The law of ore-forming hydrothermal alteration and element transfer enrichment in the Tongchanggou porphyry Mo-Cu deposit in Shangri-La, Northwest Yunnan
-
摘要:
研究目的 云南省中甸地区燕山晚期是格咱岛弧最重要的斑岩型Mo多金属成矿时期,本文选择该区铜厂沟大型斑岩型钼铜矿Ⅳ号花岗闪长斑岩体作为研究对象,尝试揭示斑岩体在矿化蚀变过程中元素迁移规律和围岩蚀变与成矿的关系。
研究方法 本文对Ⅳ号花岗闪长斑岩体原岩及不同蚀变带岩分别做了主量、微量及稀土元素分析,运用标准化Isocon方法对主量、微量及稀土元素进行了质量平衡及迁移量计算分析。
研究结果 斑岩体矿化蚀变有钾硅酸盐化、绢英岩化、青磐岩化等,各个蚀变带中主要迁入SiO2、K2O、挥发分等主量元素,大量迁出Na2O;而Al2O3、TiO2、P2O5等主量元素和Zr、Nb、Hf、Th、Ta等高场强元素及稀土元素迁移活动性差,为惰性组分;Cu、Pb、Zn、Ag等成矿元素和Sb、As指示元素具有大量外迁的趋势,反映岩体外围具有找相关矿种的潜力;绢英岩化带与Mo成矿关系最为密切,其次为钾硅酸盐带;Mo与Cu二者具有不同的沉淀致矿机制,前者主要受“酸碱度转换障”控制,后者受“硅钙面”和“后生构造界面”控制;该斑岩体规模小,Mo背景值低,然其迁入量达3000%以上,约30%岩体为钼矿体,暗示深部岩浆房对成矿贡献巨大。
结论 本次工作为铜厂沟矿床的成矿物质来源、成矿作用研究和找矿勘查提供了地质参考依据。
Abstract:This paper is the result of mineral exploration engineering.
Objective The late Yanshannian epoch was the most important period of multi-metal mineralization of porphyry Mo at the Geza island arc in Zhongdian area, Yunnan province. In this paper, we chose the No.Ⅳ granitic diorite porphyry body of Tongchanggou large-scale porphyry molybdenum-copper deposit in this area as the research object, attempting to reveal the elemental migration rule of porphyry body in the process of mineralized alteration and the relationship between the peripheral rock alteration and mineralization.
Methods In this paper, the major elements, trace elements and rare earth elements in the original rock and the rocks in different alteration zones of No.Ⅳ granodiorite porphyry are analyzed respectively. The mass balance and migration amount of these major elements, trace elements and rare earth elements are calculated and analyzed by using the normalized Isocon method.
Results The results show that K-silicate alteration, sericite-quartz alteration, and propylitization were involved in the process of the mineralization and alteration of the porphyry body, and SiO2, K2O and volatile matters are major elements migrating in the alteration zones while a large amount of Na2O migrated out; while major elements such as Al2O3, TiO2 and P2O5, and high field strength elements such as Zr, Nb, Hf, Th and Ta, and rare earth elements all present poor migration activity, belonging to inert components; mineralizing elements such as Cu, Pb, Zn and Ag, and indicator elements such as Sb and As show a trend to migrate out, reflecting the potential to find relevant types of ore around the rock body; the sericite-quartz zone is the most closely related to Mo mineralization, followed by K-silicate alteration; the deposition and mineralization mechanism of Mo is different from that of Cu, the former is mainly under the control of "converted barrier of pH", and the latter is under the control of "silicon-calcium surface" and "epigenetic structure interface"; this porphyry is small in scale, with a low background value of Mo but high migration amount of over 3000%, and around 30% of the rock body is molybdenum deposit, which implies the deep-seated magma chamber contributed tremendously to the mineralization.
Conclusions This work provides a geological reference for the source of oreforming materials, the study of mineralization and the prospecting and exploration of the Tongchanggou deposit.
-
图 1 云南中甸地区大地构造(a)及地质矿产分布图(b)(据刘学龙等,2016b;刘学龙和李文昌,2017)
Figure 1.
图 6 铜厂沟钼铜矿床花岗闪长斑岩稀土元素球粒陨石标准化图(a,标准化值据Sun and Mcdonough, 1989)和微量元素蛛网图(b,标准化值据Taylor and Mclennan, 1985)
Figure 6.
表 1 铜厂沟钼铜矿床Ⅳ号斑岩体原岩及蚀变岩主量、微量、稀土元素分析结果
Table 1. Analysis results of major, trace and rare earth elements of protolith and altered rock of No.Ⅳ porphyry in Tongchanggou Mo-Cu deposit
表 2 Ⅳ号斑岩体原岩及蚀变岩元素平均含量、标准化的成分值和投图数据及元素迁移结果
Table 2. Average element content, normalized composition value, mapping data and element migration results of protolith and altered rocks of No.Ⅳ porphyry
-
Chang C F. 1997. Geology and Tectonics of Qinghai-Xizang Plateau Solid Earth Sciences Research in China[M]. Beijing: Science Press: 1-153.
Chen Yuchuan, Ye Qingtong, Feng Jing. 1996. Metallogenic Conditions and Prediction of the Ashele Cu-Zn Metallogenic Belt[M]. Beijing: Geological Publishing House, 120(in Chinese).
Chi Qinghua, Yan Mingcai. 2007. Handbook of Geochemical Element Abundance Data[M]. Beijing: Geological Publishing House, 3(in Chinese).
Fan Yuhua, Li Wengchang. 2006. Geological characteristics of the Pulang porphyry copper deposit, Yunnan[J]. Geology in China, 33(2): 352-362 (in Chinesewith English abstract).
Gao Xue, Meng Jianyin. 2017. The source of ore-forming fluids and materials in the Tongchanggou Mo-Cu deposit, northwestern Yunnan, China: Constrains from skarn mineralogy and stable isotopes[J]. Acta Petrologica Sinica, 33(7): 2161 -2174(in Chinese with English abstract).
Grant J A. 1986. The isocon diagram: A simple solution to gresens equation for metasomatic alteration[J]. Economic Geology, 81(8): 1976-1982. doi: 10.2113/gsecongeo.81.8.1976
Grant J A. 2005. Isocon analysis: A brief review of the method and applications[J]. Physics and Chemistry of the Earth, 30(17-18): 997-1004. doi: 10.1016/j.pce.2004.11.003
Gresens R L. 1967. Composition-volume relationships of metasomatism[J]. Chemical Geology, 2: 47-65. doi: 10.1016/0009-2541(67)90004-6
Guo S, Ye K, Chen Y, Liu J B. 2009. A normalization solution to mass transfer illustration of multiple progressively altered samples using the isocon diagram[J]. Economic Geology, 104(6): 881-886. doi: 10.2113/gsecongeo.104.6.881
Guo Shun, Ye Kai, Chen Yi, Liu Jingbo, Zhang Lingmin. 2013. Introduction of mass-balance calculation method for component transfer during the opening of a geological system[J]. Acta Petrologica Sinica, 29(5): 1486-1498(in Chinese with English abstract).
He J, Wang B D, Wang L Q, Wang Q Y, Yan G C. 2019. Geochemistry and geochronology of the Late Cretaceous Tongchanggou Mo-Cu deposit, Yidun Terrane, SE Tibet; implications for post-collisional metallogenesis[J]. Journal of Asian Earth Sciences, 172: 308-327. doi: 10.1016/j.jseaes.2018.09.015
Hezarkhani A, Williams-Jones A E, Gammons C H. 1999. Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran[J]. Mineralium Deposita, 34(8): 770-783. doi: 10.1007/s001260050237
Hou Zengqian, Yang Yueqing, Qu Xiaoming, Huang Dianhao, Lü Qingtian, Wang Haiping, Yu Jinjie, Tang Shaohua. 2004. Tectonic evolution and mineralization systems of the Yidun arc orogen in Sanjiang Region, China[J]. Acta Geologica Sinica, 78(1): 109-120(in Chinese with English abstract).
Hou Zengqian, Yang Yueqing, Wang Haiping. 2003. Collision Orogeny and Metallogenic System of Yidun Island Arc in Sanjiang[M]. Beijing: Geological Publishing House, 1-345(in Chinese).
Huang Dingzhu. 2017. Exploration Report of Tongchanggou Mo-Cu Deposit in Shangri La, Yunnan Province [R]. Kunming: Yunnan Geological Survey Institute, 23-37(in Chinese).
Li W C, Yin G H, Yu H J, Liu X L. 2014. The Yanshanian granites and associated Mo-polymetallic mineralization in the Xiangcheng-Luoji area of the Sanjiang-Yangtze conjunction zone in southwest China[J]. Acta Geologica Sinica, 88(6): 1742-1756. doi: 10.1111/1755-6724.12341
Li W C, Yu H J, Gao X, Liu X L, Wang J H. 2017. Review of Mesozoic multiple magmatism and porphyry Cu-Mo (W) mineralization in the Yidun Arc, eastern Tibet Plateau [J]. Ore Geology Reviews, 90: 795-812. doi: 10.1016/j.oregeorev.2017.03.009
Li W C, Zeng P S, Hou Z Q, White N C. 2011. The pulang porphyry copper deposit and associated felsic intrusions in Yunnan Province, southwest China[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 106(1): 79-92. doi: 10.2113/econgeo.106.1.79
Li Wenchang, Yu Haijun, Yin Guanghou, Cao Xiaomin, Huang Dingzhu, Dong Tao. 2012. Re-Os dating of molybdenite from Tongchanggou Mo-polymetal lic deposit in northwest Yunnan and its metal logenic environment[J]. Mineral Deposits, 31(2): 282-292(in Chinese with English abstract).
Li Wenchang, Yin Guanghou, Yu Haijun, Lu Yingxiang, Liu Xuelong. 2011. The porphyry metallogenesis of Geza volcanic magmatic arc in NW Yunnan[J]. Acta Petrologica Sinica, 27(9): 2541-2552(in Chinese with English abstract).
Liu Shusheng, Yang Yongfei, Guo Linnan, Nie Fei, Peng Zhiming, Pan Guitang. 2018. Tectonic characteristics and metallogeny in Southeast Asia[J]. Geology in China, 45(5): 863-889(in Chinese with English abstract).
Liu X L, Chen J H, Li W C, Zhang N, Yang F C. 2019. Late Cretaceous magmatism and porphyry Mo-Cu polymetallic mineralization in the Tongchanggou Intrusion, Geza Arc, Southwestern China[J]. Arabian Journal of Geosciences, 90: 795-812.
Liu Xuelong, Li Wenchang, Zhang Na, Yang Fucheng, Kang Jian, Zhang Biao. 2016a. Characteristics of sulfur and lead isotopes and tracing of mineral sources in the Tongchanggou porphyry Mo(Cu) deposit at the southern edge of Geza arc belt, Yunnan[J]. Geology in China, 43(1): 209-220(in Chinese with English abstract).
Liu Xuelong, Li Wenchang, Zhang Na, Lai Anqi, Li Zhe, Yang FuCheng. 2016b. Metallogenic system of the Yanshanian porphyry Mo polymetallic deposit in the Xiangcheng-Lijiang suture zone, western margin of Yangtze block, SW China[J]. Acta Petrologica Sinica, 32(8): 2281-2302(in Chinese with English abstract).
Liu Xuelong, Li Wenchang, Zhang Na. 2014. Sulfur and lead isotope tracing of Tongchanggou Cu-Mo deposit in the southern margin of Geza island arc, Yunnan Province [J]. Mineral Deposits, 33(S1): 25-26 (in Chinese).
Liu Xuelong, Li Wenchang. 2017. Xiangcheng-Luoji Molybdenum Polymetallic Deposit and Metallogenic System in the Western Margin of Yangtze Block[M]. Kunming: Yunnan Science and Technology Press: 1-162(in Chinese).
Maclean W H, Kranidiotis P. 1987. Immobile elements as monitors of mass-transfer in hydrothermal alteration-Phelps dodge massive sulfide deposit, Matagami, Quebec[J]. Economic Geology, 82(4): 951-962. doi: 10.2113/gsecongeo.82.4.951
Maclean W H. 1990. Mass change calculations in altered rock series[J]. Mineralium Deposita, 25: 44 -49. doi: 10.1007/BF03326382
Montoya J W, Hemley J J. 1975. Activity relations and stabilities in alkali feldspar and mica alterations[J]. Economic Geology, 70(3): 577-583. doi: 10.2113/gsecongeo.70.3.577
Ouyang Zongyin, Li Hui, Liu Hanzhong. 1990. Geochemical Anomaly Model of Typical Nonferrous Metal Deposits[M]. Beijing: Science Press: 1-178(in Chinese).
Rempel K U, Williams-Jones A E, Migdisov A A. 2008. The solubility of molybdenum dioxide and trioxide in HCl-bearing water vapour at 350℃ and pressures up to 160 bars[J]. Geochimica et Cosmochimica Acta, 72(13): 3074-3083. doi: 10.1016/j.gca.2008.04.015
Sillhoe R H. 2010. Porphyry copper systems[J]. Economic Geology, 105(1): 3-41. doi: 10.2113/gsecongeo.105.1.3
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. [C]// Saunders A D, Norry M J (eds. ). Magmatism in the Ocean Basins. London: Geological Society Special Publications, 42(1): 313-345
Tan Rongyu, Chen Jianlin, Xu Jifeng, Huang Wenlong, Tang Wanli. 2018. Petrogenesis of the ca. 80 Ma felsic-intermediate magmatism in the Zhongdian arc terrane and western Yangtze block: Implications for post-collisional metallogenesis[J]. Acta Petrologica Sinica, 34(5): 1413-1426(in Chinese with English abstract).
Taylor S R, Mclennan S. 1985. The Continental Crust: It's Composition and Evolution[M]. Oxford: Blackwall Scientific Publications, 54(2): 209-230.
Tian Guangli, Chen Shouyu, Dong Kai1, Zhao Jiangnan, Qin Wei, Chen Junlin. 2019. Elements migration and mass change calculations in alteration zones of Zheyaoshan VMS deposit, Baiyinchang, Gansu Province[J]. Mineral Deposits, 38(1): 80-100(in Chinese with English abstract).
Vigneresse J L. 2006. Element mobility in melts during successive intrusions of crustal-derived magmas and Sn-W mineralization[J]. Resource Geology, 56(3): 293-314. doi: 10.1111/j.1751-3928.2006.tb00285.x
Vigneresse J L, Duley S, Chattaraj P K. 2011. Describing the chemical character of a magma[J]. Chemical Geology, 287(1/2): 102-113.
Vigneresse J L. 2009. Evaluation of the chemical reactivity of the fluid phase through hard-soft acid-base concepts in magmatic intrusions with applications to ore generation[J]. Chemical Geology, 263(1/4): 69-81.
Vigneresse J L. 2012. Chemical reactivity parameters (HSAB) applied to magma evolution and ore formation[J]. Lithos, 153: 154-164. doi: 10.1016/j.lithos.2012.03.014
Wang B Q, Zhou M F, Li J W, Yan D P. 2011. Late Triassic porphyritic intrusions and associated volcanic rocks from the Shangri-La region, Yidun terrane, Eastern Tibetan Plateau: Adakitic magmatism and porphyry copper mineralization[J]. Lithos, 127(1/2): 24-38.
Wang Lei, Hu Zhaoguo, Li Xiangmin, Yan Haizhong, Yang Chao. 2020. Geochemical characteristics of stream sediments and prediction of mining prospects in the Wulandaban—Zhazigou area, Danghe South Mountain, Gansu Province [J]. Geology in China, 47(2): 516-527 (in Chinese with English abstract).
Wang X S, Bi X W, Leng C B, Zhong H, Tang H F, Chen Y W, Yin G H, Huang D Z, Zhou M F. 2014. Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo Cu (W) mineralizationin the southern Yidun arc, SW China: Implications for metallogenesis and geodynamic setting[J]. Ore Geology Reviews, 61: 73-95. doi: 10.1016/j.oregeorev.2014.01.006
Xiang Kun. 2019. Laba Porphyry-Skarn Cu-Mo Deposit in Northwestern Yunnan: Alteration Mineralization Characteristics and Metallogenic Model[D]. Kunming: Kunming University of Science and Technology, 1-131(in Chinese with English abstract).
Yang L Q, Deng J, Gao X, He W Y, Meng J Y, Santosh M, Yu H J, Yang Z, Wang D. 2016. Timing of formation and origin of the Tongchanggou porphyry-skarn deposit: Implications for Late Cretaceous Mo-Cu metallogenesis in the southern Yidun Terrane, SE Tibetan Plateau [J]. Ore Geology Reviews, 81(Pt. 2): 1015-1032.
Yang Liqiang, Gao Xue, He Wenyan. 2015. Late Cretaceous porphyry metallogenic system of the Yidun arc, SW China[J]. Acta Petrologica Sinica, 31(11): 3155-3170(in Chinese with English abstract).
Yang Z M, Cooke D R. 2019. Porphyry Copper Deposits in China[M]. Chang Z S, Goldfarb R (eds. ). Mineral Deposits of China. Untied States: Society of Economic Geologists Special Publication, 133-187.
Yao Fengliang, Sun Fengyue. 2006. Ore Deposit Geology[M]. Beijing: Geological Publishing House, 132-153 (in Chinese).
Yao Xue, Li Wenchang, Liu Xuelong, Zhang Na, Yang Fucheng, Yan Tinglong, Wang Shuaishuai, Luo Ying. 2017. Geochemistry and zircon U- Pb age of the Tongchanggou porphyry Cu-Mo deposit on the southern margin of Geza arc, northwest Yunnan Province, and its geological significance[J]. Geological Bulletin of China, 36(10): 1800-1813(in Chinese with English abstract).
Ye Tianzhu, Lü Zhicheng, Pang Zhenshan. 2014. Prospecting Prediction Theory and Method in Exploration Area (General) [M]. Beijing: Geological Publishing House, 1-375(in Chinese).
Ye Tianzhu, Wei Changshan, Wang Yuwang, Zhu Xinyou, Pang Zhenshan. 2017. Theory and Method of Ore Prospecting Prediction in Exploration Area[M]. Beijing: Geological Publishing House, 1-592(in Chinese).
Yu H J, Li W C, Yin G H, Lu Y X, Cao X M, Huang D Z, Dong T, Zhang Y M. 2014. Zircon U-Pb ages of the granodioritic porphyry in the Laba molybdenum deposit, Yunnan, SW China and its geological implication[J]. Acta Geologica Sinica, 88(4): 1183-1194. doi: 10.1111/1755-6724.12282
Yu Haijun, Li Wenchang, Yin Guanghou, Wang Jianhua, Jiang Wentao, Wu Song, Tang Zhong. 2015. Geochronology, geochemistry and geological significance of the intrusion from the Tongchanggou Mo-Cu deposit, northwestern Yunnan[J]. Acta Petrologica Sinica, 31(11): 3217-3233(in Chinese with English abstract).
Zhang Keqing, Yang Yong. 2002. Introduction of the method for mass balance calculation in altered rocks[J]. Geological Science and Technology Information, (3): 104-107(in Chinese with English abstract).
Zu B, Xue C J, Zhao Y, Qu W J, Li C, Symons D T A, Du A D. 2015. Late cretaceous metallogeny in the Zhongdian area: Constraints from Re-Os dating of molybdenite and pyrrhotite from the Hongshan Cu deposit, Yunnan, China[J]. Ore Geology Reviews, 64: 1-12. doi: 10.1016/j.oregeorev.2014.06.009
陈毓川, 叶庆同, 冯京. 1996. 阿舍勒铜锌成矿带成矿条件和成矿预测[M]. 北京: 地质出版社: 120.
迟清华, 鄢明才. 2007. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社: 3.
范玉华, 李文昌. 2006. 云南普朗斑岩铜矿床地质特征[J]. 中国地质, 33(2): 352-362. http://geochina.cgs.gov.cn/cn/article/id/20060214
高雪, 孟健寅. 2017. 滇西北铜厂沟Mo-Cu矿床成矿流体和成矿物质来源: 矽卡岩矿物学与稳定同位素证据[J]. 岩石学报, 33(7): 2161-2174.
郭顺, 叶凯, 陈意, 刘景波, 张灵敏. 2013. 开放地质体系中物质迁移质量平衡计算方法介绍[J]. 岩石学报, 29(5): 1486-1498.
侯增谦, 杨岳清, 王海平. 2003. 三江义敦岛弧碰撞造山过程与成矿系统[M]. 北京: 地质出版社: 1-345.
侯增谦, 杨岳清, 曲晓明, 黄典豪, 吕庆田, 王海平, 余金杰, 唐绍华. 2004. 三江地区义敦岛弧造山带演化和成矿系统[J]. 地质学报, 78(1): 109-120.
黄定柱. 2017. 云南省香格里拉市铜厂沟钼铜矿勘探报告[R]. 昆明: 云南省地质调查院, 23-37.
李文昌, 尹光侯, 余海军, 卢映祥, 刘学龙. 2011. 滇西北格咱火山-岩浆弧斑岩成矿作用[J]. 岩石学报, 27(9): 2541-2552.
李文昌, 余海军, 尹光侯, 曹晓民, 黄定柱, 董涛. 2012. 滇西北铜厂沟钼多金属矿床辉钼矿Re-Os同位素年龄及其成矿环境[J]. 矿床地质, 31(2): 282-292.
刘书生, 杨永飞, 郭林楠, 聂飞, 彭智敏, 潘桂堂. 2018. 东南亚大地构造特征与成矿作用[J]. 中国地质, 45(5): 863-889. http://geochina.cgs.gov.cn/cn/article/doi/10.12029/gc20180501
刘学龙, 李文昌, 张娜. 2014. 云南格咱岛弧南缘铜厂沟铜钼矿床硫铅同位素示踪研究[J]. 矿床地质, 33(S1): 25-26.
刘学龙, 李文昌, 张娜, 杨富成, 康健, 张彪. 2016a. 云南格咱岛弧带南缘铜厂沟斑岩型铜钼矿床硫铅同位素特征与成矿物质来源示踪[J]. 中国地质, 43(1): 209-220. http://geochina.cgs.gov.cn/cn/article/id/20160115
刘学龙, 李文昌, 张娜, 赖安琦, 李喆, 杨富成. 2016b. 扬子西缘乡城-丽江结合带燕山期斑岩Mo多金属矿床成矿系统[J]. 岩石学报, 32(8): 2281-2302.
刘学龙, 李文昌. 2017. 扬子西缘结合带乡城-洛吉钼多金属矿床及成矿系统[M]. 昆明: 云南科技出版社: 1-162.
欧阳宗圻, 李惠, 刘汉忠. 1990. 典型有色金属矿床地球化学异常模式[M]. 北京: 科学出版社: 1-178.
谈荣钰, 陈建林, 许继峰, 黄文龙, 唐婉丽. 2018. 跨越中甸弧到扬子地块西缘的~80Ma中酸性火成岩成因及其对碰撞后成矿的意义[J]. 岩石学报, 34(5): 1413-1426.
田光礼, 陈守余, 董凯, 赵江南, 覃伟, 陈俊霖. 2019. 甘肃白银厂折腰山VMS矿床蚀变带元素迁移及定量计算[J]. 矿床地质, 38(1): 80-100.
王磊, 胡兆国, 李向民, 闫海忠, 杨超. 2020. 甘肃省党河南山乌兰达坂沟—扎子沟地区水系沉积物地球化学特征及找矿远景预测[J]. 中国地质, 47(2): 516-527. http://geochina.cgs.gov.cn/cn/article/doi/10.12029/gc20200217
向坤. 2019. 滇西北拉巴斑岩-矽卡岩型铜钼矿床: 蚀变-矿化特征及成矿模式[D]. 昆明: 昆明理工大学: 1-131.
杨立强, 高雪, 和文言. 2015. 义敦岛弧晚白垩世斑岩成矿系统[J]. 岩石学报, 31(11): 3155-3170.
姚凤良, 孙丰月. 2006. 矿床学教程[M]. 北京: 地质出版社, 132-153.
姚雪, 李文昌, 刘学龙, 张娜, 杨富成, 彦廷龙, 王帅帅, 罗应. 2017. 滇西北格咱岛弧带南缘铜厂沟斑岩铜钼矿床花岗闪长斑岩地球化学特征、锆石U-Pb年龄及其地质意义[J]. 地质通报, 36(10): 1800-1813.
叶天竺, 吕志成, 庞振山. 2014. 勘查区找矿预测理论与方法(总论)[M]. 北京: 地质出版社, 1-375.
叶天竺, 韦昌山, 王玉往, 祝新友, 庞振山. 2017. 勘查区找矿预测理论与方法(分论)[M]. 北京: 地质出版社, 1-592.
余海军, 李文昌, 尹光候, 王建华, 姜文涛, 吴松, 唐忠. 2015. 滇西北铜厂沟Mo-Cu矿床岩体年代学、地球化学及其地质意义[J]. 岩石学报, 31(11): 3217-3233.
张可清, 杨勇. 2002. 蚀变岩质量平衡计算方法介绍[J]. 地质科技情报, (3): 104-107.