-
摘要:
研究目的 铬铁矿的形成与基性—超基性岩有关,对于铬铁矿的成因机制存在诸多争议,深化铬铁矿的成因研究对于实现铬铁矿找矿突破具有重要意义。
研究方法 通过对前人研究成果的梳理,总结了铬铁矿的成矿类型、成矿时代、矿体特征和成因研究进展。
研究结果 铬铁矿资源和产量高度集中,南非、哈萨克斯坦、芬兰和印度4国的铬铁矿储量占全球的95%以上,南非、哈萨克斯坦和土耳其等国主宰了世界铬铁矿的供应市场。铬铁矿类型主要有原生铬铁矿和次生铬铁矿两大类,原生铬铁矿主要是层状和豆荚状2种类型,次生铬铁矿主要是铬铁矿海滨(或海成)砂矿。层状铬铁矿通常形成于稳定克拉通内部的基性—超基性侵入体内,通常规模巨大。豆荚状铬铁矿与蛇绿岩密切共生,分布最为广泛,但矿床规模普遍较小,其产状、结构构造和共生矿物组合等存在较大差异。豆荚状铬铁矿主要形成于显生宙,少量形成于中—新元古代,层状铬铁矿主要形成于元古代,集中于古元古代。
结论 对于层状铬铁矿成因模式争议较小,主要有同化混染硅铝质围岩和岩浆混合两种模式;而豆荚状铬铁矿的成因模式较多,尚未达成共识,未来应重点聚焦铬的富集机制研究。
Abstract:This paper is the result of mineral exploration engineering.
Objective The formation of chromite is generally related to basic-ultrabasic rocks. However, the genetic mechanism of chromite deposit remains controversial. Deciphering the genesis of chromite deposit is of great significance for ore exploration.
Methods This review work summarizes the ore types, metallogenic age, ore body characteristics and genetic mechanisms of chromite based on previous research results. New perspectives are also provided.
Results The chromite resources and production are highly concentrated at South Africa, Kazakhstan, Finland and India, accounting for more than 95% of the global chromite reserves. The global chromite supply market is dominated by South Africa, Kazakhstan and Turkey. There are two major chromite types, namely primary and secondary chromite. Primary chromite is mainly stratiform and podiform, while secondary chromite is mainly seashore placer chromite (or marine placer chromite). The stratiform chromite deposit is commonly huge in scale and formed associated with the basic-ultrabasic intrusions within stable cratons. The podiform chromite deposit is widely distributed and closely symbiotic with ophiolite, but the scale of this deposit is generally small. There are obvious differences in the occurrence, fabric, structure and paragenetic association of the two different chromite types. The podiform chromite is mainly formed in the Phanerozoic, with a small amount formed in the Meso-Neoproterozoic. The stratiform chromite is mainly formed in the Proterozoic and concentrated in the Paleoproterozoic.
Conclusions The genetic model of the stratiform chromite deposit is less controversial, mainly focusing on the contamination mechanism of salic roof rocks and the magma mixture. In contrast, little consensus has been reached on the genetic models of podiform chromite. The enrichment mechanism of chromium is a key issue for more scientific constraints in the future.
-
Key words:
- chromite /
- genetic type /
- metallogenic age /
- genetic model /
- research progress /
- mineral exploration engineering
-
图 1 全球铬铁矿资源分布与矿床类型(据Koleli and Demir, 2016修改)
Figure 1.
图 3 想蛇绿岩套剖面中铬铁矿的产出部位(据Paktunc, 1990修改)
Figure 3.
图 4 蛇绿岩豆荚状、层状铬铁矿时代分布(据Stowe, 1994)
Figure 4.
图 5 在活动扩张脊下部的洋壳地幔最上部地幔中豆荚状铬铁矿的成因与演化(a);方辉橄榄岩中发育玄武质似墙状的岩浆通道,豆荚状铬铁矿在通道的“洞穴”内形成(b)(据Lago et al., 1982修改)
Figure 5.
图 6 铬铁矿的熔-岩反应形成与构造背景关系简图(据Zhou and Robinson, 1997修改)
Figure 6.
图 7 高Cr和高Al铬铁岩的熔-岩反应模式(据Zhou et al., 1994修改)
Figure 7.
图 8 豆荚状铬铁矿形成的地幔柱模式(据Yang et al., 2021修改)
Figure 8.
图 9 豆荚状铬铁矿形成的板片回撤模式图(据Griffin et al., 2016修改)
Figure 9.
图 10 豆荚状铬铁矿形成的板片断离模式图(据Zhou et al., 2014修改)
Figure 10.
图 11 豆荚状铬铁矿形成的流体不混溶模式图(据苏本勋等,2021修改)
Figure 11.
图 12 层状铬铁矿形成模式图(据Naldrett et al., 2012修改)
Figure 12.
表 1 世界铬铁矿主要资源国铬铁矿储量
Table 1. Chromite reserves in major chromite resource countries in the world
表 2 世界铬铁矿主要资源国铬铁矿产量统计(万t)
Table 2. Chromite production in main chromite resource countries in the world (Ten thousand tons)
-
Arai S. 2013. Conversion of low-pressure chromitites to ultrahigh-pressure chromitites by deep recycling: A good inference[J]. Earth and Planetary Science Letters, 379: 81-87. doi: 10.1016/j.epsl.2013.08.006
Arai S, Yurimoto H, 1994. Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle-melt interaction products[J]. Economic Geology, 89(6): 1279-1288. doi: 10.2113/gsecongeo.89.6.1279
Bao Peisheng. 2019. Proterozoic ophiolite and chromite[J]. Acta Petrologica Sinia, 35(10): 2971-2988 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.03
Bao Peisheng, Wang Xibin. 1999. Chinese Chromite[M]. Beijing: Science Press (in Chinese).
Bao Peisheng, Wang Xibin, Hao Zhiguo, Peng Genyong, Zhang Rangmin, Chen Qingzhi, Yang Tinghui. 1990. A new idea about the genesis of the aluminum-rich podiform chromite deposit——with the Sartuohai chromite deposit of Xinjiang as an example[J]. Mineral Deposits, 9(2): 97-111 (in Chinese with English abstract).
Chen Yanhong, Yang Jingsui. 2017. Formation of podiform chromitite deposits: Review and prospects[J]. Earth Science, 43(4): 991-1010 (in Chinese with English abstract).
Das S, Basu A R, Mukherjee B K, 2017. In situ peridotitic diamond in Indus ophiolite sourced from hydrocarbon fluids in the mantle transition zone[J]. Geology, 45: 755-758.
Eales H V, 2000. Implications of the chromium budget of the Western Limb of the Bushveld Complex[J]. South African Journal of Geology, 103(2): 141-150. doi: 10.2113/103.2.141
Fisher. 1929. Origin of chromite deposits[J]. Economic Geology, 24: 691-721. doi: 10.2113/gsecongeo.24.7.691
Gong Xuejing, Zhang Tengjiao, Xiao Rongge. 2013. Research status and progress on the genesis of podiform chromite deposits in China[J]. Geological Journal of China Universities, 19(S): 275-276 (in Chinese with English abstract).
Griffin W L, Afonso J C, Belousova E A, Gain S E, Gong X H, González-Jiménez J M, Howell D, Huang J X, McGowan N, Pearson N J, Satsukawa T, Shi R, Williams P, Xiong Q, Yang J S, Zhang M, O Reilly S Y. 2016. Mantle recycling: Transition zone metamorphism of Tibetan ophiolitic peridotites and its tectonic implications[J]. Journal of Petrology, 57(4): 655-684. doi: 10.1093/petrology/egw011
Gujar A R, Ambre N V, Iyer S D, Mislankar P G, Loveson V J. 2010a. Placer chromite along south Maharashtra, central west coast of India[J]. Current Science (Bangalore), 99(4): 492-499.
Gujar A R, Ambre N V, Mislankar P G, Iyer S D. 2010b. Ilmenite, magnetite and chromite beach placers from South Maharashtra, central west coast of India[J]. Resource Geology, 60(1): 71-86. doi: 10.1111/j.1751-3928.2010.00115.x
Guo Jia, Yi Jining, Wang Hui. 2018. Comparative study on evaluation factors of global major strategic mineral lists[J]. Modern Mining, 596(12): 1-5 (in Chinese).
Hamdy M M, Lebda E M. 2011. Al-compositional variation in ophiolitic chromitites from the south Eastern Desert of Egypt: Petrogenetic implications[J]. Journal of Geology and Mining Research, 3(9): 232-250.
Hao Zhiguo. 1989. Review of the podiform chromitite deposits[J]. Geology and Geochemistry, (3): 15-20 (in Chinese).
Howell D, Griffin W L, Yang J, Gain S, Stern R A, Huang J X, Jacob D E, Xu X, Stokes A J, O'Reilly S Y, Pearson N J. 2015. Diamonds in ophiolites: Contamination or a new diamond growth environment?[J]. Earth and Planetary Science Letters, 430: 284-295. doi: 10.1016/j.epsl.2015.08.023
Hu Zhenxing, Niu Yaoling, Liu Yi, Zhang Guorui, Sun Wenli, Ma Yuxin. 2014. Petrogenesis of ophiolite-type chromite deposits in China and some new perspectives[J]. Geological Journal of China Universities, 20(1): 9-27 (in Chinese with English abstract).
Huang Yang, Deng Hao. 2020. FIB-TEM study of mineral inclusions in chromite[J]. Earth Science, 45(12): 4604-4616 (in Chinese with English abstract).
Irvine T N. 1975. Crystallization sequences in the Muskox intrusion and other layered intrusions——Ⅱ. Origin of chromitite layers and similar deposits of other magmatic ores[J]. Geochimica et Cosmochimica Acta, 39: 991-1020. doi: 10.1016/0016-7037(75)90043-5
Irvine T N, 1977. Origin of chromitite layers in the Muskox intrusion and other stratiform intrusions: A new interpretation[J]. Geology, 5: 273-277.
Johnson P R, Andresen A, Collins A S, Fowler A R, Fritz H, Ghebreab W, Kusky T, Stern R J. 2011. Late Cryogenian-Ediacaran history of the Arabian-Nubian Shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen[J]. Journal of African Earth Sciences, 61(3): 167-232. doi: 10.1016/j.jafrearsci.2011.07.003
Koleli N, Demir A. 2016. Chromite (Chapter 11)[M]. Resource Recovery and Pollution Prevention: 245-263.
Kontinen A. 1987. An early Proterozoic ophiolite: The Jormua mafic-ultramafic complex, Northeastern Finland[J]. Precambrian Research, 35: 313-341. doi: 10.1016/0301-9268(87)90061-1
Lago B L, Michel R, Adolphe N. 1982. Podiform chromite ore bodies: A genetic model[J]. Journal of Petrology, 23: 103-125. doi: 10.1093/petrology/23.1.103
Liu Ting, Zheng Youye, Wu Jun. 2021. Genesis of Fuchuan chromitites at South Anhui, implications from the parental melts[J]. Earth Science, 46(5): 1613-1629 (in Chinese with English abstract).
MacLeod C J, Lissenberg C J, Bibby L E. 2013. "Moist MORB" axial magmatism in the Oman ophiolite: The evidence against a mid-ocean ridge origin[J]. Geology, 41(4): 459-462. doi: 10.1130/G33904.1
Matveev S, Ballhaus C. 2002. Role of water in the origin of podiform chromitite deposits[J]. Earth and Planetary Science Letters, 203(1): 235-243. doi: 10.1016/S0012-821X(02)00860-9
McGowan N M, Griffin W L, González-Jiménez J M, Belousova E, Afonso J C, Shi R D, McCammon C A, Pearson N J, O'Reilly S Y. 2015. Tibetan chromitites: Excavating the slab graveyard[J]. Geology, 43(2): 179-182. doi: 10.1130/G36245.1
Mondal S K, Mathez E A. 2007. Origin of the UG2 chromitite layer, Bushveld Complex[J]. Journal of Petrology, 48(3): 495-510. doi: 10.1093/petrology/egl069
Mukasa S B, Wilson A H, Carlson R W. 1998. A multielement geochronologic study of the Great Dyke, Zimbabwe: Significance of the robust and reset ages[J]. Earth and Planetary Science Letters, 164(1/2): 353-369.
Naldrett A J, Wilson A, Kinnaird J, Yudovskaya M, Chunnett G. 2012. The origin of chromitites and related PGE mineralization in the Bushveld Complex: New mineralogical and petrological constraints[J]. Mineralium Deposita, 47(3): 209-232. doi: 10.1007/s00126-011-0366-3
Paktunc A D. 1990. Origin of podiform chromite deposits by multistage melting, melt segregation and magma mixing in the upper mantle[J]. Ore Geology Reviews, 5: 211-222. doi: 10.1016/0169-1368(90)90011-B
Parrish R R. 1989. U-Pb geochronology of the Cape Smith Belt and Sugluk block, northern Quebec[J]. Geoscience Canda, 16(3): 126-130.
Patchett J P, Kouvo O, Hedge C E, Tatsumoto M. 1981. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes[J]. Contributions to Mineralogy and Petrology, 78: 279-297.
Ruskov T, Spirov I, Georgieva M, Yamamoto S, Green H W, McCammon C A, Dobrzhinetskaya L F. 2010. Mossbauer spectroscopy studies of the valence state of iron in chromite from the Luobusa massif of Tibet: Implications for a highly reduced deep mantle[J]. Journal of Metamorphic Geology, 28(5): 551-560. doi: 10.1111/j.1525-1314.2010.00878.x
Satsukawa T, Griffin W L, Piazolo S, O Reilly S Y. 2015. Messengers from the deep: Fossil wadsleyite-chromite microstructures from the mantle transition zone[J]. Scientific Reports, 5(1): 16484. doi: 10.1038/srep16484
Schoenberg R, Kruger F J, Nagler, T F, Meisel T, Kramers J D. 1999. PGE enrichment in chromitite layers and the Merensky Reef of the western Bushveld Complex: A Re-Os and Rb-Sr isotope study[J]. Earth and Planetary Science Letters, 172(1): 49-64.
Schulz K J, Deyoung J H, Seal R R, Bradley D C. 2017. Critical mineral resources of the United States: Economic and environmental geology and prospects for future supply[J]. U.S. Geological Survey Professional Paper, 1802: 1-797.
Spandler C, Mavrogenes J, Arculus R. 2005. Origin of chromitites in layered intrusions: Evidence from chromite-hosted melt inclusions from the Stillwater Complex[J]. Geology, 33(11): 893-896. doi: 10.1130/G21912.1
Stern R J, Johnson P R, Kroner A, Yibas B. 2004. Neoproterozoic ophiolites of the Arabian-Nubian Shield[J]. Developments in Precambrian Geology, 13: 95-128.
Stowe C W. 1994. Compositions and tectonic settings of chromite deposits through time[J]. Economic Geology, 89: 528-546. doi: 10.2113/gsecongeo.89.3.528
Su B X, Robinson P T, Chen C, Xiao Y, Melcher F, Bai Y, Gu X Y, Uysal I, Lenaz D. 2020. The occurrence, origin, and fate of water in chromitites in ophiolites[J]. American Mineralogist, 105(6): 894-903. doi: 10.2138/am-2020-7270
Su B, Liu X, Chen C, Robinson P T, Xiao Y, Zhou M, Bai Y, Uysal I, Zhang P. 2021. A new model for chromitite formation in ophiolites: Fluid immiscibility[J]. Science China (Earth Sciences), 64(2): 220-230. doi: 10.1007/s11430-020-9690-4
Teng Fei, Meng Qinglong, Xing Yi. 2021. Study on the distribution laws of the iron deposits and the features of gravity-magnetic field in the southern margin of the North China Craton[J]. Geological Survey and Research, 44(3): 71-76 (in Chinese with English abstract).
Thayer T P. 1960. Some critical differences between alpine-type and stratiform peridotite-gabbro complexes[J]. 21st International Geological Congress Copenhagen, 13: 247-259.
Uysal I, Akmaz R M, Kapsiotis A, Demir Y, Saka S, Avci E, Müller D. 2015. Genesis and geodynamic significance of chromitites from the Orhaneli and Harmancik ophiolites (Bursa, NW Turkey) as evidenced by mineralogical and compositional data[J]. Ore Geology Reviews, 65: 26-41. doi: 10.1016/j.oregeorev.2014.08.006
Vuollo J, Liipo J, Nykanen V, Piirainen T, Pekkarinen L, Tuokko I, Ekdahl E. 1995. An early Proterozoic podiform chromitite in the Outokumpu ophiolite complex, Finland[J]. Economic Geology, 90(2): 445-452. doi: 10.2113/gsecongeo.90.2.445
Wang Christina Yan, Zhong Hong, Cao Yonghua, Wei Bo, Chen Chen. 2020. Genetic classification, distribution and ore genesis of major PGE, Co and Cr deposits in China: A critical review[J]. Chinese Science Bulletin, 65: 3825-3838 (in Chinese with English abstract). doi: 10.1360/TB-2020-0202
Wang Xibin, Bao Peisheng. 1987. The genesis of podiform chromite deposits: A case study of the Luobosa chromite deposit, Tibet[J]. Acta Geologica Sinica, (2): 166-181 (in Chinese with English abstract).
Whattam S A, Stern R J. 2011. The 'subduction initiation rule': A key for linking ophiolites, intra-oceanic forearcs, and subduction initiation[J]. Contributions to Mineralogy and Petrology, 162(5): 1031-1045. doi: 10.1007/s00410-011-0638-z
Xiong F H, Yang J S, Robinson P T, Xu X Z, Liu Z, Li Y, Li J Y, Chen S Y. 2015. Origin of podiform chromitite: A new model based on the Luobusa ophiolite, Tibet[J]. Gondwana Research, 27(2): 525-542. doi: 10.1016/j.gr.2014.04.008
Yamamoto S, Komiya T, Hirose K, Maruyama S. 2009. Coesite and clinopyroxene exsolution lamellae in chromites: In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet[J]. Lithos, 109(3/4): 314-322.
Yang J S, Meng F C, Xu X Z, Robinson P T, Dilek Y, Makeyev A B, Wirth R, Wiedenbeck M, Cliff J. 2015. Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals[J]. Gondwana Research, 27(2): 459-485. doi: 10.1016/j.gr.2014.07.004
Yang J S, Wu W W, Lian D Y, Rui H C. 2021. Peridotites, chromitites and diamonds in ophiolites[J]. Nature Reviews Earth and Environment, 2(3): 198-212. doi: 10.1038/s43017-020-00138-4
Yang Yiheng, Zeng Le, Deng Fan, Hu Jianzhong. 2018. Geological characteristics and mineralization potential of chromite resources in China[J]. Earth Science Frontiers, 138-147 (in Chinese with English abstract).
Zhang Baosong, Di Bingye, Huang Ning, Zhu Hongbing, Chen Jiwei, Zhang Jun. 2021 Characteristics of geophysical field and delineation of volcanic structures in Lishui volcanic basin area[J]. Geological Survey and Research, 44(1): 39-44 (in Chinese with English abstract).
Zhang Weibo, Liu Yifei, Wang Fengxiang, Chen Xiufa, He Xuezhou, Yu Rui. 2020. New progress of the research on the Kemi chromitite deposit in Finland[J]. Geological Bulletin of China, 39(5): 746-754 (in Chinese with English abstract).
Zhao Yage, Zhang Yanfei, Wang Chao, Jin Zhenmin, Xu Qijin. 2020. Experimental constraints on formation of low-Cr# chromitite: effect of variable H2O and Cr2O3 on boninitic-magma and harzburgite reactions[J]. Journal of Earth Science, 31: 709-722. doi: 10.1007/s12583-020-1291-0
Zhou Erbin. 2011. Present situation and advances in the study of podiform chromite deposits[J]. Acta Petrologica et Mineralogica, 30(3): 530-542 (in Chinese with English abstract).
Zhou M F, Robinson P T. 1994. High-Cr and high-Al podiform chromitites, western China: Relationship to partial melting and melt/rock reaction in the upper mantle[J]. International Geology Review, 36(7): 678-686. doi: 10.1080/00206819409465481
Zhou M F, Robinson P T. 1997. Origin and tectonic environment of podiform chromite deposits[J]. Economic Geology, 92: 259-262. doi: 10.2113/gsecongeo.92.2.259
Zhou M F, Robinson P T, Bail W J. 1994. Formation of podiform chromitites by melt/rock interaction[J]. Mineral Deposita, 29: 98-101. doi: 10.1007/BF03326400
Zhou M F, Robinson P T, Su B X, Gao J F, Li J W, Yang J S, Malpas J. 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments[J]. Gondwana Research, 26(1): 262-283. doi: 10.1016/j.gr.2013.12.011
鲍佩声. 2019. 元古代蛇绿岩及铬铁矿[J]. 岩石学报, 35(10): 2971-2988. doi: 10.18654/1000-0569/2019.10.03
鲍佩声, 王希斌. 1999. 中国铬铁矿[M]. 北京: 科技出版社.
鲍佩声, 王希斌, 郝梓国, 彭根永, 张让民, 陈清植, 杨廷辉. 1990. 对富铝型豆荚状铬铁矿矿床成因的新认识——以新疆萨尔托海铬铁矿矿床为例[J]. 矿床地质, 9(2): 97-111. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199002000.htm
陈艳虹, 杨经绥. 2018. 豆荚状铬铁矿床研究回顾与展望[J]. 地球科学, 43(4): 991-1010. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201804005.htm
龚雪婧, 张腾蛟, 肖荣阁. 2013. 中国豆荚状铬铁矿床成因的研究现状及进展[J]. 高校地质学报, 19(S): 275-276. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201304001269.htm
郭佳, 易继宁, 王慧. 2018. 全球主要战略性矿产名录评价因素对比研究[J]. 现代矿业, 34(12): 1-5.
郝梓国. 1989. 豆荚型铬铁矿床的研究现状[J]. 地质地球化学, (3): 15-20.
胡振兴, 牛耀龄, 刘益, 张国瑞, 孙文礼, 马玉鑫. 2014. 中国蛇绿岩型铬铁矿的研究进展及思考[J]. 高校地质学报, 20(1): 9-27.
黄阳, 邓浩. 2020. 铬铁矿矿物包裹体的聚焦离子束-透射电镜研究[J]. 地球科学, 45(12): 4604-4616.
刘婷, 郑有业, 武珺. 2021. 皖南蛇绿岩伏川铬铁矿床成因: 铬铁矿母岩浆证据[J]. 地球科学, 46(5): 1613-1629. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202105006.htm
苏本勋, 刘霞, 陈晨, Robinson P T, 肖燕, 周美夫, 白洋, Uysal I, 张鹏飞. 2021. 蛇绿岩铬铁矿成矿新模型流体不混溶作用[J]. 中国科学: 地球科学, 51(2): 250-260. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202102006.htm
滕菲, 孟庆龙, 邢怡. 2021. 从重磁场特征分析华北陆块南缘铁矿分布规律[J]. 华北地质, 44(3): 70-76.
王希斌, 鲍佩声. 1987. 豆荚状铬铁矿床的成因-以西藏自治区罗布莎铬铁矿床为例[J]. 地质学报, (2): 166-181.
王焰, 钟宏, 曹勇华, 魏博, 陈晨. 2020. 我国铂族元素、钴和铬主要矿床类型的分布特征及成矿机制[J]. 科学通报, 65(33): 3825-3838. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033015.htm
杨毅恒, 曾乐, 邓凡, 胡建中. 2018. 中国铬铁矿资源潜力分析及找矿方向[J]. 地学前缘, 25(3): 138-147.
张宝松, 邸兵叶, 黄宁, 朱红兵, 陈基炜, 张俊. 2021. 溧水火山岩盆地地球物理场特征及火山机构圈定[J]. 华北地质, 44(1): 39-44. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202101007.htm
张伟波, 刘翼飞, 王丰翔, 陈秀法, 何学洲, 于瑞. 2020. 芬兰科密铬铁矿床研究新进展[J]. 地质通报, 39(5): 746-754.
周二斌. 2011. 豆荚状铬铁矿床的研究现状及进展[J]. 岩石矿物学杂志, 30(3): 530-542. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201103017.htm