J]. Acta Petrologica Sinica, 30(11): 3345−3356 (in Chinese with English abstract).

    [33]

    Qian Bing, Zhang Zhaowei, Zhang Zhibing, Shao Ji. 2015. Zircon U–Pb geochronology of Niubiziliang mafic–ultramafic intrusion on the northwest margin of Qaidam Basin, Qinghai[J]. Geology in China, 42(3): 482−493 (in Chinese with English abstract).

    [34]

    Ren Jishun, Zhao Lei, Li Chong, Zhu Junbin, Xiao Liwei. 2017. Thinking on Chinese tectonics—Duty and responsibility of Chinese geologists[J]. Geology in China, 44(1): 33−43 (in Chinese with English abstract).

    [35]

    Salama W, Anand R, Verral M. 2016. Mineral exploration and basement mapping in areas of deep transported cover using indicator heavy minerals and paleoredox fronts, Yilgarn Craton, Western Australia[J]. Ore Geology Reviews, 72: 485−509. doi: 10.1016/j.oregeorev.2015.07.014

    [36]

    Song Guangyong, Gong Qingshun, Pang Hao, Xia Zhiyuan, Li Senming, Wu Jin, Tian Mingzhi, Huang Xuebing. 2020. High–precision sequence stratigraphy and sandbody architecture of the Lower Xiaganchaigou Formation in the slope area of Western Qaidam Basin[J]. Geology in China, 47(1): 188−200 (in Chinese with English abstract).

    [37]

    Song S G, Zhang L F, Niu Y L, Su L. 2006. Evolution from oceanic subduction to continental collision: A case study from the Northern Tibetan Plateau based on geochemical and geochronological data[J]. Journal of Petrology, 47(3): 435−455. doi: 10.1093/petrology/egi080

    [38]

    Song X Y, Yi J N, Chen L M. 2016. The giant Xiarihamu Ni–Co sulfide deposit in the East Kunlun orogenic belt, northern Tibet plateau, China[J]. Economic Geology, 111: 29−55. doi: 10.2113/econgeo.111.1.29

    [39]

    Song Xieyan, Hu Ruizhong, Chen Liemeng. 2009. Geochemical properties of Ni, Cu, PGE and its significance for mantle magma origin, evolution and magmatic sulfide deposits research[J]. Earth Science Frontiers, 16(4): 287−305 (in Chinese with English abstract).

    [40]

    Tang Qingyan, Li Jianping, Zhang Mingjie, Song Zhe, Dang Yongxi, Du Li. 2017. The volatile conditions of ore–forming magma for the Xiarihamu Ni–Cu sulfide deposit in East Kunlun orogenic belt, western China: Constraints from chemical and carbon isotopic compositions of volatiles[J]. Acta Petrologica Sinica, 33(1): 104−114 (in Chinese with English abstract).

    [41]

    Tao Y, Li C S, Song X Y. 2008. Mineralogical, petrological, and geochemical studies of the Limahe mafic–ultramatic intrusion and associated Ni–Cu sulfide ores, SW China[J]. Mineralium Deposita, 43(8): 849−872. doi: 10.1007/s00126-008-0207-1

    [42]

    Wang Guan. 2014. Metallogenesis of Nickel Deposits in Eastern Kunlun Orogenic Belt, Qinghai Province[D]. Changchun: Jilin University, 1–200 (in Chinese with English abstract).

    [43]

    Wang K Y, Song X Y, Yi J N, Chen L M. 2019. Zoned orthopyroxenes in the Ni–Co sulfide ore–bearing Xiarihamu mafic–ultramafic intrusion in northern Tibetan Plateau, China: Implications for multiple magma replenishments[J]. Ore Geology Reviews, 113: 103−122.

    [44]

    Wang Xing, Pei Xianzhi, Li Ruibao, Liu Chenjun, Chen Youxin, Li Zuochen, Zhang Yu, Hu Chenguang, Yan Quanzhi, Peng Sizhong. 2019. Conglomerate source and source area property of Lower Triassic Hongshuichuan Formation in the East Kunlun Mountains: Evidence from conglomerate characteristics and U–Pb dating[J]. Geology in China, 46(1): 155−177 (in Chinese with English abstract).

    [45]

    Wendlandt R F. 1982. Sulfide saturation of basalt and andesite melts at high pressures and temperatures[J]. American Mineralogist, 67: 877−885.

    [46]

    Xiao Peixi, Gao Xiaofeng, Hu Yunxu. 2014. Geological Settings Study on Arkin–West Part of Eastern Kunlun Orogenic Belt[M]. Beijing: Geological Publishing House, 1–261 (in Chinese).

    [47]

    Xu Zhiqin, Yang Jingsui, Hou Zengqian, Zhang Zeming, Zeng Lingsen, Li Haibing, Zhang Jianxin, Li Zhonghai, Ma Xuxuan. 2016. The progress in the study of continental dynamics of the Tibetan Plateau[J]. Geology in China, 43(1): 1−42 (in Chinese with English abstract).

    [48]

    Yang S H, Zhou M F, Lightfoot P C. 2012. Selective crustal contamination and decoupling of lithophile and chalcophile element isotopes in sulfide–bearing mafic intrusions: An example from the Jingbulake intrusion, Xinjiang, NW China[J]. Chemical Geology, 302–303: 106–118.

    [49]

    Zeng Zhongcheng, Hong Zenglin, Liu Fangxiao, Bian Xiaowei, Li Qi, Gao Feng, He Yuanfang, Jian Kunkun. 2020. Confirmation of gneissic granite of Qingbaikou period and its constraint on the timing of the Rodinia supercontinent on the Altun orogenic belt[J]. Geology in China, 47(3): 569−589 (in Chinese with English abstract).

    [50]

    Zhang Guowei, Guo Anlin. 2019. Thoughts on continental tectonics[J]. Earth Science, 44(5): 1464−1475 (in Chinese with English abstract).

    [51]

    Zhang Xueting, Yang Shengde. 2007. Study on Plate Tectonic in Qinghai Province—1:100000000 Specification for Tectonic Graph in Qinghai Province[M]. Beijing: Geological Publishing House, 1–178 (in Chinese).

    [52]

    Zhang Yu, Pei Xianzhi, Li Ruibao, Liu Chengjun, Chen Youxin, Li Zuochen, Wang Xing, Hu Chenguang, Yan Quanzhi, Peng Sizhong. 2017. Zircon U–Pb geochronology, geochemistry of the Alasimu gabbro in eastern section of East Kunlun Mountains and the closing time of Paleo–ocean basin[J]. Geology in China, 44(3): 526−540 (in Chinese with English abstract).

    [53]

    Zhang Zhaowei, Li Wenyuan, Qian Bing, Wang Yalei, Li Shijin, Liu Changzheng, Zhang Jiangwei, Yang Qi’an, You Minxin, Wang Zhian. 2015. Metallogenic epoch of the Xiarihamu magmatic Ni–Cu sulfide deposit in eastern Kunlun orogenic belt and its prospecting significance[J]. Geology in China, 42(3): 438−451 (in Chinese with English abstract).

    [54]

    Zhang Zhaowei, Qian Bing, Wang Yalei, Li Shijin, Liu Changzheng. 2016. Petrogeochemical characteristics of the Xiarihamu magmatic Ni–Cu sulfide deposit in Qinghai province and its study for olivine[J]. Northwestern Geology, 49(2): 45−58 (in Chinese with English abstract).

    [55]

    Zhang Zhaowei, Wang Yalei, Qian Bing, Li Wenyuan. 2017. Zircon SHRIMP U–Pb age of the Binggounan magmatic Ni–Cu deposit in East Kunlun Mountains and its tectonic implications[J]. Acta Geologica Sinica, 91(4): 724−735 (in Chinese with English abstract).

    [56]

    Zhang Zhaowei, Wang Chiyuan, Qian Bing, Li Wenyuan. 2018. The geochemistry characteristics of Silurian gabbro in eastern Kunlun orogenic belt and its mineralization relationship with magmatic Ni–Cu sulfide deposit[J]. Acta Petrologica Sinica, 34(8): 2262−2274 (in Chinese with English abstract).

    [57]

    Zhang Zhaowei, Wang Chiyuan, Liu Chao, Wang Yalei, Qian Bing, Li Wenyuan, You Minxin, Zhang Jiangwei. 2019. Mineralization characteristics and formation mechanism of the intrusions in Xiarihamu magmatic Ni–Cu sulfide deposit, East Kunlun Orogenic Belt, Northwest China[J]. Northwestern Geology, 52(3): 35−45 (in Chinese with English abstract).

    [58]

    Zhang Zhibing, Li Wenyuan, Zhang Zhaowei, Qian Bing. 2016. Characteristics of chromian spinels from the Xiarihamu magmatic Ni–Cu sulfide ore deposit in the Eastern Kunlun Orogenic Belt, Northwest China and their implication[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 35(5): 966–975 (in Chinese with English abstract).

    [59]

    Zhang Zhibing, Li Wenyuan, Zhang Zhaowei, Qian Bing, Liu Yuegao, Peng Xin. 2017. Mineral characteristic and geological significance of pyroxene from Xiarihamu Ni–Cu sulfide deposit in the Eastern Kunlun orogenic belt, Northwestern China[J]. Geology and Exploration, 53(5): 867−879 (in Chinese with English abstract).

    [60]

    Zhang Z W, Li W Y, Gao Y B, Li C S, Ripley E M, Kamo S. 2014. Sulfide mineralization associated with arc magmatism in the Qilian Block, western China: Zircon U–Pb age and Sr–Nd–Os–S isotope constraints from the Yulonggou and Yaqu gabbroic intrusions[J]. Mineralium Deposita, 49(2): 279−292. doi: 10.1007/s00126-013-0488-x

    [61]

    Zhang Z W, Tang Q Y, Li C S, Wang Y L, Ripley E M. 2017. Sr–Nd–Os isotopes and PGE geochemistry of the Xiarihamu magmatic sulfide deposit in the Qinghai–Tibet plateau, China[J]. Mineralium Deposita, 52: 51−68. doi: 10.1007/s00126-016-0645-0

    [62]

    Zhang Z W, Wang Y L, Qian B, Liu Y G, Zhang D Y, Lü P R, Dong J. 2018. Metallogeny and tectonomagmatic setting of Ni–Cu magmatic sulfide mineralization, number I Shitoukengde mafic–ultramafic complex, East Kunlun Orogenic Belt, NW China[J]. Ore Geology Reviews, 96: 236−246. doi: 10.1016/j.oregeorev.2018.04.027

    [63]

    Zhang Z W, Wang Y L, Wang C Y, Qian B, Li W Y, Zhang J W, You M X. 2019. Mafic–ultramafic magma activity and copper–nickel sulfide metallogeny during Paleozoic in the Eastern Kunlun Orogenic Belt, Qinghai Province, China[J]. China Geology, 2(4): 467−477.

    [64]

    陈宣华, 邵兆刚, 熊小松, 高锐, 刘雪军, 王财富, 李冰, 王增振, 张义平. 2019. 祁连造山带断裂构造体系、深部结构与构造演化[J]. 中国地质, 46(5): 995−1020.

    [65]

    董俊, 黄华良, 尹建华, 李世金, 田承胜. 2017. 东昆仑石头坑德镁铁超镁铁质岩地质特征及成矿条件分析[J]. 西北地质, 50(2): 49−60.

    [66]

    范丽琨, 蔡岩萍, 梁海川, 李宏录. 2009. 东昆仑地质构造及地球动力学演化特征[J]. 地质调查与研究, 33(3): 181−186.

    [67]

    贺承广, 王世炎, 方怀宾, 柴建玉, 苏建仓, 常永伟, 王柳林, 陈登辉. 2019. 西昆仑塔什库尔干马尔洋岩组的厘定及控矿意义[J]. 中国地质, 46(3): 517−536.

    [68]

    何书跃, 李东生, 白国龙, 刘永乐, 刘智刚, 孙非非, 张勇, 屈光菊. 2018. 青海祁漫塔格群力矿床矽卡岩中白云母40Ar/39Ar年龄报道[J]. 中国地质, 45(1): 201−202.

    [69]

    姜常义, 凌锦兰, 周伟, 杜玮, 王子玺, 范亚洲, 宋艳芳, 宋忠宝. 2015. 东昆仑夏日哈木镁铁质–超镁铁质岩体岩石成因与拉张型岛弧背景[J]. 岩石学报, 31(4): 1117−1136.

    [70]

    孔会磊, 李金超, 国显正, 姚学钢, 贾群子. 2019. 青海东昆仑希望沟铜镍矿点发现早泥盆世辉橄岩[J]. 中国地质, 46(1): 205−206.

    [71]

    李荣社, 计文化, 杨永成. 2008. 昆仑山及邻区地质[M]. 北京: 地质出版社, 1–309.

    [72]

    李廷栋, 肖庆辉, 潘桂棠, 陆松年, 丁孝忠, 刘勇. 2019. 关于发展洋板块地质学的思考[J]. 地球科学, 44(5): 1441−1451.

    [73]

    李文渊. 2018. 古亚洲洋与古特提斯洋关系初探[J]. 岩石学报, 34(8): 2201−2210.

    [74]

    凌锦兰. 2014. 柴周缘镁铁质–超镁铁质岩体与镍矿床成因研究[D]. 西安: 长安大学, 1–214.

    [75]

    刘金龙, 李伫民, 周永恒, 王力, 王冠, 姜平, 陈良玺, 董存杰. 2023. 镍矿床分布、成矿背景和开发现状[J]. 中国地质, 50(1): 118–132.

    [76]

    孟繁聪, 贾丽辉, 任玉峰, 刘强, 段雪鹏. 2017. 东昆仑东段温泉地区片麻岩记录的岩浆和变质事件: 锆石U–Pb年代学证据[J]. 岩石学报, 32(12): 3691−3709.

    [77]

    莫宣学. 2019. 岩浆作用与地球深部过程[J]. 地球科学, 44(5): 1487−1493.

    [78]

    潘桂棠, 肖庆辉, 张克信, 尹福光, 任飞, 彭智敏, 王嘉轩. 2019. 大陆中洋壳俯冲增生杂岩带特征与识别的重大科学意义[J]. 地球科学, 44(5): 1544−1561.

    [79]

    潘彤. 2015. 青海省柴达木南北缘岩浆熔离型镍矿的找矿——以夏日哈木镍矿为例[J]. 中国地质, 42(3): 713−723.

    [80]

    祁生胜, 宋述光, 史连昌, 才航加, 胡继春. 2014. 东昆仑西段夏日哈木—苏海图早古生代榴辉岩的发现及意义[J]. 岩石学报, 30(11): 3345−3356.

    [81]

    钱兵, 张照伟, 张志炳, 邵继. 2015. 柴达木盆地西北缘牛鼻子梁镁铁–超镁铁质岩体年代学及其地质意义[J]. 中国地质, 42(3): 482−493.

    [82]

    任纪舜, 赵磊, 李崇, 朱俊宾, 肖黎微. 2017. 中国大地构造研究之思考——中国地质学家的责任与担当[J]. 中国地质, 44(1): 33−43.

    [83]

    宋光永, 宫清顺, 庞皓, 夏志远, 李森明, 伍劲, 田明智, 黄学兵. 2020. 柴达木盆地西部斜坡区下干柴沟组下段高精度层序地层及砂体构型分析[J]. 中国地质, 47(1): 188−200.

    [84]

    宋谢炎, 胡瑞忠, 陈列锰. 2009. 铜、镍、铂族元素地球化学性质及其在幔源岩浆起源、演化和岩浆硫化物矿床研究中的意义[J]. 地学前缘, 16(4): 287−305.

    [85]

    汤庆艳, 李建平, 张铭杰, 宋哲, 党永西, 杜丽. 2017. 东昆仑夏日哈木镍铜硫化物矿床成矿岩浆条件: 流体挥发份化学组成与碳同位素组成制约[J]. 岩石学报, 33(1): 104−114.

    [86]

    王冠. 2014. 东昆仑造山带镍矿成矿作用研究[D]. 长春: 吉林大学, 1–200.

    [87]

    王兴, 裴先治, 李瑞保, 刘成军, 陈有炘, 李佐臣, 张玉, 胡晨光, 颜全治, 彭思钟. 2019. 东昆仑东段下三叠统洪水川组砾岩源区研究: 来自砾岩特征及锆石U–Pb年龄的证据[J]. 中国地质, 46(1): 155−177.

    [88]

    校培喜, 高晓峰, 胡云绪. 2014. 阿尔金—东昆仑西段成矿带地质背景研究[M]. 北京: 地质出版社, 1–261.

    [89]

    许志琴, 杨经绥, 侯增谦, 张泽明, 曾令森, 李海兵, 张建新, 李忠海, 马绪宣. 2016. 青藏高原大陆动力学研究若干进展[J]. 中国地质, 43(1): 1−42.

    [90]

    曾忠诚, 洪增林, 刘芳晓, 边小卫, 李琦, 高峰, 何元方, 菅坤坤. 2020. 阿尔金造山带青白口纪片麻状花岗岩的厘定及对Rodinia超大陆汇聚时限的制约[J]. 中国地质, 47(3): 569−589.

    [91]

    张国伟, 郭安林. 2019. 关于大陆构造研究的一些思考与讨论[J]. 地球科学, 44(5): 1464−1475.

    [92]

    张雪亭, 杨生德. 2007. 青海省板块构造研究——1∶100万青海省大地构造图说明书[M]. 北京: 地质出版社, 1–178.

    [93]

    张玉, 裴先治, 李瑞保, 刘成军, 陈有炘, 李佐臣, 王兴, 胡晨光, 颜全治, 彭思钟. 2017. 东昆仑东段阿拉思木辉长岩锆石U–Pb年代学、地球化学特征及洋盆闭合时限界定[J]. 中国地质, 44(3): 526−540.

    [94]

    张照伟, 李文渊, 钱兵, 王亚磊, 李世金, 刘长征, 张江伟, 杨启安, 尤敏鑫, 王治安. 2015. 东昆仑夏日哈木岩浆铜镍硫化物矿床成矿时代的厘定及其找矿意义[J]. 中国地质, 42(3): 438−451.

    [95]

    张照伟, 钱兵, 王亚磊, 李世金, 刘长征. 2016. 青海省夏日哈木铜镍矿床岩石地球化学特征及其意义[J]. 西北地质, 49(2): 45−58.

    [96]

    张照伟, 王亚磊, 钱兵, 李文渊. 2017. 东昆仑冰沟南铜镍矿锆石SHRIMP U–Pb年龄及构造意义[J]. 地质学报, 91(4): 724−735.

    [97]

    张照伟, 王驰源, 钱兵, 李文渊. 2018. 东昆仑志留纪辉长岩地球化学特征及与铜镍成矿关系探讨[J]. 岩石学报, 34(8): 2262−2274.

    [98]

    张照伟, 王驰源, 刘超, 王亚磊, 钱兵, 李文渊, 尤敏鑫, 张江伟. 2019. 东昆仑夏日哈木矿区岩体含矿性特点与形成机理探讨[J]. 西北地质, 52(3): 35−45.

    [99]

    张志炳, 李文渊, 张照伟, 钱兵. 2016. 东昆仑夏日哈木岩浆铜镍硫化物矿床铬尖晶石特征及其指示意义[J]. 矿物岩石地球化学通报, 35(5): 966−975.

    [100]

    张志炳, 李文渊, 张照伟, 钱兵, 刘月高, 彭欣. 2017. 东昆仑夏日哈木铜镍硫化物矿床辉石特征及地质意义[J]. 地质与勘探, 53(5): 867−879.

  • 加载中

(3)

(1)

计量
  • 文章访问数:  735
  • PDF下载数:  29
  • 施引文献:  0
出版历程
收稿日期:  2020-08-29
修回日期:  2020-11-23
刊出日期:  2024-03-25

目录