中国地质调查局 中国地质科学院主办
科学出版社出版

喀喇昆仑北羌塘地体加勒万河地区中—基性岩地球化学与年代学研究

何国建, 胡修棉, 楼法生, 陈浩鹏, 杨晓飞, 陈建中, 吴春伟, 张密椋. 2024. 喀喇昆仑北羌塘地体加勒万河地区中—基性岩地球化学与年代学研究[J]. 中国地质, 51(4): 1422-1440. doi: 10.12029/gc20201116001
引用本文: 何国建, 胡修棉, 楼法生, 陈浩鹏, 杨晓飞, 陈建中, 吴春伟, 张密椋. 2024. 喀喇昆仑北羌塘地体加勒万河地区中—基性岩地球化学与年代学研究[J]. 中国地质, 51(4): 1422-1440. doi: 10.12029/gc20201116001
HE Guojian, HU Xiumian, LOU Fasheng, CHEN Haopeng, YANG Xiaofei, CHEN Jianzhong, WU Chunwei, ZHANG Miliang. 2024. Geochemistry and geochronology of intermediate–basic rocks in the Galwan Valley area of the North Qiangtang terrane, Karakoram[J]. Geology in China, 51(4): 1422-1440. doi: 10.12029/gc20201116001
Citation: HE Guojian, HU Xiumian, LOU Fasheng, CHEN Haopeng, YANG Xiaofei, CHEN Jianzhong, WU Chunwei, ZHANG Miliang. 2024. Geochemistry and geochronology of intermediate–basic rocks in the Galwan Valley area of the North Qiangtang terrane, Karakoram[J]. Geology in China, 51(4): 1422-1440. doi: 10.12029/gc20201116001

喀喇昆仑北羌塘地体加勒万河地区中—基性岩地球化学与年代学研究

  • 基金项目: 新疆维吾尔自治区地质勘查基金项目(K15–1–LQ22)资助。
详细信息
    作者简介: 何国建,男,1987年生,硕士生,高级工程师,主要从事于青藏高原区域地质矿产调查研究工作;E−mail:541373659@qq.com
  • 中图分类号: P584; P588.1; P597

Geochemistry and geochronology of intermediate–basic rocks in the Galwan Valley area of the North Qiangtang terrane, Karakoram

  • Fund Project: Supported by the projeet of Xinjiang Geological Exploration Fund (No.K15–1–LQ22).
More Information
    Author Bio: HE Guojian, male, born in 1987, master candidate, senior engineer, mainly engaged in the Qinghai Tibet Plateau regional geological and mineral researches; E-mail: 541373659@qq.com .
  • 研究目的

    加勒万河谷位于北羌塘地体的喀喇昆仑山,紧邻火烧云超大型铅锌矿床。对加勒万河地区新发现的岩浆岩开展岩石地球化学及年代学研究有助于深入理解区域成矿动力学背景和岩浆演化历史,为区域岩浆−构造−成矿作用研究提供理论基础。

    研究方法

    本研究报道了加勒万河地区7件中—基性岩浆岩样品,岩性包括玄武岩、辉绿岩和闪长岩,并对这些样品进行了系统的矿物学、主量和微量元素、锆石U–Pb年龄和微量元素分析。

    研究结果

    锆石U–Pb定年结果表明冰洞闪长岩的侵位年龄为(98.9±1.2)Ma,其全岩成分具有低钾钙碱性的特点,而玄武岩中锆石U–Pb定年结果显示其喷发年龄为(232±9)Ma,全岩地球化学组成上具有钙碱性—过碱性的特点。锆石定年结果显示闪长岩与玄武岩中均发育大量约800 Ma的继承锆石,且二者继承锆石年龄频谱均出现6个不同时代的年龄峰。

    结论

    冰洞闪长岩是地壳增厚背景下壳−幔混合作用的产物,与新特提斯洋闭合后印度板块与欧亚板块碰撞造山的远程效应有关。闪长岩与玄武岩中大量800 Ma继承锆石的发育表明他们来源于新元古代基底物质的熔融。闪长岩与玄武岩中的6个不同的锆石年龄峰反映了中元古代结晶基底、Rodinia超大陆的裂解至新特提斯洋闭合碰撞造山等6个期次的构造岩浆活动。

  • 加载中
  • 图 1  喀喇昆仑区域地质矿产图(据高永宝等, 2019修改)

    Figure 1. 

    图 2  喀喇昆仑加勒万河地区地质图(a)、大地构造分区图(b)(据范廷宾等, 2019

    Figure 2. 

    图 3  喀喇昆仑西南达坂一带地质图

    Figure 3. 

    图 4  加勒万河地区中—基性岩浆岩野外照片和显微照片

    Figure 4. 

    图 5  加勒万河地区玄武岩和闪长岩锆石阴极发光图像

    Figure 5. 

    图 6  加勒万河地区中基性岩锆石U–Pb年龄谐和图

    Figure 6. 

    图 7  加勒万河地区中基性岩样品锆石稀土元素配分型式图

    Figure 7. 

    图 8  玄武岩TAS分类图(a,据Le Maitre, 1989)和中基性侵入岩TAS分类图(b,据Middlemost, 1994

    Figure 8. 

    图 9  AR–SiO2图解(a,据Maniar and Piccoli, 1989)和SiO2–K2O图解(b,据Peccerillo and Taylor, 1976

    Figure 9. 

    图 10  加勒万河地区中基性岩球粒陨石标准化稀土配分图(a)和原始地幔标准化微量元素蛛网图(b)(据Sun and McDonough, 1989

    Figure 10. 

    图 11  加勒万河地区玄武岩、闪长岩锆石U–Pb同位素年龄频谱图

    Figure 11. 

    图 12  加勒万河地区玄武岩、闪长岩构造环境判别图

    Figure 12. 

    表 1  加勒万河地区中基性岩锆石U–Pb同位素测试结果

    Table 1.  Zircon U−Pb isotopic results of the intermediate-basic rocks in Galwan Valley area

    测点号 Pb/10−6 Th/10−6 U/10−6 Th/U 同位素比值 同位素年龄/Ma 协和度
    207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ
    PM201-RZ1(闪长岩)
    1 63.0 63.5 465 0.14 0.0704 0.0024 1.1109 0.0357 0.1145 0.0016 939 65.7 759 17.2 699 9.1 91%
    2 64.8 294 359 0.82 0.0658 0.0018 1.2216 0.0342 0.1338 0.0017 1200 57.4 811 15.6 810 9.7 99%
    3 53.0 84.0 320 0.26 0.0718 0.0022 1.3639 0.0403 0.1378 0.0018 989 61.4 874 17.3 832 10.4 95%
    4 34.1 400 1983 0.20 0.0494 0.0018 0.1059 0.0041 0.0155 0.0002 169 87.0 102 3.8 98.9 1.2 96%
    5 44.4 44.4 298 0.15 0.0739 0.0023 1.3005 0.0426 0.1268 0.0013 1039 63.0 846 18.8 769 7.6 90%
    6 32.9 90.6 202 0.45 0.0662 0.0023 1.2094 0.0432 0.1322 0.0016 813 73.3 805 19.9 801 9.1 99%
    7 54.3 97.1 360 0.27 0.0699 0.0021 1.2338 0.0373 0.1277 0.0014 928 61.1 816 17.0 775 8.0 94%
    8 15.7 33.1 212 0.16 0.0617 0.0031 0.5353 0.0258 0.0634 0.0008 665 107 435 17.0 396 4.7 90%
    10 51.4 63.7 338 0.19 0.0690 0.0019 1.2698 0.0362 0.1330 0.0016 900 63.1 832 16.2 805 9.0 96%
    11 48.0 127 295 0.43 0.0675 0.0019 1.2471 0.0375 0.1332 0.0017 854 63.9 822 16.9 806 9.5 98%
    12 37.3 232 330 0.70 0.0591 0.0021 0.7099 0.0256 0.0870 0.0012 572 77.8 545 15.2 538 7.2 98%
    13 47.6 62.9 314 0.20 0.0671 0.0024 1.2379 0.0413 0.1331 0.0017 843 77.0 818 18.7 805 9.5 98%
    14 49.5 212 288 0.74 0.0680 0.0020 1.2701 0.0371 0.1350 0.0019 878 60.3 832 16.6 816 10.5 98%
    15 29.1 22.3 709 0.03 0.0514 0.0018 0.2737 0.0098 0.0385 0.0004 257 83.3 246 7.8 243 2.7 99%
    16 33.9 61.6 213 0.29 0.0709 0.0024 1.3819 0.0474 0.1407 0.0017 955 74.2 881 20.2 849 9.6 96%
    18 132 307 914 0.34 0.0671 0.0016 1.1507 0.0282 0.1236 0.0012 843 54.6 778 13.3 751 6.7 96%
    PM101-RZ1(辉石玄武岩)
    1 28.9 96.1 409 0.24 0.0542 0.0024 0.4545 0.0206 0.0607 0.0009 389 100 380 14.4 380 5.3 99%
    2 42.9 70.2 288 0.24 0.0652 0.0022 1.1556 0.0411 0.1276 0.0016 789 72.2 780 19.4 774 8.9 99%
    3 26.7 366 582 0.63 0.0510 0.0022 0.2565 0.0110 0.0366 0.0005 239 72.2 232 8.9 232 3.3 99%
    4 44.4 51.7 309 0.17 0.0646 0.0021 1.1147 0.0353 0.1247 0.0014 761 67.7 760 17.0 758 8.1 99%
    7 47.7 50.2 298 0.17 0.0664 0.0022 1.2061 0.0388 0.1313 0.0014 817 70.4 803 17.9 795 8.1 98%
    8 120 79.3 683 0.12 0.0614 0.0034 1.1885 0.0690 0.1375 0.0020 654 119 795 32.0 830 11.5 95%
    9 97.3 75.7 705 0.11 0.0621 0.0019 1.0473 0.0314 0.1215 0.0013 680 64.8 728 15.6 739 7.3 98%
    10 61.3 142 356 0.40 0.0696 0.0025 1.2954 0.0458 0.1346 0.0015 917 75.9 844 20.3 814 8.6 96%
    11 58.9 192 334 0.57 0.0665 0.0020 1.2437 0.0372 0.1348 0.0015 833 60.2 821 16.8 815 8.5 99%
    13 53.0 109 332 0.33 0.0660 0.0019 1.1978 0.0340 0.1306 0.0015 806 59.3 800 15.7 791 8.5 98%
    15 112 224 251 0.89 0.1183 0.0029 5.0616 0.1288 0.3066 0.0037 1931 44.4 1830 21.6 1724 18.2 94%
    PM102-RZ1(辉石玄武岩)
    1 63.8 48.2 403 0.12 0.0677 0.0020 1.2634 0.0364 0.1340 0.0016 861 61.1 829 16.3 811 8.9 97%
    2 44.3 53.3 275 0.19 0.0658 0.0020 1.2378 0.0359 0.1356 0.0016 1200 59.1 818 16.3 819 9.0 99%
    3 51.5 58.8 320 0.18 0.0679 0.0018 1.2710 0.0349 0.1344 0.0014 865 55.6 833 15.6 813 7.8 97%
    4 97.8 131 617 0.21 0.0660 0.0017 1.2156 0.0311 0.1324 0.0013 806 53.7 808 14.2 802 7.3 99%
    5 45.6 71.1 283 0.25 0.0674 0.0022 1.2370 0.0384 0.1326 0.0015 852 67.4 818 17.4 803 8.7 98%
    6 56.6 53.1 364 0.15 0.0648 0.0018 1.2112 0.0345 0.1345 0.0015 769 59.3 806 15.8 814 8.4 99%
    7 44.8 35.8 282 0.13 0.0692 0.0021 1.2964 0.0375 0.1354 0.0014 906 63.0 844 16.6 818 7.9 96%
    8 101 274 720 0.38 0.0643 0.0015 1.0009 0.0234 0.1121 0.0011 750 48.9 704 11.9 685 6.2 97%
    9 56.4 55.6 356 0.16 0.0663 0.0019 1.2446 0.0369 0.1354 0.0016 817 61.1 821 16.7 819 9.2 99%
    10 94.0 99.7 612 0.16 0.0647 0.0017 1.1849 0.0330 0.1320 0.0016 765 55.6 794 15.3 799 9.0 99%
    11 98.2 279 585 0.48 0.0636 0.0017 1.1630 0.0315 0.1322 0.0016 728 25.0 783 14.8 800 8.9 97%
    12 151 131 969 0.13 0.0644 0.0015 1.2190 0.0303 0.1363 0.0015 754 249.1 809 13.9 824 8.3 98%
    13 61.8 76.0 387 0.20 0.0655 0.0019 1.2181 0.0360 0.1340 0.0017 791 59.3 809 16.5 811 9.4 99%
    14 70.4 57.7 449 0.13 0.0659 0.0018 1.2471 0.0354 0.1364 0.0018 806 57.4 822 16.0 824 10.1 99%
    15 50.2 47.9 296 0.16 0.0707 0.0021 1.4306 0.0479 0.1449 0.0022 950 61.1 902 20.0 872 12.5 96%
    16 65.1 51.4 427 0.12 0.0637 0.0019 1.1719 0.0363 0.1322 0.0015 731 64.8 788 17.0 800 8.4 98%
    17 61.9 67.8 396 0.17 0.0638 0.0018 1.2019 0.0354 0.1353 0.0016 744 59.3 801 16.4 818 9.0 97%
    18 51.0 71.7 330 0.22 0.0672 0.0019 1.2224 0.0356 0.1309 0.0014 843 59.3 811 16.3 793 7.9 97%
    19 46.2 43.1 307 0.14 0.0650 0.0019 1.1959 0.0344 0.1325 0.0014 776 56.5 799 15.9 802 8.1 99%
    20 67.6 110 422 0.26 0.0634 0.0018 1.2037 0.0340 0.1367 0.0016 720 63.9 802 15.7 826 9.1 97%
    下载: 导出CSV

    表 2  加勒万河地区中基性岩锆石稀土元素含量

    Table 2.  Rare earth elements data of zircon in the intermediate-basic rocks of the Galwan Valley area

    稀土元素 Nb La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE LREE/HREE δEu δCe
    PM101-RZ1
    1 0.81 0.031 2.35 0.082 1.42 3.45 0.64 25.6 8.93 92.9 32.4 137 27.0 238 48.8 959 617.92 0.013 0.207 11.371
    2 0.55 0.009 1.01 0.069 1.31 4.03 0.30 37.5 15.9 208 84.4 396 82.3 754 150 2504 1735.05 0.004 0.074 10.037
    3 1.27 0.018 14.6 0.080 1.17 1.77 0.60 13.5 4.23 55.7 23.8 123 30.4 313 74.4 784 656.40 0.029 0.379 93.848
    4 0.59 0.020 0.57 0.0096 0.55 3.50 0.019 31.4 13.9 179 72.6 332 71.6 644 129 2135 1477.94 0.003 0.006 10.191
    7 0.73 0.013 1.89 0.072 0.67 2.83 0.17 24.3 11.2 146 53.8 254 54.6 502 106 1629 1157.14 0.005 0.063 15.077
    8 1.74 4.40 8.24 1.47 7.20 5.50 0.71 34.6 17.0 251 106 535 119 1141 231 3365 2461.21 0.011 0.158 0.793
    9 0.83 0.030 0.63 0.060 0.99 3.91 0.099 33.3 15.7 193 70.8 320 66.5 628 128 2157 1460.06 0.004 0.027 3.637
    10 1.72 0.18 13.1 0.16 1.52 3.81 0.61 35.8 15.4 202 80.1 372 77.3 703 141 2439 1645.97 0.012 0.160 19.309
    11 6.37 17.8 71.9 6.75 34.8 12.3 3.31 26.6 7.64 91.2 37.2 184 43.2 437 102 1179 1076.28 0.158 0.560 1.608
    13 1.62 0.032 2.54 0.088 1.40 5.71 0.41 48.4 19.3 246 103 486 101 939 192 3124 2144.34 0.005 0.075 11.675
    15 2.72 0.36 26.2 0.87 8.67 9.79 2.85 29.7 9.74 102 32.8 139 28.0 246 48.9 999 685.75 0.077 0.512 11.389
    PM102-RZ1
    1 0.75 0.034 0.49 0.077 0.95 2.09 0.032 26.1 12.7 189 82.0 401 89.5 842 173 2474 1647 0.003 36.745 0.014
    2 0.60 0.029 0.52 0.035 0.94 3.14 0.10 28.3 12.2 168 68.1 323 69.2 631 132 2044 1305 0.004 30.628 0.013
    3 0.77 0.044 0.84 0.056 0.87 3.51 0.12 34.0 14.1 194 77.9 368 77.5 708 145 2361 1481 0.004 32.745 0.013
    4 1.67 0.056 2.51 0.040 1.15 3.88 0.31 40.4 18.8 269 114 559 119 1109 224 3516 2238 0.004 19.925 0.007
    5 0.70 0.15 0.96 0.15 2.31 4.97 0.13 35.4 15.5 212 88.5 420 89.8 830 168 2733 1700 0.005 27.689 0.046
    6 0.67 0.001< 0.39 0.001< 0.66 2.94 0.068 28.0 14.5 203 84.7 419 90.2 831 168 2701 1676 0.003 42.301 1.000
    7 0.55 0.058 0.53 0.056 0.80 2.59 0.043 23.8 11.4 159 66.3 321 70.3 651 136 1971 1308 0.004 42.827 0.026
    8 3.65 0.079 10.4 0.14 1.13 3.20 1.34 19.0 7.31 85.2 33.7 156 33.2 328 67.7 1011 682.5 0.028 7.920 0.003
    9 0.90 0.001< 0.50 0.059 0.50 2.60 0.069 27.9 13.4 184 75.8 369 79.7 753 154 2316 1508 0.003 42.809 1.000
    10 1.04 3.24 2.97 1.98 11.2 11.8 2.65 61.1 25.9 355 146 688 149 1330 270 4617 2789 0.012 6.643 0.453
    11 3.06 0.047 3.87 0.26 5.30 11.3 0.92 72.6 22.3 206 54.8 175 29.1 235 43.1 1696 819.5 0.030 15.646 0.003
    12 1.17 0.57 3.11 0.62 3.71 5.38 0.39 45.1 22.8 331 143 712 158 1533 316 4638 2960 0.005 13.653 0.073
    13 0.88 0.081 2.75 0.040 1.12 4.37 0.054 34.2 16.4 218 89.8 431 90.0 824 167 2826 1713 0.005 54.255 0.013
    14 0.73 0.017 0.56 0.042 0.91 3.21 0.11 34.3 17.0 242 103 513 111 1031 212 3308 2057 0.003 31.455 0.006
    15 0.62 0.019 0.79 0.026 0.95 3.19 0.15 28.1 13.3 174 68.6 315 67.5 601 123 2126 1274 0.004 25.603 0.007
    16 0.75 0.0038 0.48 0.033 0.49 3.20 0.091 29.4 15.0 219 91.4 452 98.2 922 189 2900 1832 0.003 46.335 0.002
    17 0.73 0.001< 0.54 0.026 0.71 3.70 0.12 35.9 16.7 220 89.8 427 88.8 812 166 2828 1695 0.003 37.996 1.000
    18 0.94 0.0029 1.14 0.048 0.91 3.83 0.085 35.6 16.0 213 85.3 393 83.1 743 149 2669 1575 0.004 41.878 0.001
    19 0.74 0.090 0.60 0.046 0.53 2.51 0.059 22.5 11.3 163 69.5 339 72.1 661 137 2103 1343 0.003 43.376 0.033
    20 0.77 0.022 0.82 0.032 1.03 4.66 0.12 40.7 17.4 249 100 473 98.5 887 181 3179 1874 0.004 40.391 0.007
    PM201-RZ1
    1 1.13 4.34 2.56 3.02 17.8 15.7 4.21 55.3 23.5 296 112 505 105 943 193 3432 2280 0.021 0.437 0.173
    2 1.54 0.14 10.7 0.11 1.36 5.91 0.42 37.4 13.9 177 69.5 314 62.8 550 113 2007 1356 0.014 0.087 21.230
    3 3.54 0.31 2.92 0.24 2.34 4.86 0.35 37.4 15.0 202 81.4 375 79.7 719 147 2516 1668 0.007 0.080 2.639
    4 5.79 0.059 4.44 0.040 0.80 2.76 0.21 18.9 7.85 109 43.7 220 48.7 462 97.4 1357 1015.4 0.008 0.089 22.311
    5 1.65 0.13 1.59 0.074 0.84 2.85 0.16 24.6 13.0 177 70.0 337 73.0 653 136 2117 1490 0.004 0.059 3.906
    6 0.82 0.090 3.83 0.16 2.38 7.15 0.54 52.5 18.8 243 97.2 438 89.3 800 161 2950 1914 0.007 0.085 7.828
    7 0.91 0.25 1.41 0.19 2.52 6.24 0.34 47.3 19.3 255 101 466 96.4 849 174 3206 2019 0.005 0.060 1.591
    8 0.61 0.10 1.98 0.11 0.70 1.58 0.28 12.5 4.88 58.8 23.3 105 21.9 205 44.0 686 480.4 0.010 0.192 4.562
    10 0.57 0.028 0.53 0.037 0.97 4.11 0.093 34.7 15.2 199 78.2 364 74.8 672 137 2424 1580 0.004 0.024 3.998
    11 0.59 0.023 0.91 0.13 2.32 7.92 0.19 48.4 15.4 167 60.2 264 53.9 479 93.6 1842 1192.4 0.010 0.030 4.113
    12 1.34 7.44 43.8 2.13 11.2 5.92 1.11 21.8 6.81 72.5 26.4 113 22.4 202 41.1 777 578.0 0.141 0.298 2.696
    13 0.57 0.034 0.71 0.049 0.81 4.24 0.056 34.9 15.5 203 82.4 388 80.1 713 148 2571 1672 0.004 0.014 4.297
    14 1.40 0.40 9.25 0.17 1.36 2.51 0.60 14.2 4.06 44.9 15.0 68.6 14.8 140 31.7 513 348.0 0.043 0.309 8.833
    15 6.56 0.014 3.55 0.010 0.21 0.41 0.092 4.59 1.98 26.5 12.4 63.8 15.1 157 36.9 391 322.1 0.013 0.205 73.353
    16 0.58 0.013 1.03 0.092 2.20 4.83 0.18 38.5 14.8 191 76.5 352 73.5 669 136 2382 1560 0.005 0.040 7.323
    18 2.45 0.065 3.98 0.16 2.84 9.71 0.85 82.6 32.7 433 173 779 157 1362 267 5356 3303 0.005 0.091 9.435
    下载: 导出CSV

    表 3  加勒万河地区中基性岩主量元素(%)和微量元素含量(10−6

    Table 3.  Whole–rock major (%) and trace (10−6) elements data of intermediate–basic rocks in the Galwan Valley area

    样品号PM101-RZ1PM102-RZ1PM201-RZ1PM307-HQ9Pdh1-HQ4Pdh1-HQ48PM304-HQ1
    岩性辉石玄武岩气孔状辉石玄武岩闪长岩辉绿辉长岩辉绿辉长岩角闪辉石岩辉绿岩
    SiO238.5940.8051.9145.1637.8238.6239.13
    TiO24.554.770.993.025.855.636.25
    Al2O310.5010.7014.4215.5312.6512.489.63
    FeO6.567.047.297.227.858.4311.66
    Fe2o39.878.272.503.106.038.272.77
    MnO0.180.170.160.190.180.190.20
    MgO6.176.096.633.027.096.738.85
    CaO8.858.534.746.209.298.657.39
    K2O0.970.331.230.431.481.361.53
    Na2O3.683.863.455.532.443.442.01
    P2O51.731.870.131.342.861.121.49
    LOI6.775.524.106.694.753.864.35
    H2O1.561.030.350.160.580.360.77
    Total99.9898.9797.8997.5998.8499.1596.01
    A/NK1.602.061.481.632.261.751.94
    A/CNK0.480.920.450.750.560.550.52
    Cr6.892.68222.56.561.7944.9917.73
    Ni26.0517.2950.467.9127.7231.7521.97
    Rb29.129.334114.4481.7847.4153.41
    Ba447.6152.0575.32102170711691138
    Th19.9517.856.17.265.174.894.77
    Nb152.8149.711.879.957.1452.0661.27
    K80002700102003600122001120012700
    Ta9.719.781.096.34.674.414.11
    Pr39.7243.555.1325.1725.0618.0618.46
    Sr764.7726.8323.4374.6498.6471.01050
    Nd152.4167.320.47102.211177.6978.62
    Zr993.8964.5184.5434.3307.6306.5269.4
    Hf21.3121.735.2210.198.878.736.75
    Sm26.128.924.4317.3520.9314.5914.78
    Eu7.488.371.436.397.164.965.02
    Ti2827730204564218111353273405237470
    Gd23.2625.434.1515.4917.4411.9512.41
    Tb3.133.390.772.132.471.771.74
    Dy14.4215.624.959.7211.498.558.49
    Y60.1362.2724.4440.0145.3233.8934.5
    Ho2.462.670.971.651.931.441.45
    Er6.987.342.814.715.063.863.63
    Tm0.830.820.420.560.570.460.44
    Yb4.925.012.773.243.382.812.51
    Lu0.730.730.420.460.490.410.36
    P75838366546.459871251949316500
    Li40.5247.8649.8744.0282.243.97148.2
    Cs7.080.478.680.9299.856.0237.14
    V127.0125.2131.7118.2157.1175.0137.8
    La168.3177.120.6589.7478.1261.4460.04
    Ce339.4365.141.04205.6193.3134.5127.7
    Co43.2636.8836.8617.0346.1249.1247.28
    ΣREE790.1851.3110.4484.4478.4342.5335.7
    LREE733.4790.393.16446.4435.6311.2304.6
    HREE56.7361.0117.2537.9642.8331.2531.03
    LREE/HREE12.9312.955.411.7610.179.969.82
    (La/Yb)N24.5325.385.3519.8816.5815.6817.16
    DI35.5437.5644.1853.8731.5232.5728.86
    δEu0.910.9211.191.151.151.1
    下载: 导出CSV
  • [1]

    Bi Hua, Wang Zhonggang, Wang Yuanlong, Zhu Xiaoqing. 1999. Tectono–magmatic evolution of the West Kunlun Orogenic Belt[J]. Science in China (Series D), 29(5): 398−406 (in Chinese).

    [2]

    Deng Wanming. 1989. A preliminary study on the basic–ultrabasic rocks of the Karakoram–Western Kunlun Mts[J]. Journal of Natural Resources, 4(3): 204−211 (in Chinese with English abstract).

    [3]

    Dong Lianhui, Xu Xingwang, Fan Tingbin, Qu Xun, Li Hao, Wan Jianling, An Haitao, Zhou Gang, Li Jihong, Chen Gang, Liu Chuan. 2015. Discovery of the Huoshaoyun super–large exhalative–sedimentary carbonate Pb–Zn deposit in the Western Kunlun area and its great significance for regional metallogeny[J]. Xinjiang Geology, 33(1): 41−50 (in Chinese with English abstract).

    [4]

    Fan Tingbin, Jin Hongzhan, Yu Yuanjun, Jiang Guopeng, Xia Mingyi. 2019. Metallogenic characteristics and prospecting progress of lead–zinc deposits in the Tianshuihai area of west Kunlun[J]. Journal of Geology, 43(2): 184−197 (in Chinese with English abstract).

    [5]

    Gao Yongbao, Li Kan, Teng Jiaxin, Zhao Xinmin, Zhao Xiaojian, Yan Zhouquan, Jin Moushun, Zhao Huibo, Li Xutuo. 2019. Mineralogy, geochemistry and genesis of giant Huoshaoyun Zn–Pb deposit in Karakoram area, Xinjiang, NW China[J]. 52(4): 152–169 (in Chinese with English abstract).

    [6]

    Geological and Mineral Resources Bureau of Xinjiang Uygur Autonomous Region. 1993. Regional Geology of Xinjiang Uygur Autonomous Region[M]. Beijing: Geological Publishing House, 136–759 (in Chinese).

    [7]

    Hao Jie, Zhai Mingguo. 2004. Jinning movement and Sinian system in China: Their relationship with Rodinia supercontinent[J]. Chinese Journal of Geology, 39(1): 139−152 (in Chinese with English abstract).

    [8]

    He Guojian, Chen Jianzhong, Zhang Miliang, Yao Jianbin, Chen Haopeng, Hu Weizheng. 2020. The discovery of Early Permian ammonite fossils in Galwan, West Kunlun, Xinjiang and its significance of lithofacies and palaeogeography[J]. Geological Bulletin of China, 42(1): 76−83 (in Chinese with English abstract).

    [9]

    Ji Wenhua, Li Rongshe, Chen Shoujian, He Shiping, Zhao Zhenming, Bian Xiaowei, Zhu Haiping, Cui Jigang, Ren Juangang. 2011. The discovery of Palaeoproterozoic volcanic rocks in the Bulunkuoler Group from the Tianshuihai Massif in Xinjiang of northwest China and its geological significance[J]. Science China Earth Science, 41(9): 1268−1280 (in Chinese).

    [10]

    Jian Kunkun, Gao Feng, Du Biao, Zhang Zhenkai, Wang Xing, Zhao Duanchang. 2019. Formation age, geochemical characteristics and tectonic setting of the basalts from Longshan Formation in Heweitan area, Karakorum[J]. Mineralogy and Petrology, 39(3): 42−51 (in Chinese with English abstract).

    [11]

    Le Maitre R W. 1989. A Classification of Igneous Rocks and Glossary of Terms[M]. Blackwell: Oxford, 193.

    [12]

    Li Xingkui, Li Cai, Wang Ming, Liu Jinheng, Luo Anbo. 2018. Nature and evolution of crustal basement beneath the Duolong ore concentration area, northern Tibet, and their constraints on the metallogenesis: Insights from U–Pb ages of inherited zircons from the Bolong volcanic–intrusive rocks[J]. Geological Bulletin of China, 37(8): 1439−1449 (in Chinese with English abstract).

    [13]

    Liu Y S, Hu Z C, Gao S, Günther D, Xu J, Gao C G, Chen H H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA–ICP–MS without applying an internal standard[J]. Chemical Geology, 257: 34−43. doi: 10.1016/j.chemgeo.2008.08.004

    [14]

    Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. GSA Bulletin, 101: 635−643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    [15]

    Meschede M. 1986. A method of discriminating between different types of mid–ocean ridge basalts and continental tholeiites with the Nb–Zr–Y diagram[J]. Chemical Geology, 56: 207−218. doi: 10.1016/0009-2541(86)90004-5

    [16]

    Middlemost E A K. 1994. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 37(3/4): 215−224.

    [17]

    Pan Guitatng, Xiao Qinghui, Lu Songnian, Deng Jinfu, Feng Yimin, Zhang Kexin, Zhang Zhiyong, Wang Fangguo, Xing Guangfu, Hao Guojie, Feng Yanfang. 2009. Subdivision of tectonic units in China[J]. Geology in China, 36(1): 1−28 (in Chinese with English abstract).

    [18]

    Pan Yusheng, Fang Aimin. 2010. Formation and evolution of the Tethys in the Tibetan Plateau[J]. Chinese Journal of Geology, 45(1): 92−101 (in Chinese with English abstract).

    [19]

    Peccerillo R, Taylor S R. 1976. Geochemistry of Eocene calc−alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58: 63−81. doi: 10.1007/BF00384745

    [20]

    Pearce J A. 1982. Trace elements characteristic of lavas from destructive plate boundaries. Andesites[C]//Thorpe R S. Orogenic Andesites and Related Rocks. Chichester, England: John Wiley & Sons, 525–548.

    [21]

    Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313–345.

    [22]

    Wedepohl K H. 1995. The composition of the continental crust[J]. Geochimica et Cosmochimica Acta, 59(7): 1217−1232. doi: 10.1016/0016-7037(95)00038-2

    [23]

    Whitehouse M J, Kamber B S. 2002. On the overabundance of light rare earth elements in terrestrial zircons and its implication for Earth’s earliest magmatic differentiation[J]. Earth and Planetary Science Letters, 204: 333−346. doi: 10.1016/S0012-821X(02)01000-2

    [24]

    Wood D A. 1980. The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British terfiary volcanic province[J]. Earth and Planetary Science Letters, 50(1): 11−30. doi: 10.1016/0012-821X(80)90116-8

    [25]

    Wu Liren. 1963. Metallogenic specialization of basic–ultrabasic rocks in China[J]. Scientia Geologia Sinica, (1): 29−41 (in Chinese).

    [26]

    Wu Yuanbao, Zheng Yongfei. 2004. Zircon genetic mineralogy and constraint on its U–Pb age[J]. Chinese Science Bulletin, 49(16): 1589−1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589

    [27]

    Zhang Chuanlin, Lu Songnian, Yu Haifeng, Ye Minmin. 2007. Tectonic evolution of the west Kunlun Orogenic Belt on the northern margin of the Tibet plateau: Evidence from zircon SHRIMP and LA–ICP–MS dating[J]. Science in China (Series D), 37(2): 145−154 (in Chinese).

    [28]

    Zhang Chuanlin, Ma Huadong, Zhu Bingyu, Ye Xiantao, Qiu Lin, Zhao Haixiang, Liu Xiaoqiang, Ding Teng, Wang Qian, Hao Xiaoshu. 2019. Tectonic evolution of the Western Kunlun—Karakorum Orogenic Belt and its coupling with the mineralization effect[J]. Geological Review, 65(5): 1077−1102 (in Chinese with English abstract).

    [29]

    Zhang Huishan, Ji Wenhua, Ma Zhongping, Gao Xiaofeng, Sun Chao, Hong Jun, Lü Pengrui. 2020. Geochronology and geochemical study of the Cambrian andesite in Tianshuihai terrane: Implications for the evolution of the Proto–Tethys Ocean in the west Kunlun–Karakoram orogenic belt[J]. Acta Petrologica Sinica, 36(1): 257−278 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.01.21

    [30]

    Zhang Yu, Tang Mingying, He Yuliang, Cui Xiaofeng, Zhang Dongyang, Zhu Mingshuai. 2023. Geochemistry, zircon U–Pb age and Hf isotopic characteristics of two−mica monzonitic granites in Dujianshan area of Western Kunlun, Xinjiang[J]. Geology in China, 50(4): 1203−1216 (in Chinese with English abstract).

    [31]

    Zhao Yue, Song Biao, Zhang Shuanhong, Liu Jian. 2006. Geochronology of the inherited zircons from Jurassic Nandaling basalt of the Western Hills of Beijing, North China: its implications[J]. Earth Science Frontiers, 13(2): 184−190 (in Chinese with English abstract).

    [32]

    Zheng Jianping, Griffin W L, Tang Huayun, Zhang Zhihai, Su Yuping, Liu Guanliang. 2008. Arcahean basement similar to the North China and Yangtze Continents may be existed beneath the Western Cathaysia[J]. Geological Journal of China Universities, 14(4): 549−557 (in Chinese with English abstract).

    [33]

    Zhou Nengwu, Chen Bangxue, Deng Zhongfei, Sang Mingshuai, Bai Quanjin. 2019. Discovery and significance of Early Jurassic bimodal volcanic rocks in Huoshaoyun, Karakoram[J]. Geoscience, 33(5): 990−1002 (in Chinese with English abstract).

    [34]

    毕华, 王中刚, 王元龙, 朱笑青. 1999. 西昆仑造山带构造岩浆演化史[J]. 中国科学(D辑: 地球科学), 29(5): 398−406.

    [35]

    邓万明. 1989. 喀喇昆仑—西昆仑地区基性—超基性岩初步考察[J]. 自然资源学报, 4(3): 204−211.

    [36]

    董连慧, 徐兴旺, 范廷宾, 屈迅, 李昊, 万建领, 安海涛, 周刚, 李基宏, 陈刚, 刘川. 2015. 喀喇昆仑火烧云超大型喷流–沉积成因碳酸盐型Pb–Zn矿的发现及区域成矿学意义[J]. 新疆地质, 33(1): 41−50.

    [37]

    范廷宾, 晋红展, 余元军, 蒋国鹏, 夏明毅. 2019. 西昆仑甜水海地区铅锌矿成矿特征及找矿进展[J]. 地质学刊, 43(2): 184−197.

    [38]

    高永宝, 李侃, 滕家欣, 赵辛敏, 赵晓健, 燕洲泉, 金谋顺, 赵慧博, 李旭拓. 2019. 新疆喀喇昆仑火烧云超大型铅锌矿床矿物学、地球化学及成因[J]. 西北地质, 52(4): 152−169.

    [39]

    郝杰, 翟明国. 2004. 罗迪尼亚超大陆与晋宁运动和震旦系[J]. 地质科学, 39(1): 139−152.

    [40]

    何国建, 陈建中, 张密椋, 姚建斌, 陈浩鹏, 胡为正. 2020. 新疆西昆仑加勒万河一带早二叠世菊石化石的发现及岩相古地理意义[J]. 地质通报, 42(1): 76−83.

    [41]

    计文化, 李荣社, 陈守建, 何世平, 赵振明, 边小卫, 朱海平, 崔继岗, 任绢刚. 2011. 甜水海地块古元古代火山岩的发现及其地质意义[J]. 中国科学(地球科学), 41(9): 1268−1280.

    [42]

    菅坤坤, 高峰, 杜彪, 张振凯, 王星, 赵端昌. 2019. 喀喇昆仑河尾滩地区龙山组火山岩年代、地球化学特征及其构造环境[J]. 矿物岩石, 39(3): 42−51.

    [43]

    李兴奎, 李才, 王明, 刘金恒, 罗安波. 2018. 藏北多龙矿集区地壳基底性质、演化及其对成矿的制约—来自波龙火山–侵入岩中继承锆石U–Pb年龄的信息[J]. 地质通报, 37(8): 1439−1449.

    [44]

    潘桂棠, 肖庆辉, 陆松年, 邓晋福, 冯益民, 张克信, 张智勇, 王方国, 邢光福, 郝国杰, 冯艳芳. 2009. 中国大地构造单元划分[J]. 中国地质, 36(1): 1−28.

    [45]

    潘裕生, 方爱民. 2010. 中国青藏高原特提斯的形成与演化[J]. 地质科学, 45(1): 92−101. doi: 10.3969/j.issn.0563-5020.2010.01.009

    [46]

    吴利仁. 1963. 论中国基性岩、超基性岩的成矿专属性[J]. 地质科学, (1): 29−41.

    [47]

    吴元保, 郑永飞. 2004. 锆石成因矿物学研究及其对U–Pb年龄解释的制约[J]. 科学通报, 49(16): 1589−1604.

    [48]

    新疆维吾尔自治区地质矿产局. 1993. 新疆维吾尔自治区区域地质志[M]. 北京: 地质出版社, 136–759.

    [49]

    张传林, 陆松年, 于海锋, 叶海敏. 2007. 青藏高原北缘西昆仑造山带构造演化: 来自锆石SHRIMP及LA–ICP–MS测年的证据[J]. 中国科学(D辑: 地球科学), 37(2): 145−154.

    [50]

    张传林, 马华东, 朱炳玉, 叶现韬, 邱林, 赵海香, 刘晓强, 丁腾, 王倩, 郝晓姝. 2019. 西昆仑—喀喇昆仑造山带构造演化及其成矿效应[J]. 地质论评, 65(5): 1077−1102.

    [51]

    张辉善, 计文化, 马中平, 高晓峰, 孙超, 洪俊, 吕鹏瑞. 2020. 甜水海地块寒武纪安山岩的地球化学和年代学研究: 对西昆仑—喀喇昆仑造山带原特提斯洋演化的启示[J]. 岩石学报, 36(1): 257−278.

    [52]

    张宇, 唐名鹰, 何玉良, 崔霄峰, 张东阳, 朱明帅. 2023. 新疆西昆仑独尖山地区二云母二长花岗岩岩石地球化学、锆石U–Pb年龄与Hf同位素特征[J]. 中国地质, 50(4): 1203−1216.

    [53]

    赵越, 宋彪, 张拴宏, 刘健. 2006. 北京西山侏罗纪南大岭组玄武岩的继承锆石年代学及其含义[J]. 地学前缘, 13(2): 184−190.

    [54]

    郑建平, Griffin W L, 汤华云, 张志海, 苏玉平, 刘观亮. 2008. 西部华夏地区深部可能存在与华北和扬子大陆相似的太古代基底[J]. 高校地质学报, 14(4): 549−557.

    [55]

    周能武, 陈邦学, 邓中飞, 桑明帅, 白权金. 2019. 喀拉昆仑火烧云一带早侏罗世双峰式火山岩的发现及意义[J]. 现代地质, 33(5): 990−1002.

  • 加载中

(12)

(3)

计量
  • 文章访问数:  294
  • PDF下载数:  25
  • 施引文献:  0
出版历程
收稿日期:  2020-11-16
修回日期:  2021-01-22
刊出日期:  2024-07-25

目录