-
摘要:
内蒙古居力格台幅 (K48E017019)1∶50 000地质图是根据《区域地质调查技术要求(1∶50 000)》(DD 2006-XX)和行业统一标准及要求,充分利用1∶200 000区域地质、1∶50 000矿产调查资料,结合Spot、ETM、Aster等多种遥感影像,以造山带理论指导填图的重要成果图件之一。本次运用复杂构造区的地质填图方法,创新性地在地质图上表达了多期构造形迹及其产状要素;图件全面反映了狼山地区乌拉特后旗一带不同侵入体的空间展布和侵入岩的岩浆序列,以及渣尔泰山群变质沉积岩的韵律和变形特征、沉积时代和沉积环境;进一步明确了霍各乞大型铜矿的赋矿围岩为阿古鲁沟组二段炭质–钙质板岩,矿床总体位于该地层中片理褶皱形成的转折端部位。图幅数据库的数据内容包含有3个非正式填图单位,12个正式填图单位、3期岩浆事件和3期构造变形,以及120个岩石化学分析数据,13个样品的锆石U-Pb年龄数据,数据量为106 MB。数据库成果为1∶50 000造山带地质调查示范性成果,对造山带填图的图面表达具有引领作用,可为后续地质基础研究及找矿提供重要的基础资料支撑。
Abstract:The 1∶50 000 Geological Map of the Juligetai Map-sheet (K48E017019), Inner Mongolia was compiled according to the ‘Technical Requirements for Regional Geological Surveys (1∶50 000)’ (DD 2006-XX) and other uniform standards and requirements. It also makes full use of the data from the 1∶200 000 regional geological survey and 1∶50 000 mineral resource survey, and adopts various remote sensing imagery systems including Spot, ETM and Aster. It is an important mapping achievement guided by the orogenic belt theory. In the current project, a geological mapping method for complex tectonic areas was used to creatively express the structural features in multiple stages and their attitude features in geological maps. The map comprehensively reflects the spatial distribution of different intrusive bodies and magmatic sequence of intrusive rocks in the Wulatehou Banner in Langshan area, as well as the rhythm and deformation characteristics, sedimentary age and sedimentary environment of metamorphic sedimentary rocks of the Zhaertaishan Group. The wall-rocks of the Huogeqi Copper Deposit was further identified as carbonaceous-calcareous slates of the Agulugou Formation’s second member. The deposit is mostly located at the hinge zone of the schistose fold in the stratum. The map database includes 3 informal mapping units, 12 official mapping units, 3 periods of magmatic events and 3 tectonic deformations, in addition to 120 pieces of petrochemical analysis data and zircon U–Pb age data of 13 samples, with a data size of 106 MB. The database represents an exemplary result of the 1∶50 000 orogenic belt geological survey. It plays a leading role in orogenic belt mapping and is able to support subsequent basic geological research and prospecting by providing essential basic data.
-
Key words:
- Inner Mongolia /
- Langshan area /
- Juligetai Map-sheet /
- 1∶50 000 /
- geological map /
- database /
- Huogeqi Copper Deposit /
- Paleozoic magmatism
-
图 1 内蒙古狼山地区大地构造位置图(a)及居力格台幅位置示意(b)(据Wang ZZ et al.,2015修改)
表 1 数据库(集)元数据简表
条目 描述 数据库(集)名称 内蒙古居力格台幅1∶50 000地质图数据库 数据库(集)作者 沉积岩类:刘 洋,中国地质调查局天津地质调查中心
火山岩类:郭 硕,中国地质调查局天津地质调查中心
岩浆岩类:滕学建,中国地质调查局天津地质调查中心
变质岩类:滕 飞,中国地质调查局天津地质调查中心数据时间范围 2014—2016年 地理区域 经纬度:东经106°30′~106°45′,北纬41°10′~41°20′ 数据格式 MapGIS 数据量 106 MB 数据服务系统网址 http://dcc.cgs.gov.cn 基金项目 中国地质调查局地质调查项目“特殊地质地貌区填图试点” (项目编号:12120113056300)资助 语种 中文 数据库(集)组成 居力格台幅1∶50 000地质图数据库由主图和图外整饰两部分组成。主图内容包括第四系、沉积岩、火山岩、侵入岩、构造形迹、地质界线、产状、各类代号等;图外整饰内容包括接图表、地层综合柱状图、侵入岩填图单位、图切剖面、构造纲要图、大地构造位置图、图例、责任表等。整体数据内容包含有3个非正式填图单位,12个正式填图单位、3期岩浆事件和3期构造变形,以及120个岩石化学分析数据,13个样品的锆石U-Pb年龄数据 表 2 野外数据实体表
PRB过程 实体名 实体编码 实体数 单位 描述 野外数据采集 地质路线 ROUTE 154 条 顺序号,图幅编号,图幅名称,路线号,日期,天气,路线描述,目的任务,手图编号,记录者,同行者,摄像者,路线总结 地质点(P) GPOINT 1094 个 顺序号,图幅编号,路线号,地质点号,经度,纬度,高程,纵坐标,横坐标,地理位置,露头性质,点性,微地貌,风化程度,岩性A,岩性B,岩性C,岩性代码A,岩性代码B,岩性代码C,地层单位A,地层单位B,地层单位C,接触关系AB,接触关系BC,接触关系AC,描述,国际标准编码,日期,地质点描述文件名 分段路线(R) ROUTING 3154 条 顺序号,路线号,地质点号,点间编号,填图单位,日期,分段路线距离,点间累计距离,路线方向,备注,分段路线描述文件名 点间界线(B) BOUNDARY 2963 条 顺序号,图幅编号,路线号,地质点号,B编号,R编号,纵坐标,横坐标,高程,经度,纬度,界线右边地质体,界线左边地质体,界线类型,走向,倾向,倾角,接触关系,国际标准编码,备注,日期,点间界线描述文件名 产状 ATTITUDE 877 个 顺序号,图幅编号,路线号,地质点号,点间编号,产状编号,产状类型,纵坐标,横坐标,经度,纬度,高程,走向,倾向,倾角,国际标准编码,日期 样品 SAMPLE 449 件 顺序号,图幅编号,路线号,地质点号,点间编号,野外编号,样品类别,纵坐标,横坐标,经度,纬度,地理位置,采样深度cm,样品重量kg,袋数,块数,采样人,日期,填图单位,野外原始定名,室内鉴定定名,送样单位,分析要求,备注,国际标准编码 素描 SKETCH 134 个 顺序号,图幅编号,路线号,地质点号,点间编号,素描编号,纵坐标,横坐标,经度,纬度,素描名称,比例尺,素描说明,国际标准编码,日期,素描图文件夹 照片 PHOTO 1990 个 顺序号,图幅编号,路线号,地质点号,点间编号,照片编号,纵坐标,横坐标,经度,纬度,描述内容,照片序号,镜头方向,国际标准编码,日期 表 3 1∶50000居力格台幅地质图空间数据库要素类和对象类一览表
数据类型 名称 标准编码 说明 基本要素类 地质体面实体 _GEOPOLYGON.WP 实体数:611个 地质(界)线 _GEOLINE.WL 实体数:1624个 矿产地 _MINERAL_PNT.WT 实体数:7个 产状 _ATTITUDE.WT 实体数:877个 同位素测年 _ISOTOPE.WT 实体数:13个 对象类 沉积(火山)岩岩石地层单位 _Strata 包括中–新元古界渣尔泰山群书记沟组一段(Chs1)、二段(Chs2),增隆昌组一段(Chz1)、二段(Chz2),阿古鲁沟组一段(Jxa1)、二段(Jxa2)、三段(Jxa3);白垩系乌兰苏海组(K2w)、及第四系等共计10个地层单位 侵入岩岩石年代单位 _Intru _Litho_Chrono 新元古代辉长岩;志留纪二长花岗岩、花岗伟晶岩;早二叠世辉长岩、角闪闪长岩、中细粒石英闪长岩、细粒石英闪长岩、含角闪石黑云母花岗闪长岩、黑云母花岗闪长岩、花岗闪长岩、似斑状二长花岗岩、黑云母二长花岗岩;晚二叠世黑云母二长花岗岩、中粒二长花岗岩;中三叠世二长花岗岩;晚三叠世似斑状二长花岗岩,共计16个单位 脉岩 _Dike_Object 脉岩共计8类 综合要素类 标准图框 _MAP_FRAME.WL 标准图框内图框4条线,属性相同 构造变形带 _TECTZONE.WP 韧性剪切带 蚀变带 _ALTERATION_POLYGON.WP 中—新元古代渣尔泰山群角岩化蚀变带及褐铁矿化蚀变带 独立要素类 接图表 SelfJtb 综合柱状图 Column_sec 图切剖面 Cutting_profile 图例 Legend 表 4 内蒙古居力格台幅1∶50 000地质图空间数据库数据属性表
数据类型 名称 标准编码 数据项属性 基本要素类 地质体面实体 _GeoPolygon 地质体面实体标识号,地质体面实体类型代码,地质体面实体名称,地质体面实体时代,地质体面实体下限年龄值,地质体面实体上限年龄值,子类型标识 地质(界)线 _GeoLine 要素标识号,地质界线代码,地质界线类型,界线左侧地质体代号,界线右侧地质体代号,界面走向,界面倾向,界面倾角,子类型标识 产状 _Attitude 要素标识号,产状类型名称代码,产状类型名称,走向,倾向,倾角,子类型标识 样品 _Sample 要素标识号,样品编号,样品类型代码,样品类型名称,样品岩石名称,子类型标识 照片 _Photograph 要素标识号,照片编号,照片题目,照片说明,子类型标识 素描 _Sketch 要素标识号,素描编号,素描题目,素描说明,子类型标识 化石 _Fossil 要素标识号,化石样品编号,化石所属生物门类,化石属或种名,化石产出层位,含化石地层单位代号,化石时代,子类型标识 同位素测年 _Isotope 要素标识号,样品编号,样品名称,年龄测定方法,测定年龄,被测定出地质体单位及代号,测定分析单位,测定分析日期,子类型标识 火山口 _Crater 要素标识号,火山口类型,火山口名称,火山口大小,火山口产出的地质体单位及代号,火山口岩石类型,火山口形成时代,子类型标识 基本要素类 泉 _Spring 要素标识号,泉类型代码,泉类型名称,泉水流量,泉水温度,泉的地质体单位及代号,子类型标识 河、湖、海、水库岸线 _Line_Geography 要素标识号,图元类型,图元名称,子类型标识 综合要素类 构造变形带 _Tectzone 要素标识号,变形带代码,变形带类型名称,变形带岩石名称,变形带组构特征,变形带力学特征,形成时代,活动期次,含矿性,子类型标 蚀变带(面) _Alteration_Polygon 要素标识号,蚀变类型名称代码,蚀变类型名称,蚀变矿物组合及含量,含矿性,被蚀变的地质体代号,子类型标 火山岩相带 _Volca_Facies 要素标识号,火山岩岩相类型及代码,产出的地层单位及代号,火山岩相岩石类型,岩石结构,岩石构造,流面产状,流线产状,形成时代,含矿性,子类型标识 标准图框(内图框) _Map_Frame 图名,图幅代号,比例尺,坐标系统,高程系统,左经度,下纬度,图形单位 对象类 沉积(火山)岩岩石地层单位 _Strata 要素分类,地层单位名称,地层单位符号,地层单位时代,岩石组合名称,岩石组合主体颜色,岩层主要沉积构造,生物化石带或生物组合,地层厚度,含矿性,子类型标识 侵入岩岩石年代单位 _Intru_Litho_Chrono 要素分类,岩体填图单位名称,岩体填图单位符号,岩石名称(岩性),岩石颜色,岩石结构,岩石构造,岩相,主要矿物及含量,次要矿物及含量,与围岩接触关系,围岩时代,与围岩接触面走向,与围岩接触面倾向,与围岩接触面倾角,流面产状,流线产状,形成时代,含矿性,子类型标识 断层 _Fault 要素分类代码,断层类型,断层名称,断层编号,断层性质,断层上盘地质体代号,断层下盘地质体代号,断层破碎带宽度,断层走向,断层倾向,断层面倾角,估计断距,断层形成时代,活动期次,子类型标识 脉岩(面) _Dike_Object 脉岩分类代码,脉岩名称,脉岩符号,岩性,颜色,结构,构造,主要矿物及含量,次要矿物及含量,与围岩接触面走向,与围岩接触面倾向,与围岩接触面倾角,形成时代,含矿性,子类型标识 非正式地层单位 _Inf_Strata 要素分类代码,非正式地层单位代码,岩性,岩石结构构造,所含生物化石带或生物组合,出露宽度或厚度,含矿性,所在地层单位符号,子类型标识 面状水域 _Water_Region 要素分类代码,图元类型,图元名称,图元特征,子类型标识 图幅基本信息 _Sheet_Mapinfo 地形图编号,图名,比例尺,坐标系统,高程系统,左经度,右经度,上纬度,下纬度,成图方法,调查单位,图幅验收单位,评分等级,完成时间,出版时间,资料来源,数据采集日期 表 5 内蒙古居力格台幅侵入岩时间序列表
时代 填图单位 主体岩性 主要分布位置 面积/km2 产状 主要接触关系 同位素年龄/Ma 构造背景 三叠纪 晚三叠世 zxπηγT3 中细粒似斑状二长花岗岩 恩格仁乌日腾 9.11 岩株 侵入zcβηγP1、渣尔泰山群 230.2±1.5 伸展 后造山 247.3±1.4 中三叠世 zxηγT2 中细粒二长花岗岩 昂格日–布敦毛德、霍布阿木–巴拉更伊高勒 118.83 岩基 被xβηγT2侵入 237.8±2.4 二叠纪 晚二叠世 xγδP1 灰白色中细粒花岗闪长岩 乌兰浑迪–陶布格仁高勒一带 4 岩枝 侵入xδC1中 268.0±1.1 挤压 大陆边缘弧 早二叠世 zηγP2 灰白色中粒二长花岗岩 那仁塞尔南部、瑙滚额热格高勒–敦德萨拉 15 岩枝 侵入zxδοP1中 258.24±0.75 zcβηγP1 灰白色中粗粒黑云母二长
花岗岩塔黑勒图–恩格日尔一带北部(韧性剪切带) 6 岩枝 被zxπηγT1侵入 269.92±0.85 zxπβηγP1 灰白色、肉红色中细粒似斑状二长花岗岩 敖包伊高勒–巴润贵力森乃高勒一带 49 岩株 侵入zxβγδP1 288.58±0.99 zβγδP1 灰色中粒黑云母花岗闪长岩 呼和陶勒盖高勒附近 0.6 岩滴 侵入zxβγδP1 278.05±0.69 278.07±0.66 x(zx)δοP1 灰白色细粒、中细粒石英闪长岩 阿日音珠斯郎南部、哈日陶勒盖–推木日图、毛浩日尧音高勒–居力格台 35.2 岩枝 侵入宝音图岩群、渣尔泰山群、zxδοP1 275.25±0.68 270.10±0.74 zxδψP1 灰色中细粒角闪闪长岩 阿伦珠斯朗一带 3.6 岩枝 侵入渣尔泰山群中 272±2 志留纪 晚志留世 zxηγS3 灰红色中细粒二长花岗岩 乌兰敖包–善达;呼和陶勒盖 124 岩基 侵入宝音图岩群中;被γδC1侵入 420.8±4.4 挤压 同造山(拼贴) 新元古代 νPt3 灰黑色中细粒辉长岩 德勒–好勒包 2 岩枝或岩脉 侵入渣尔泰山群之中 850.6±2.9 伸展 注:zx—中细粒;x—细粒;z—中粒;zc—中粗粒。 Table 1. Metadata Table of Database (Dataset)
Items Description Database (dataset) name 1∶50 000 Geological Map Database of the Juligetai Map-Sheet, Inner Mongolia Database (dataset)
authorsSedimentary rocks: Liu Yang, Tianjin Center, China Geological Survey
Volcanic rocks: Guo Shuo, Tianjin Center, China Geological Survey
Magmatic rocks: Teng Xuejian, Tianjin Center, China Geological Survey
Metamorphic rocks: Teng Fei, Tianjin Center, China Geological SurveyData acquisition time 2014 – 2016 Geographic area 106°30′ – 106°45′ E,41°10′ – 41°20′ N Data format MapGIS Data size 106 MB Data service system URL http://dcc.cgs.gov.cn Fund project Funded by China Geological Survey project titled ‘Pilot Mapping of Special Geological and Geomorphological Areas’ (Project No.: 12120113056300) Language Chinese Database (dataset) composition The 1∶50 000 Geological Map Database of the Juligetai Map-Sheet consists of two parts: the master map and outer finishing. The master map includes Quaternary, sedimentary rock, volcanic rocks, intrusives, structural features, geological boundary, attitude and various codes. The outer finishing includes an index map, stratigraphic columnar section, intrusive rock mapping units, cutting profile, structure outline map, geotectonic location, legend and author information. Overall, the map database includes 3 informal mapping units, 12 formal mapping units, 3 periods of magmatic events and deformations, as well as 120 pieces of petrochemical analysis data and the zircon U–Pb age of 13 samples Table 2. Field data entity table
PRB process Entity name Entity code Number of entities Description Field
data collectionGeological route ROUTE 154 Sequence number, map-sheet number, map-sheet name, route number, date, weather, route description, task, hand map number, recorder, companion, photographer, route summary Geological point (P) GPOINT 1094 Sequence number, map-sheet number, route number, geological point number, longitude, latitude, elevation, vertical coordinates, horizontal coordinates, geographical location, outcrop property, point nature, micro-geomorphology, weathering degree, lithology A, lithology B, lithology C, lithology code A, lithology code B, lithology code C, stratigraphic unit A, stratigraphic unit B, stratigraphic unit C, contact relation AB, contact relation BC, contact relation AC, description, International Standard Code, date, geological point description file name Field
data
collectionRouting (R) ROUTING 3154 Sequence number, route number, geological point number, inter-point number, mapping unit, date, routing distance, cumulative distance between points, route direction, note, routing description file name Inter-point boundary (B) BOUNDARY 2963 Sequence number, map-sheet number, route number, geological point number, B number, R number, vertical coordinates, horizontal coordinates, elevation, longitude, latitude, geobody on the right side of the boundary, geobody on the left side of the boundary, boundary line type, strike, dip, dip angle, contact relation, International Standard Code, note, date, inter-point boundary description file name Attitude ATTITUDE 877 Sequence number, map-sheet number, route number, geological point number, inter-point number, attitude number, attitude type, vertical coordinates, horizontal coordinates, longitude, latitude, elevation, strike, dip, dip angle, International Standard Code, date Sample SAMPLE 449 Sequence number, map-sheet number, route number, geological point number, inter-point number, field number, sample type, vertical coordinates, horizontal coordinates, longitude, latitude, geographical location, sampling depth (cm), sample weight (kg), number of bags, number of pieces, sample collector, date, mapping unit, original naming in field, naming based on indoor identification, unit sending sample, analysis requirements, note, International Standard Code Sketch SKETCH 134 Sequence number, map-sheet number, route number, geological point number, inter-point number, sketch number, vertical coordinates, horizontal coordinates, longitude, latitude, sketch name, scale, sketch description, International Standard Code, date, sketch folder Photo PHOTO 1990 Sequence number, map-sheet number, route number, geological point number, inter-point number, sample code, vertical coordinates, horizontal coordinates, longitude, latitude, description, photo serial number, lens direction, International Standard Code, date Table 3. Feature and object class of 1∶50 000 geological map database of the Juligetai map-sheet
Data type Name Standard code Description Basic
feature classGeological polygon _GEOPOLYGON.WP Number of entities: 611 Geological boundary line _GEOLINE.WL Number of entities: 1624 Mineral area _MINERAL_PNT.WT Number of entities: 7 Attitude _ATTITUDE.WT Number of entities: 877 Isotope dating _ISOTOPE.WT Number of entities: 13 Object class Sedimentary (volcanic) rock lithostratigraphic unit _Strata 10 stratigraphic units including the first member (Chs1) and second member (Chs2) of the Shujigou Formation, the first member (Chz1) and second member (Chz2) of the Zenglongchang Formation, and the first member (Jxa1), second member (Jxa2) and third member (Jxa3) of the Agulugou Formation of the Middle-Neoproterozoic Zhaertaishan Group; Cretaceous Wulansuhai Formation (K2w) and the Quaternary System Intrusive rock lithochronological unit _Intru _Litho_Chrono A total of 16 units including Neoproterozoic gabbro; Silurian adamellite, granite pegmatite; Early Permian gabbro, hornblende diorite, medium-fine-grained quartz diorite, fine-grained quartz diorite, hornblende-bearing biotite granodiorite, biotite granodiorite, granodiorite, porphyritic monzonitic granite, biotite monzonitic granite; Late Permian biotite monzonitic granite and medium-grained monzonitic granite; Middle Triassic adamellite; Late Triassic porphyritic monzonitic granite Dike _Dike_Object 8 types of dikes Complex class Standard frame _MAP_FRAME.WL 4 lines in the standard frame with the same attributes Tectonic deformation zone _TECTZONE.WP Ductile shear zone Alteration polygon _ALTERATION_POLYGON.WP Meso-Neoproterozoichornfelsed alteration polygon and Limonitization alteration polygon of the Zhaertaishan Group Independent feature class Index map SelfJtb Columnar section Column_sec Cutting profile Cutting_profile Legend Legend Table 4. Data attributes of 1: 50 000 geological map spatial database of Juligetai map-sheet, Inner Mongolia
Data type Name Standard code Attribute of data item Basic
feature
classGeological polygon _GeoPolygon Geological polygon identification number, geological code, geological polygon name, geological polygon age, lower age limit of geological polygon, upper age limit of geological polygon, subtype identification Geological (boundary)
line_GeoLine Feature identification number, geological boundary line code, boundary name, geobody code on the left side of the boundary, geobody code on the right side of the boundary, strike, dip direction, dip angle, subtype identification Attitude _Attitude Feature identification number, attitude type code, attitude name, strike, dip direction, dip angle, subtype identification Sample _Sample Feature identification number, sample code, sample type code, sample name, rock name, subtype identification Photograph _Photograph Feature identification number, sample code, photo title, photo note, subtype identification Sketch _Sketch Feature identification number, sample code, sketch title, sketch note, subtype identification Fossil _Fossil Feature identification number, fossil sample code, biological category of fossil, genus or species, bed, code of fossil-bearing lithostratigraphic unit, era, subtype identification Isotope _Isotope Feature identification number, sample code, sample name, age measuring method, age, unit and code of measured geobody, measure and analysis unit, measure and analysis date, subtype identification Crater _Crater Feature identification number, crater type, crater name, crater size, unit and code of geobody produced at the crater, crater rocktype, crater era, subtype identification Spring _Spring Feature identification number, spring code, spring name, spring runoff, temperature, geobody code, subtype identification River, lake, sea and water coastline _Line_Geography Feature identification number, feature type, feature name, subtype identification Complex class Tectonic deformation zone _Tectzone Feature identification number, feature type, feature name, deformation name, fabric character, mechanics, era, movement period, commodities, subtype identification Alteration polygon _Alteration_Polygon Feature identification number, feature type, alteration type, association, commodities, altered geobody code, subtype identification Volcanic facies _Volca_Facies Feature identification number, feature type, stratigraphic unit, rock type, rock texture, rock structure, flow plane attitude, flow line attitude, era, commodities, subtype identification Map frame _Map_Frame Map name, sheet code, scale, coordinate system, height system, left longitude, lower longitude, coordinates unit Object Class Sedimentary (volcanic) rock lithostratigraphic unit _Strata Feature type identification, stratigraphic unit name, stratigraphic unit code, stratigraphic unit era, rock association name, rock association color, sedimentary structure, biological assemblage zone, stratigraphic thickness, commodities, subtype identification Intrusive rock lithochronological unit _Intru_Litho_Chrono Feature type, intrusive body name, intrusive body code, rock name, color, rock texture, rock structure, rock phases, primary minerals and content, secondary minerals and content, contact relation with wall-rock, wall-rock era, attitude of wall-rock contact surface (strike, dip direction, dip angle), flow plane attitude, flow line attitude, formative era, commodities, subtype identification Fault _Fault Feature type, fault type, fault name, fault code, fault character, fault hanging wall geobody code, fault footwall geobody code, fault fracture zone width, fault strike, fault dip, fault dip angle, estimated fault distance, formative era of fault, movement period, subtype identification Dike _Dike_Object Feature type, dike name, dike code, dike lithology, dike color, texture, structure, primary minerals and content, secondary minerals and content, strike, dip direction, dip angle, formative era, commodities, subtype identification Informal strata _Inf_Strata Feature type, informal stratigraphic unit code, lithology, rock texture and structure, fossil assemblage, outcrop width or thickness, commodities, stratigraphic unit code, subtype identification Water region _Water_Region Feature type, feature class, feature name, object feature, subtype identification Sheet map information _Sheet_Mapinfo Sheet numbering, sheet name, scale, coordinate system, height system, left longitude, right longitude, upper latitude, lower latitude, mapping method, survey unit, accepting unit, grade, finished date, publish date, data origin, data acquisition date Table 5. Time series of the intrusives in Juligetai map-sheet, Inner Mongolia
Era Mapping unit Main lithology Main distribution Area/km2 Attitude Main contact relation Isotopic age/Ma Tectonic setting Triassic Late Triassic zxπηγT3 Medium-fine-grained porphyritic monzonitic granite Engerenwuriteng 9.11 Stock Intruding zcβηγP1,Zhaertaishan Group 230.2±1.5
247.3±1.4Extension Post-orogeny Middle Triassic zxηγT2 Medium-fine-grained monzonitic granite Anggeri – Budunmaude, Huobuamu – Balagengyigaole 118.83 Batholith Intruded by xβηγT2 237.8±2.4 Permian Late Permian xγδP1 Grey-white medium-fine granodiorite Ulanhundi – Taubugerengaole area 4 Apophysis Intruding xδC1 268.0±1.1 Compression Continental margin arc Early Permian zηγP2 Grey-white medium-grained monzonitic granite Southern part of Narensaier, Naoguneregegaole-Dundesala 15 Apophysis Intruding zxδοP1 258.24±0.75 zcβηγP1 Grey-white medium-coarse-grained biotite monzonitic granite Northern part of Taheiletu-Engerier area (ductile shear zone) 6 Apophysis Intruded by zxπηγT1 269.92±0.85 zxπβηγP1 Grey-white meat-red medium-fine grained porphyritic monzonitic granite Aobaoyigole – Barunguilisennaigaole area 49 Stock Intruding zxβγδP1 288.58±0.99 zβγδP1 Grey medium-grained biotite granodiorite Vicinity of Huhetaolegaigaole 0.6 Rock drop Intruding zxβγδP1 278.05±0.69
278.07±0.66x(zx)δοP1 Grey-white fine-grained and medium-fine-grained quartz diorite Southern part of Hariyinzhusilang, Haritaolegai – Tuimuritu, Maohaoriyaoyingaole – Juligetai 35.2 Apophysis Intruding Baoyintu Group and Zhaertaishan Group, zxδοP1 275.25±0.68
270.10±0.74zxδψP1 Grey medium-fine grained hornblende diorite Alunzhusilang area 3.6 Apophysis Intruding Zhaertaishan Group 272 ±2 Silurian Late Silurian zxηγS3 Grey- red medium-fine-grained monzonitic granite Ulan Obo – Shanda; Huhetaolegai 124 Batholith Intruding Baoyintu Group; intruded by γδC1 420.8 ±4.4 Compression Synorogeny (collage) Neoproterozoic νPt3 Grey-black medium-fine-grained gabbro Dele – Haolebao 2 Apophysis or dike Intruding Zhaertaishan Group 850.6±2.9 Extension Note: zx–medium-fine grained; x–fine-grained; z–medium-grained; zc–medium-coarse-grained. -
[1] Allen M B, Windley B F, Zhang C. 1993. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, Central Asia[J]. Tectonophysics, 220(1–4): 89−115.
[2] Allen M B, Engor A M C, Natalin B A. 1995. Junggar, Turfan and Alakol basins as Late Permian to Early Triassic extensional structures in a sinistral shear zone in the Altaid orogenic collage. Central Asia[J]. Journal of the Geological Society (London), 152(2): 32−338. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d93ec7e7a85de5d3e1296212feefd909
[3] Coleman R G. 1989. Continental growth of Northwest China[J]. Tectonics, 8(3): 621−635. doi: 10.1029/TC008i003p00621
[4] Gao J, Li M S, Xiao X C, Tang Y Q, He G Q. 1998. Paleozoic tectonic evolution of the Tianshan orogen, northwestern China[J]. Tectonophysics, 287(1–4): 213−231.
[5] Han B F, He G Q, Wang X C, Guo Z J. 2011. Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China[J]. Earth Science Reviews, 109: 74−93. doi: 10.1016/j.earscirev.2011.09.001
[6] Jahn B M, Griffin W L and Windley B F. 2000. Continental growth in the Phanerozoic: Evidence from Central Asia[J]. Tectonophysics, 328(1): vii–x.
[7] Li Y J, Wang G H, Santosh M., Wang J F, Dong P P, Li H Y 2018. Supra-subduction zone ophiolites from Inner Mongolia, North China: Implications for the tectonic history of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 59: 126−143. doi: 10.1016/j.gr.2018.02.018
[8] Li Y J, Wang G H, Santosh M, Wang J F, Dong P P, Li H Y. 2020. Subduction initiation of the SE Paleo-Asian Ocean: Evidence from a well preserved intra-oceanic forearc ophiolite fragment in central Inner Mongolia, North China[J]. Earth and Planetary Science Letters, 535: 116087. doi: 10.1016/j.jpgl.2020.116087
[9] Liu M, Zhang D, Xiong G Q, Zhao H T, Di Y J, Wang Z, Zhou Z G. 2016. Zircon U-Pb age Hf isotope and geochemistry of Carboniferous intrusions from the Langshan area, Inner Mongolia: Petrogenesis and tectonic implications[J]. Journal of Asian Earth Sciences, 120: 139−158. doi: 10.1016/j.jseaes.2016.01.005
[10] Peng R M, Zhai Y S, Li C S, Ripley E M. 2013. The Erbutu Ni-Cu deposit in the Central Asian Orogenic Belt: a Permian magmatic sulfide deposit related to Boninitic magmatism in an arc setting[J]. Economic Geology, 108: 1879−1888. doi: 10.2113/econgeo.108.8.1879
[11] Sengor A M C, Natalin B A, Burtman V S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in the Eurasia[J]. Nature, 364: 299−304. doi: 10.1038/364299a0
[12] Wang X Y, Yuan C, Zhang Y Y, Long X P, Sun M, Wang LX, Soldner J, Lin Z F. 2018. S-type granite from the Gongpoquan arc in the Beishan Orogenic Collage, southern Altaids: Implications for the tectonic transition[J]. Journal of Asian Earth Sciences, 153: 206−222. doi: 10.1016/j.jseaes.2017.07.037
[13] Wang Z Z, Han B F, Feng LX, Liu B. 2015. Geochronology, geochemistry and origins of the Paleozoic-Triassic plutons in the Langshan area, western Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 97: 337−351. doi: 10.1016/j.jseaes.2014.08.005
[14] Windley B F, Allen M B, Zhang C, Zhao Z Y, Wang GR. 1990. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan range, Central Asia[J]. Geology, 18(2): 128−131. doi: 10.1130/0091-7613(1990)018<0128:PAACRO>2.3.CO;2
[15] Windley B F, Alexeiev D, Xiao W J, Kröner A. 2007. Badarch G.Tectonics models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164: 31−47. doi: 10.1144/0016-76492006-022
[16] Wu T R, He G Q, Zhang C. 1998. On Paleozoic tectonics in the Alxa region, Inner Mongolia, China[J]. Acta Geologica Sinica(English Edition), 72(3): 256−263.
[17] Xiao W J, Windley B F, Badarch G, Sun S, Li J L, Qin K Z, Wang Z H. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids: Implications for the growth of Central Asia[J]. Journal of the Geological Society, 161(3): 339−342. doi: 10.1144/0016-764903-165
[18] Xiao W J, Mao Q G, Windley B F, Han C M, Qu J F, Zhang J E, Ao S J, Guo Q Q, Cleven N R, Lin S F, Shan Y H, Li J L. 2010. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 310: 1553−1594. doi: 10.2475/10.2010.12
[19] Xu B, Charvet J, Chen Y, Zhao P, Shi G Z. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 23: 1342−1364. doi: 10.1016/j.gr.2012.05.015
[20] Xu Z, Han B F, Ren R, Zhou Y Z, Zhang L, Chen J F, Su L, Li X H, Liu D Y. 2012. Ultramafic-mafic mélange, island arc and post-collisional intrusions in the Mayile Mountain, West Junggar, China: implications for Paleozoic intraoceanic subduction-accretion process[J]. Lithos, 132–133: 141−161.
[21] Yuan Y, Zong K Q, He Z Y, Klemd R, Jiang H Y, Zhang W, Liu Y S, Hu Z C, Zhang Z M. 2018. Geochemical evidence for Paleozoic crustal growth and tectonic conversion in the Northern Beishan Orogenic Belt, southern Central Asian Orogenic Belt[J]. Lithos, 302–303: 189−202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=65d3127ae450b6fb3fbcbe83e1cb9f19
[22] Zhang W, Jian P, Kröner A, S hi, Y R. 2013. Magmatic and metamorphic development of an early to mid-Paleozoic continental margin arc in the southernmost Central Asian Orogenic Belt, Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 72: 63−74. doi: 10.1016/j.jseaes.2012.05.025
[23] Zhang X H, Gao Y L, Wang Z J, Liu H, Ma Y G. 2012. Carboniferous appinitic intrusions from the northern North China craton: geochemistry, petrogenesis and tectonic implications[J]. Journal of the Geological Society, 169(3): 337−351. doi: 10.1144/0016-76492011-062
[24] Zheng R G, Xiao W J, Li J Y, Wu T R, Zhang W. 2018. A Silurian-early Devonian slab window in the southern Central Asian Orogenic Belt: Evidence from high-Mg diorites, adakites and granitoids in the western Central Beishan region, NW China[J]. Journal of Asian Earth Sciences, 153: 75−99. doi: 10.1016/j.jseaes.2016.12.008
[25] 白瑾. 2003. 造山带构造样式的恢复及其构造环境意义[J]. 地质调查与研究, 6(1): 38−44. doi: 10.3969/j.issn.1672-4135.2003.01.007
[26] 冯丽霞, 张志诚, 韩宝福, 任荣, 李建锋, 苏犁. 2013. 内蒙古达茂旗花岗岩类 LA–ICP–MS 锆石 U–Pb 年龄及其地质意义[J]. 地质通报, 32(11): 1737−1748. doi: 10.3969/j.issn.1671-2552.2013.11.006
[27] 刘烨. 2012. 内蒙古东升庙地区花岗片麻岩和侵入岩的地球化学、年代学特征及构造意义[D].兰州: 兰州大学博士学位论文.
[28] 刘洋, 郭硕, 滕学建, 滕飞. 2020. 内蒙古居力格台幅 1∶50 000 地质图数据库[DB/OL]. 地质科学数据出版系统. (2020-06-30). DOI: 10.35080/data.A.2020.P9.
[29] 毛晓长. 2018. 2018年全国区域地质调查优秀图幅展评会召开[J]. 中国地质, 45(S2): 93. doi: 10.12029/gc2018S211
[30] 内蒙古自治区第一区域地质调查队. 1982. 1∶20万区域地质矿产调查报告(三道桥幅)[R].
[31] 滕学建, 田健, 刘洋, 张永, 滕飞, 段霄龙. 2019. 内蒙古狼山地区早志留世石英闪长岩体的厘定及其地质意义[J]. 地球科学, 44(4): 1236−1247. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201904013
[32] 田健, 滕学建, 刘洋, 滕飞, 何鹏, 郭硕, 王文龙. 2018. 内蒙古狼山地区早石炭世角闪辉长岩、花岗闪长岩的岩石成因及构造意义[J]. 岩石矿物学杂志, 37(5): 60−76. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201805004
[33] 王树庆, 胡晓佳, 赵华雷. 2019. 内蒙古苏左旗洪格尔地区新发现晚石炭世碱性花岗岩[J]. 地质调查与研究, 42(2): 81−85. doi: 10.3969/j.issn.1672-4135.2019.02.001
[34] 吴飞, 张拴宏, 赵越, 叶浩. 2014. 华北地块北缘内蒙古固阳地区早二叠世岩体的侵位深度及其构造意义[J]. 中国地质, 41(3): 824−837. doi: 10.3969/j.issn.1000-3657.2014.03.011
[35] 张维, 简平. 2012. 华北北缘固阳二叠纪闪长岩-石英闪长岩-英云闪长岩套 HSRIMP 年代学[J]. 中国地质, 39(6): 1593−1603. doi: 10.3969/j.issn.1000-3657.2012.06.009
[36] 赵闯, 苏旭亮, 薛斌, 程东江, 史兴俊, 宋涛涛, 张阔. 2020. 内蒙古西部苦楚乌拉-英巴地区花岗岩锆石U–Pb定年及地球化学特征[J/OL]. 中国地质, 1–22 [2020-06-02].
[37] 赵磊, 牛宝贵, 徐芹芹, 杨亚琦. 2019. 新疆东准噶尔卡拉麦里蛇绿岩带两侧志留—石炭系沉积和构造特征分析及其意义[J]. 中国地质, 46(3): 615−628. doi: 10.12029/gc20190312
[1] Allen MB, Windley BF, Zhang C. 1993. Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, Central Asia[J]. Tectonophysics, 220(1–4): 89−115.
[2] Allen MB, Engor AMC, Natalin BA. 1995. Junggar, Turfan and Alakol basins as Late Permian to Early Triassic extensional structures in a sinistral shear zone in the Altaid orogenic collage. Central Asia[J]. Journal of the Geological Society (London), 152(2): 32−338. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d93ec7e7a85de5d3e1296212feefd909
[3] Bai Jin. 2003. Recovery of structural styles of orogenic belt and its tectonic environmental significance[J]. Geological survey and research, 6(1): 38−44, 51 (in Chinese with English abstract).
[4] Coleman RG. 1989. Continental growth of Northwest China[J]. Tectonics, 8(3): 621−635. doi: 10.1029/TC008i003p00621
[5] Feng Lixia, Zhang Zhicheng, Han Baofu, Ren Rong, Li Jianfeng, Su Li. 2013. LA-ICP-MS zircon U–Pb ages of granitoids in Darhan Muminggan Joint Banner, Inner Mongolia, and their geological significance[J]. Geological Bulletin of China, 32(11): 1737−1748 (in Chinese with English abstract).
[6] Gao J, Li MS, Xiao XC, Tang YQ, He GQ. 1998. Paleozoic tectonic evolution of the Tianshan orogen, northwestern China[J]. Tectonophysics, 287(1–4): 213−231.
[7] Han BF, He GQ, Wang XC, Guo ZJ. 2011. Late Carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen, Central Asia, and implications for the Northern Xinjiang, western China[J]. Earth Science Reviews, 109: 74−93. doi: 10.1016/j.earscirev.2011.09.001
[8] Jahn BM, Griffin WL, Windley BF. 2000. Continental growth in the Phanerozoic: Evidence from Central Asia[J]. Tectonophysics, 328(1): vii−x.
[9] Li YJ, Wang GH, Santosh M., Wang JF, Dong PP, Li HY 2018. Supra-subduction zone ophiolites from Inner Mongolia, North China: Implications for the tectonic history of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 59: 126−143. doi: 10.1016/j.gr.2018.02.018
[10] Li YJ, Wang GH, Santosh M, Wang JF, Dong PP, Li HY. 2020. Subduction initiation of the SE Paleo-Asian Ocean: Evidence from a well preserved intra-oceanic forearc ophiolite fragment in central Inner Mongolia, North China[J]. Earth and Planetary Science Letters, 535: 116087. doi: 10.1016/j.jpgl.2020.116087
[11] Liu M, Zhang D, Xiong GQ, Zhao HT, Di YJ, Wang Z, Zhou ZG. 2016. Zircon U–Pb age Hf isotope and geochemistry of Carboniferous intrusions from the Langshan area, Inner Mongolia: Petrogenesis and tectonic implications[J]. Journal of Asian Earth Sciences, 120: 139−158. doi: 10.1016/j.jseaes.2016.01.005
[12] Liu Ye. 2012. Geochemical and Chronological Characteristics of the Granitic Gneisses and Intrusive Rocks from Dongshengmiao Region, Inner Mongolia and Their Tectonic Implications[D]. Lanzhou: Doctoral dissertation of Lanzhou University (in Chinese with English abstract).
[13] Liu Yang, GuoShuo, Teng Xuejian, Teng Fei. 2020. 1∶50 000 Geological Map Database of the Juligetai Map-sheet, Inner Mongolia[DB/OL]. Geoscientific Data & Discovery Publishing System. (2020-06-30). DOI: 10.35080/data.A.2020.P9.
[14] Mao Xiaochang. 2018. 2018 National exhibition and evaluation conference on excellent maps of regional geological survey[J]. Geology in China, 45(S2): 119−120 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi2018z2012
[15] Peng RM, Zhai YS, Li CS, Ripley EM. 2013. The Erbutu Ni–Cu deposit in the Central Asian Orogenic Belt: a Permian magmatic sulfide deposit related to Boninitic magmatism in an arc setting[J]. Economic Geology, 108: 1879−1888. doi: 10.2113/econgeo.108.8.1879
[16] Sengor AMC, Natalin BA, Burtman VS. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in the Eurasia[J]. Nature, 364: 299−304. doi: 10.1038/364299a0
[17] Teng Xuejian, Tian Jian, Liu Yang, Zhang Yong, Teng Fei, Duan Xiaolong. 2019. Definition and Geological Significance of Early Silurian Quartz Diorite Pluton in Langshan area, Inner Mongolia[J]. Earth Science, 44(4): 1236−1247 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201904013
[18] The first regional geological survey team of Inner Mongolia. 1982. 1∶200 000 regional geological and mineral survey report (Sandaoqiao Map Sheet)[R]. Inner Mongolia Autonomous Region(in Chinese).
[19] Tian Jian, Teng Xuejian, Liu Yang, Teng Fei, Guo Shuo, He Peng, Wang Wenlong. Duan Xiaolong 2018. Petrogenesis and tectonic significance of the Early Carboniferous hornblendegabbro and granodiorite in Langshan area, Inner Mongolia[J]. Acta Petrologica Et Mineralogica, 37(5): 754−770 (in Chinese with English abstract).
[20] Wang Shuqing, Hu Xiaojia, Zhao Hualei. 2019. New discovery of Late Carboniferous alkaline granite in the Honggeer area, Sonid Zuoqi, Inner Mongolia[J]. Geological survey and research, 42(2): 81−85 (in Chinese with English abstract).
[21] Wang XY, Yuan C, Zhang YY, Long XP, Sun M, Wang LX, Soldner J, Lin Z F. 2018. S-type granite from the Gongpoquan arc in the Beishan Orogenic Collage, southern Altaids: Implications for the tectonic transition[J]. Journal of Asian Earth Sciences, 153: 206−222. doi: 10.1016/j.jseaes.2017.07.037
[22] Wang ZZ, Han BF, Feng LX, Liu B. 2015. Geochronology, geochemistry and origins of the Paleozoic–Triassic plutons in the Langshan area, western Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 97: 337−351. doi: 10.1016/j.jseaes.2014.08.005
[23] Windley BF, Allen MB, Zhang C, Zhao ZY, Wang GR. 1990. Paleozoic accretion and Cenozoic redeformation of the Chinese Tien Shan range, Central Asia[J]. Geology, 18(2): 128−131. doi: 10.1130/0091-7613(1990)018<0128:PAACRO>2.3.CO;2
[24] Windley BF, Alexeiev D, Xiao WJ, Kröner A. 2007. Badarch G.Tectonics models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 164: 31−47. doi: 10.1144/0016-76492006-022
[25] Wu Fei, Zhang Shuanghong, Zhao Yue, Ye Hao. 2014. Emplacement depth and tectonic significance of Early Permian pluton in Inner Mongolia Guyang area, northern margin of North China block[J]. Geology in China, 41(3): 824−837 (in Chinese with English abstract).
[26] Wu TR, He GQ, Zhang C. 1998. On Paleozoic tectonics in the Alxa region, Inner Mongolia, China[J]. Acta Geologica Sinica, 72(3): 256−263.
[27] Xiao WJ, Windley BF, Badarch G, Sun S, Li JL, Qin KZ, Wang ZH. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids: Implications for the growth of Central Asia[J]. Journal of the Geological Society, 161(3): 339−342. doi: 10.1144/0016-764903-165
[28] Xiao W J, Mao Q G, Windley B F, Han C M, Qu J F, Zhang J E, Ao S J, Guo Q Q, Cleven N R, Lin S F, Shan Y H, Li J L. 2010. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage[J]. American Journal of Science, 310: 1553−1594. doi: 10.2475/10.2010.12
[29] Xu B, Charvet J, Chen Y, Zhao P, Shi GZ. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 23: 1342−1364. doi: 10.1016/j.gr.2012.05.015
[30] Xu Z, Han BF, Ren R, Zhou YZ, Zhang L, Chen JF, Su L, Li XH, Liu DY. 2012. Ultramafic-mafic mélange, island arc and post-collisional intrusions in the Mayile Mountain, West Junggar, China: implications for Paleozoic intraoceanic subduction-accretion process[J]. Lithos, 132–133: 141−161.
[31] Yuan Y, Zong K Q, He ZY, Klemd R, Jiang HY, Zhang W, Liu YS, Hu ZC, Zhang ZM. 2018. Geochemical evidence for Paleozoic crustal growth and tectonic conversion in the Northern Beishan Orogenic Belt, southern Central Asian Orogenic Belt[J]. Lithos, 302–303: 189−202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=65d3127ae450b6fb3fbcbe83e1cb9f19
[32] Zhang Wei, Jian Ping. 2012. SHRIMP dating of the Permian Guyang diorite-granodiorite-tonalite suite in the northern margin of the North China Craton[J]. Geology in China, 39(6): 1593−1603 (in Chinese with English abstract).
[33] Zhang W, Jian P, Kröner A, Shi YR. 2013. Magmatic and metamorphic development of an early to mid-Paleozoic continental margin arc in the southernmost Central Asian Orogenic Belt, Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 72: 63−74. doi: 10.1016/j.jseaes.2012.05.025
[34] Zhang XH, Gao YL, Wang ZJ, Liu H, Ma YG. 2012. Carboniferous appinitic intrusions from the northern North China craton: geochemistry, petrogenesis and tectonic implications[J]. Journal of the Geological Society, 169(3): 337−351. doi: 10.1144/0016-76492011-062
[35] Zhao Chuang, Su Xuliang, Xue bin, Cheng Dongjiang, Shi Xingjun, song Taotao, Zhang Kuo. 2020. Zircon U-Pb dating and geochemical characteristics of granites in the area of Wula-Yingba, Kuchu, western Inner Mongolia[J/OL]. Geology in China,1–22[2020-06-02] (in Chinese with English abstract).
[36] Zhao Lei, Niu Baogui, Xu Qinqin, Yang Yaqi. 2019. An analysis of Silurian- Carboniferous sedimentary and structural characteristics on both sides of Karamaili ophiolitic belt of Xinjiang and its significance[J]. Geology in China, 46(3): 615−628 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201903014
[37] Zheng RG, Xiao WJ, Li JY, Wu TR, Zhang W. 2018. A Silurian-early Devonian slab window in the southern Central Asian Orogenic Belt: Evidence from high-Mg diorites, adakites and granitoids in the western Central Beishan region, NW China[J]. Journal of Asian Earth Sciences, 153: 75−99. doi: 10.1016/j.jseaes.2016.12.008