-
摘要:
斑岩型钨矿床是全球第三重要的钨矿类型,但对其研究较为薄弱、零散。文章基于团队近年来对斑岩钨矿床的研究并系统搜集了全球的相关资料,然后对其进行梳理与总结。研究表明,斑岩型钨矿主要分布于环太平洋成矿带与阿尔卑斯—喜马拉雅成矿带,岩浆弧、板内及陆-陆碰撞等多种环境均有矿床产出。矿床绝大多数形成于中生代、少量形成于古生代。斑岩型钨矿化与弱氧化、较高分异程度的I型或A型花岗质浅成侵入体密切相关。成矿有关岩浆岩主要起源于古老地壳的重熔,并有少量亏损地幔和/或海洋沉积物的混染。成矿流体、金属元素等主要来自于相关的岩浆岩,成矿所需的钙、铁、锰可由地层与岩浆岩通过水岩反应共同提供。岩浆弧及板内环境下初始成矿流体多属于中高温、中高盐度的NaCl-H2O系统,大陆碰撞体系下则多属于中高温、中低盐度的NaCl-H2O-CO2体系。钨在熔-流体分异过程中倾向于富集在共存的流体相,然后以单体钨酸盐、多钨酸盐及氟钨酸盐类等形式迁移。矿质沉淀机制主要包括流体不混溶/沸腾/CO2逃逸±流体混合和水岩反应。白钨矿和黑钨矿作为斑岩钨矿床中最重要的两种钨矿物,其产出可能主要受控于相关岩浆-流体系统中F含量的高低。
Abstract:P Porphyry tungsten deposit is the third most important type in the world, but its research is weak and scattered. This paper systematically summarizes and analyzes the research results in recent years from our team and other scholars about porphyry tungsten deposits. The results show that porphyry tungsten deposits are widely distributed in the Circum-Pacific metallogenic belt and the Alps-Himalayan metallogenic belt, and occur in magmatic arc, intraplate, and continental collision settings. Most of them were formed in Mesozoic and a few in Paleozoic. Porphyry tungsten mineralization is closely related to weakly oxidized, highly fractionated I-type or A-type hypabyssal granitic rocks, which were mainly derived from re-melting of the ancient crust, contaminated with a small amount of juvenile crust and/or depleted mantle and/or marine sediments. The ore-forming metals and fluids were dominantly originated from related magmatic rocks, and the Ca2+, Fe2+, and Mn2+ needed for W mineralization could be provided by the strata and magmatic rocks through water-rock reaction. The initial ore-forming fluids of porphyry tungsten deposits in magma arc and intraplate settings belong to the NaCl-H2O system with medium-high temperature, medium-high salinity and low CO2 content, while those under continental collision setting belong to NaCl-H2O-CO2 system with medium-high temperature, medium-low salinity and high CO2 content. W tends to be enriched in the coexisting fluid phase in the process of melt-fluid differentiation, and then migrates in the form of monomer tungstate, polytungstate, and fluorotungstate. The mechanisms of mineral precipitation mainly include fluid immiscibility/boiling/CO2 escape ±fluid mixing and water- rock reaction. Scheelite and wolframite are the dominant W-bearing minerals in porphyry tungsten deposits, and their occurrence may be mainly controlled by the fluorine content in relevant magma-fluid system.
-
-
图 3 SiO2-(K2O + Na2O)图解(a), SiO2-K2O图解(b), A/CNK-A/NK图解(c), A/CNK-DI图解(d), 10000*Ga/Al- Zr图解(e)(据Wu et al., 2017)及Zr/Hf-Nb/Ta图解(f)(据Ballouard et al., 2016)
Figure 3.
图 5 斑岩型钨矿床成矿岩石年龄-εHf(t)图解(a),εNd(t)-εHf(t) 图解(b)(底图据Vervoort et al., 2011; 王雪等,2015)及地壳模式年龄TDM2分布图(c)
Figure 5.
图 7 斑岩钨矿床硫化物206Pb/204Pb-207Pb/204Pb图解(a, Zartman and Doe, 1981)和Δβ =- Δγ图解(b, 底图据朱炳泉,1998)
Figure 7.
图 8 斑岩钨矿床δ18OH2O-δDH2O关系图(据Taylor, 1974)
Figure 8.
表 1 全球典型斑岩钨矿床一览
Table 1. Characteristics of representative porphyry tungsten deposits in the world
-
Audétat A, Günther D, Heinrich C A. 2000. Magmatic-hydrothermal evolution in a fractionating granite: A microchemical study of the Sn-W-F-mineralized Mole granite (Australia)[J]. Geochimica et Cosmochimica Acta, 64(19): 3373-3393. doi: 10.1016/S0016-7037(00)00428-2
Ballouard C, Poujol M, Boulvais P, Branquet Y, Tartèse R, Vigneresse J L. 2016. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition[J]. Geology, 44(7): 231-234. http://smartsearch.nstl.gov.cn/paper_detail.html?id=476848329f8f21cad747317292fa23f9
Bau M. 1996. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect[J]. Contributions to Mineralogy and Petrology, 123(3): 323-333. doi: 10.1007/s004100050159
BGS. 2011. Tungsten[R]. British Geological Survey, Keyworth, UK. Available at: http://www.bgs.ac.uk/downloads/.
Blevin P L. 2004. Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: Implications for gold-rich ore systems[J]. Resource Geology, 54(3): 241-252. doi: 10.1111/j.1751-3928.2004.tb00205.x
Brand A A. 2008. Mineralogy, Geochemistry, and Geochronology of the Northern Dancer Tungsten-molybdenum Deposit, Yukon and British Columbia[D]. Vancouver: M.S. Thesis, University of British Columbia, 1-242.
Burnard P G, Polya D A. 2004. Importance of mantle derived fluids during granite associated hydrothermal circulation: He and Ar isotopes of ore minerals from Panasqueira[J]. Geochimica et Cosmochimica Acta, 68(7): 1607-1615. doi: 10.1016/j.gca.2003.10.008
Calvo G, Valero A, Valero A. 2019. How can strategic metals drive the economy? Tungsten and tin production in Spain during periods of war[J]. The Extractive Industries and Society, 6(1): 8-14. doi: 10.1016/j.exis.2018.07.008
Candela P A. 1992. Controls on ore metal ratios in granite-related ore systems: An experimental and computational approach[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1/2): 317-326. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8344858&fulltextType=RA&fileId=S0263593300007999
Carpentier M, Chauvel C, Maury R C, Mattielli N. 2009. The "zircon effect" as recorded by the chemical and Hf isotopic compositions of Lesser Antilles forearc sediments[J]. Earth and Planetary Science Letters, 2009, 287(1/2): 86-99. http://www.sciencedirect.com/science/article/pii/S0012821X09004555
Chauvel C, Lewin E, Carpentier M, Arndt N T, Marini J C. 2008. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array[J]. Nature Geoscience, 1(1): 64-67. doi: 10.1038/ngeo.2007.51
Chelle-Michou C, Rottier B, Caricchi L, Simpson G. 2017. Tempo of magma degassing and the genesis of porphyry copper deposits[J]. Scientific Reports, 7: 40566. doi: 10.1038/srep40566
Chen B, Ma X H, Wang Z Q. 2014. Origin of the fluorine-rich highly differentiated granites from the Qianlishan composite plutons (South China) and implications for polymetallic mineralization[J]. Journal of Asian Earth Sciences, 93: 301-314. doi: 10.1016/j.jseaes.2014.07.022
Chen Yanjing, Li Nuo. 2009. Nature of ore-fluids of intracontinental intrusion-related hypothermal deposits and its difference from those in island arcs[J]. Acta Petrologica Sinica, 25(10): 2477-2508(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200910016.htm
Cooke D R, Hollings P, Walshe J L. 2005. Giant porphyry deposits: Characteristics, distribution, and tectonic controls[J]. Economic Geology, 100(5): 801-818. doi: 10.2113/gsecongeo.100.5.801
Davis W J, Williams-Jones A E. 1985. A fluid inclusion study of the porphyry-greisen, tungsten-molybdenum deposit at Mount Pleasant, New Brunswick, Canada[J]. Mineralium Deposita, 20(2): 94-101. doi: 10.1007/BF00204317
Dewaele S, Clercq F D, Hulsbosch N, Piessens K, Boyce A, Burgess R, Muchez Ph. 2016. Genesis of the vein-type tungsten mineralization at Nyakabingo (Rwanda) in the Karagwe-Ankole belt, Central Africa[J]. Mineralium Deposita, 51(2): 283-307. doi: 10.1007/s00126-015-0608-x
Du Yudiao, Yu Xinqi, Liu Jiajun, Zhou Xiang, Fu Jianzhen. 2012. Characteristics of ore-forming fluids and sources of ore-forming materials in the Dongyuan W-Mo deposit, Southern Anhui Province[J]. Geology in China, 38(5): 1334-1346(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201105021.htm
Feng Chengyou, Huang Fan, Zeng Zailin, Qu Wenjun, Ding Ming. 2011. Isotopic chronology of Jiulongnao granite and Hongshuizhai greisens-type tungsten deposit in South Jiangxi Province[J]. Journal of Jilin University (Earth Science Edition), 41(1): 111-121(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201101015.htm
Fortier S M, Nassar N T, Lederer G W, Brainard J, Mccullough E A. 2018. Draft Critical Mineral List-Summary of Methodology and Background Information-US Geological Survey Technical Input Document in Response to Secretarial Order No. 3359[R]. US Geological Survey.
Gu Juyun. 1988. The characteristics of dominant porphyry tungsten deposits of China[J]. Mineral Resources and Geology, 2(1): 15-23(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCYD198801002.htm
Guo C L, Wang R C, Yuan S D, Wu S H, Yin B. 2015. Geochronological and geochemical constraints on the petrogenesis and geodynamic setting of the Qianlishan granitic pluton, Southeast China[J]. Mineralogy and Petrology, 109(2): 253-282. doi: 10.1007/s00710-014-0355-1
Harris A C, Golding S D. 2002. New evidence of magmatic-fluid-related phyllic alteration: Implications for the genesis of porphyry Cu deposits[J]. Geology, 30(4): 335-338. doi: 10.1130/0091-7613(2002)030<0335:NEOMFR>2.0.CO;2
Hedenquist J W, Arribas A, Reynolds T J. 1998. Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines[J]. Economic Geology, 93(4): 373-404. doi: 10.2113/gsecongeo.93.4.373
Hou Zengqian, Yang Zhiming, Wang Rui, Zheng Yuanchuan. 2020. Further discussion on porphyry Cu-Mo-Au deposit formation in main-land China[J]. Earth Science Frontiers, 27(2): 20-44(in Chinese with English abstract).
Huang H, Niu Y L, Mo X X. 2017. Garnet effect on Nd-Hf isotope decoupling: Evidence from the Jinfosi batholith, Northern Tibetan Plateau[J]. Lithos, 274: 31-38. http://www.sciencedirect.com/science/article/pii/S0024493716304601
Hulsbosch N, Boiron M C, Dewaele S and Muchez P. 2016. Fluid fractionation of tungsten during granite-pegmatite differentiation and the metal source of peribatholitic W quartz veins: Evidence from the Karagwe-Ankole Belt (Rwanda)[J]. Geochimica et Cosmochimica Acta, 175(7): 299-318. http://www.sciencedirect.com/science/article/pii/S0016703715006559
Inverno C M C, Hutchinson R W. 2006. Petrochemical discrimination of evolved granitic intrusions associated with Mount Pleasant deposits, New Brunswick, Canada[J]. Applied Earth Science, 115(1): 23-39. doi: 10.1179/174327506X113037
Jiang Shaoyong, Zhao Kuidong, Jiang Hai, Su Huimin, Xiong Suofei, Xiong Yiqu, Xu Yaoming, Zhang Wei, Zhu Lüyun. 2020. Spatiotemporal distribution, geological characteristics and metallogenic mechanism of tungsten and tin deposits in China: An overview[J]. Chinese Science Bulletin, 65(33): 86-101(in Chinese). http://www.researchgate.net/publication/346714667_Spatiotemporal_distribution_geological_characteristics_and_metallogenic_mechanism_of_tungsten_and_tin_deposits_in_China_An_overview
Keppler H, Wyllie P J. 1991. Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF[J]. Contributions to Mineralogy and Petrology, 109(2): 139-150. doi: 10.1007/BF00306474
Kooiman G J A, McLeod M J, Sinclair W D. 1986. Porphyry tungsten-molybdenum orebodies, polymetallic veins and replacement bodies, and tin-bearing greisen zones in the Fire Tower Zone, Mount Pleasant, New Brunswick[J]. Economic Geology, 81(6): 1356-1373. doi: 10.2113/gsecongeo.81.6.1356
Kwark T A P, White A J R. 1982. Contrasting W-Mo-Cu and W-Sn-F skarn types and related granitoids[J]. Mining Geology, 32(174): 339-351. http://ci.nii.ac.jp/naid/130003639587
Lecumberri-Sanchez P, Vieira R, Heinrich C A, Pinto F, Wälle M. 2017. Fluid-rock interaction is decisive for the formation of tungsten deposits[J]. Geology, 45(7): 579-582. doi: 10.1130/G38974.1
Lehmann B, Ishihara S, Michel H, Miller J, Winkelmann L. 1990. The Bolivian tin province and regional tin distribution in the Central Andes: A reassessment[J]. Economic Geology, 85(5): 1044-1058. doi: 10.2113/gsecongeo.85.5.1044
Li Hongying, Yang Lei, Chen Jianfeng. 2019. Geological characteristics and diagenetic age of ore-bearing rock of Taojiang Muguayuan tungsten deposit in Hunan Province[J]. Journal of Jilin University (Earth Science Edition), 49(5): 1285-1300(in Chinese with English abstract).
Li Jiadai, Li Xiaofeng. 2020. Research progress in metallogenesis of skarn-type tungsten deposits[J]. Mineral Deposit, 39(2): 256-272(in Chinese with English abstract).
Li X Y, Gao J F, Zhang R Q, Lu J J, Chen W H, Wu J W. 2018. Origin of the Muguayuan veinlet-disseminated tungsten deposit, South China: Constraints from in-situ trace element analyses of scheelite[J]. Ore Geology Reviews, 99: 180-194. doi: 10.1016/j.oregeorev.2018.06.005
Li Xianhai, Wang Dan, Wu Shangkun. 2014. The domestic strategic mineral resources evaluation index selection: Thinking based on list of key-minerals such as the United States, the European Union[J]. China Mining Magazine, 23(4): 30-33(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKA201404010.htm
Liu J, Li W C, Zhu X P, Li C, Zhou Q, Yang F C. 2020a. Origin and evolution of ore-forming fluids of the Larong W-(Mo) deposit, eastern Tibet: Constraints from fluid inclusions, H-O isotopes, and scheelite geochemistry[J]. Ore Geology Reviews, 124: 103620. doi: 10.1016/j.oregeorev.2020.103620
Liu J, Li W C, Zhu X P, Wang B D, Jiang J S, Liu H F. 2020b. Magmatic evolution and related W-Mo mineralization in the Larong deposit, eastern Tibet: Evidence from zircon U-Pb ages, geochemistry and Sr-Nd-Hf isotopes[J]. Ore Geology Reviews, 120: 103411. doi: 10.1016/j.oregeorev.2020.103411
Liu J, Li W C, Zhu X P, Zhou J X, Yu H J. 2020c. Ore genesis of the Late Cretaceous Larong porphyry W-Mo deposit, eastern Tibet: Evidence from in-situ trace elemental and S-Pb isotopic compositions[J]. Journal of Asian Earth Sciences, 190: 104199. doi: 10.1016/j.jseaes.2019.104199
Liu Jun, Zhu Xiangping, Li Wenchang, Wang Baodi, Dong Yu, Yang Fucheng, Yang Houbin, Wu Jianghua. 2019. Molybdenite Re-Os dating of the Larong porphyry W-Mo deposit in eastern Tibet and its geological significance[J]. Acta Geologica Sinica, 93(7): 1708-1719(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE201907011.htm
Liu P, Mao J W, Pirajno F, Jia L H, Zhang F, Li Y. 2018. Ore genesis and geodynamic setting of the Lianhuashan porphyry tungsten deposit, eastern Guangdong Province, SE China: Constraints from muscovite 40Ar-39Ar and zircon U-Pb dating and Hf isotopes[J]. Mineralium Deposita, 53(6): 797-814. doi: 10.1007/s00126-017-0779-8
Lowell J D, Guilbert J M. 1970. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits[J]. Economic Geology, 65(4): 373-408. doi: 10.2113/gsecongeo.65.4.373
Lu H Z, Liu Y M, Wang C L, Xu Y Z, Li H Q. 2003. Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China[J]. Economic Geology, 98(5): 955-974. doi: 10.2113/gsecongeo.98.5.955
Lu H Z. 1985. Fluid inclusion studies of a new type of ore deposit: Porphyry tungsten occurrence in China[J]. Geochemistry, 4(1): 41-53. doi: 10.1007/BF03179317
Mao J W, Cheng Y B, Chen M H, Franco P. 2013. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings[J]. Mineralium Deposita, 48(3): 267-294. doi: 10.1007/s00126-012-0446-z
Mao J W, Xiong B K, Liu J, Franco P, Cheng Y B, Ye H S, Song S W, Dai P. 2017a. Molybdenite Re/Os dating, zircon U-Pb age and geochemistry of granitoids in the Yangchuling porphyry W-Mo deposit (Jiangnan tungsten ore belt), China: Implications for petrogenesis, mineralization and geodynamic setting[J]. Lithos, 286/287: 35-52. doi: 10.1016/j.lithos.2017.05.023
Mao Jingwen, Wu Shenghua, Song Shiwei, Dai Pan, Xie Guiqing, Su Qiangwei, Liu Peng, Wang Xianguang, Yu Zhongzhen, Chen Xiangyun, Tang Weixin. 2020. The world-class Jiangnan tungsten belt: Geological characteristics, metallogeny, and ore deposit model[J]. Chinese Science Bulletin, 65(33): 102-118(in Chinese). http://www.researchgate.net/publication/347186338_The_world-class_Jiangnan_tungsten_belt_Geologicalcharacteristics_metallogeny_and_ore_deposit_model
Mao W, Rusk B, Yang F C, Zhang M J. 2017b. Physical and chemical evolution of the Dabaoshan porphyry Mo deposit, south China: Insights from fluid inclusions, cathodoluminescence, and trace elements in quartz[J]. Economic Geology, 112(4): 889-918. doi: 10.2113/econgeo.112.4.889
Meinert L D, Hedenquist J W, Satoh H, Matsuhisa, Y. 2003. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids[J]. Economic Geology, 98(1): 147-156. doi: 10.2113/gsecongeo.98.1.147
Mo Mingzhen. 1988. A preliminary study on alteration zoning of the Yangchuling porphyry W-Mo deposit and its relationship to mineralization[J]. Mineral Deposit, 7(3): 52-61(in Chinese with English abstract). http://www.researchgate.net/publication/303241483_Study_on_the_isotope_geochronology_of_Yangchuling_porphyry_type_of_tungsten_and_molybdenum_deposit_J
Mortensen J K, Brand A, Liverton T. 2006. Laser ablation ICP-MS U-Pb zircon ages for Cretaceous plutonic rocks in the Logtung and Thirtymile Range areas of southern Yukon[C]//Emond D S, Lewis L L, Weston L H (eds.). Yukon Exploration and Geology. Yukon Geological Survey.
Mustard R, Ulrich T, Kamenetsky V S, Mernagh T. 2006. Gold and metal enrichment in natural granitic melts during fractional crystallization[J]. Geology, 34(2): 85-88. doi: 10.1130/G22141.1
Nast H J, Williams-Jones A E. 1991. The role of water-rock interaction and fluid evolution in forming the porphyry-related Sisson Brook W-Cu-Mo deposit, New Brunswick[J]. Economic Geology, 86(2): 302-317. doi: 10.2113/gsecongeo.86.2.302
Ni P, Wang X D, Wang G G, Huang J B, Wang T G. 2015. An infrared microthermometric study of fluid inclusions in coexisting quartz and wolframite from Late Mesozoic tungsten deposits in the Gannan metallogenic belt, South China[J]. Ore Geology Reviews, 65: 1062-1077 doi: 10.1016/j.oregeorev.2014.08.007
Nie Rongfeng, Wang Xudong. 2007. On research advancement of Southern Jiangxi's tungsten deposits[J]. China Mining Magazine, 22(3): 4-8(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGWU200703000.htm
Noble S R, Spooner E T C, Harris F R. 1984. The Logtung large tonnage, low-grade W (scheelite)-Mo porphyry deposit, south-central Yukon Territory[J]. Economic Geology, 79(5): 848-868. doi: 10.2113/gsecongeo.79.5.848
Pan X F, Hou Z Q, Zhao M, Chen G H, Rao J F, Li Y, Wei J, Ouyang Y P. 2018. Geochronology and geochemistry of the granites from the Zhuxi W-Cu ore deposit in South China: Implication for petrogenesis, geodynamical setting and mineralization[J]. Lithos, 304: 155-179. http://smartsearch.nstl.gov.cn/paper_detail.html?id=2c4a67fccd16802a7b65ae6b04513628
Patchett P J, White W M, Feldmann H, Kielinczuk S, Hofmann A W. 1984. Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the Earth's mantle[J]. Earth and Planetary Science Letters, 69(2): 365-378. doi: 10.1016/0012-821X(84)90195-X
Qin Yan, Wang Denghong, Wu Libin, Wang Keyou, Mei Yuping. 2010. Zircon SHRIMP U-Pb dating of the mineralized porphyry in the Dongyuan W deposit in Anhui Province and its geological significance[J]. Acta Geologica Sinica, 84(4): 479-484(in Chinese with English abstract). http://www.researchgate.net/publication/291105026_Zircon_SHRIMP_U-Pb_dating_of_the_mineralized_porphyry_in_the_Dongyuan_W_deposit_in_Anhui_province_and_its_geological_significance
Rudnick R L, Gao S. 2003. Composition of the continental crust[J]. Treatise Geochem., 3: 659.
Sanfilippo A, Salters V, Tribuzio R, Zanetti A. 2019. Role of ancient, ultra-depleted mantle in Mid-Ocean-Ridge magmatism[J]. Earth and Planetary Science Letters, 511: 89-98. doi: 10.1016/j.epsl.2019.01.018
Schmitz M D, Vervoort J D, Bowring S A, Patchett P J. 2004. Decoupling of the Lu-Hf and Sm-Nd isotope systems during the evolution of granulitic lower crust beneath southern Africa[J]. Geology, 32(5): 405-408. doi: 10.1130/G20241.1
Seal R R. 2006. Sulfur isotope geochemistry of sulfide minerals[J]. Reviews in Mineralogy and Geochemistry, 61(1): 633-677. doi: 10.2138/rmg.2006.61.12
Selby D, Creaser R A, Heaman L M, Hart C J. 2003. Re-Os and U-Pb geochronology of the Clear Creek, Dublin Gulch, and Mactung deposits, Tombstone Gold Belt, Yukon, Canada: Absolute timing relationships between plutonism and mineralization[J]. Canadian Journal of Earth Sciences, 40(12): 1839-1852. doi: 10.1139/e03-077
Shan Liang, Pang Yingchun, Ke Xianzhong, Liu Jiajun, Chen Wenhui, Niu Zhijun, Xu Deming, Long Wenguo, Wang Binqing. 2019. Diagenetic and metallogenic age of the Muguayuan tungsten polymetallic deposit and its effect on regional mineralization, Taojiang County, Northeastern Hunan Province, China[J]. Geological Science and Technology Information, 38(1): 100-112(in Chinese with English abstract).
Sheng J F, Liu L J, Wang D H, Chen Z H, Ying L J, Huang F, Wang J H, Zeng L. 2015. A preliminary review of metallogenic regularity of tungsten deposits in China[J]. Acta Geologica Sinica(English Edition), 89(4): 1359-1374. doi: 10.1111/1755-6724.12533
Shi Hongzhao, Lin Fangcheng, Zhang Linkui. 2009. Spatio-temporaldistribution and current state ofthe research of the tungsten deposits: An overview[J]. Sedimentary Geology and Tethyan Geology, 29(4): 90-95(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD200904017.htm
Shimazaki H. 1980. Characteristics of skarn deposits and related acid magmatism in Japan[J]. Economic Geology, 75(2): 173-183. doi: 10.2113/gsecongeo.75.2.173
Sillitoe R H. 2010. Porphyry copper systems[J]. Economic Geology, 105(1): 3-41. doi: 10.2113/gsecongeo.105.1.3
Sinclair W D. 1995. Porphyry W. Selected British Columbia Mineral Deposit Profiles, Volume 1-metallics and coal[C]//Lefebure D V, Ray G E(eds.). British Columbia Ministry of Energy of Employment and Investment, Open File 1995-20: 101-104.
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
Tan Yunjin. 1985. Metallogenetic mechanism of Lianhuashan porphyry tungsten deposit[J]. Science in China (Series B), (6): 83-90(in Chinese). http://www.ixueshu.com/document/c2f1afb362c2fdede621d94825a1a9be318947a18e7f9386.html
Tan Yunjin. 1999. Composite characteristic of tungsten minerals and its dominate factors of endogenesis tungsten deposit in south China[J]. China Tungsten Industry, 14(5/6): 84-89(in Chinese).
Tang M, Wang X L, Shu X J, Wang D, Yang T, Gopon P. 2014. Hafnium isotopic heterogeneity in zircons from granitic rocks: Geochemical evaluation and modeling of "zircon effect" in crustal anatexis[J]. Earth and Planetary Science Letters, 389: 188-199. doi: 10.1016/j.epsl.2013.12.036
Taylor H P. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J]. Economic Geology, 69(6): 843-883. doi: 10.2113/gsecongeo.69.6.843
Thode H G, Monster J, Dunford H B. 1961. Sulphur isotope geochemistry[J]. Geochimica et Cosmochimica Acta, 25(3): 159-174. doi: 10.1016/0016-7037(61)90074-6
Thorne K G, Fyffe L R, Creaser R A. 2013. Re-Os geochronological constraints on the W-Mo mineralizing event in the Mount Pleasant Caldera Complex: Implications for the timing of subvolcanic magmatism and caldera development[J]. Atlantic Geology, 49(1): 131-150. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=93996583&site=ehost-live
Ulrich T, Mavrogenes J. 2008. An experimental study of the solubility of molybdenum in H2O and KCl-H2O solutions from 500℃ to 800℃, and 150 to 300 MPa[J]. Geochimica et Cosmochimica Acta, 72(9): 2316-2330. doi: 10.1016/j.gca.2008.02.014
Vallance J, Cathelineau M, Marignac C, Boiron M C, Cécile F. 2001. Microfracturing and fluid mixing in granites: W-(Sn) ore deposition at Vaulry (NW French Massif Central)[J]. Tectonophysics, 336(1/4): 43-61. http://www.sciencedirect.com/science/article/pii/S0040195101000932
Vervoort J D, Blichert-Toft J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time[J]. Geochimica et Cosmochimica Acta, 63(3/4): 533-556. http://www.sciencedirect.com/science/article/pii/S0016703798002749
Vervoort J D, Plank T, Prytulak J. 2011. The Hf-Nd isotopic composition of marine sediments[J]. Geochimica et Cosmochimica Acta, 75(20): 5903-5926. doi: 10.1016/j.gca.2011.07.046
Voicu G, Bardoux M, Stevenson R, Jebrak M. 2000. Nd and Sr isotope study of hydrothermal scheelite and host rocks at Omai, Guiana Shield: Implications for ore fluid source and flow path during the formation of orogenic gold deposits[J]. Mineralium Deposita, 35(4): 302-314. doi: 10.1007/s001260050243
Wade J, Wood B J, Norris C A. 2013. The oxidation state of tungsten in silicate melt at high pressures and temperatures[J]. Chemical Geology, 335: 189-193. doi: 10.1016/j.chemgeo.2012.10.011
Wang Denghong, Xu Zhigang, Sheng Jifu, Zhu Mingyu, Xu Jue, Yuan Zhongxin, Bai Ge, Qu Wenjun, Li Huaqin, Chen Zhenghui, Wang Chenghui, Huang Fan, Zhang Changqing, Wang Yonglei, Ying Lijuan, Li Houmin, Gao Lan, Sun Tao, Fu Yong, Li Kangjian, Wu Guang, Tang Juxing, Feng Chengyou, Zhao Zheng, Zhang Daquan. 2014. Progress on the study of regularity of major mineral resources and regional metallogenic regularity in China: A Review[J]. Acta Geologica Sinica, 88(12): 2176-2191(in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE201412003&dbcode=CJFD&year=2014&dflag=pdfdown
Wang Lijuan, Wang Jingbin, Wang Yuwang, Wang Junsheng, Liao Zhen. 2011. The characteristics of porphyry Cu, Mo, W ore-forming fluid in different tectonic setting[J]. Mineral Exploration, 2(6): 704-713(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSJS201106010.htm
Wang P, Chen Y J, Fu B, Yang Y F, Mi M, Li Z L. 2014. Fluid inclusion and H-O-C isotope geochemistry of the Yaochong porphyry Mo deposit in Dabie Shan, China: A case study of porphyry systems in continental collision orogens[J]. International Journal of Earth Sciences, 103(3): 777-797. doi: 10.1007/s00531-013-0982-5
Wang X L, Qiu Y, Chou I M, Zhang R Q, Li G L, Zhong R C. 2020. Effects of pH and salinity on the hydrothermal transport of tungsten: Insights from in situ Raman spectroscopic characterization of K2WO4-NaCl-HCl-CO2 solutions at temperatures up to 400℃[J]. Geofluids, 2: 1-12.
Wang X S, Williams-Jones A E, Hu R Z, Shang L B, Bi X W. 2021. The role of fluorine in granite-related hydrothermal tungsten ore genesis: Results of experiments and modeling[J]. Geochimica et Cosmochimica Acta, 292: 170-187. doi: 10.1016/j.gca.2020.09.032
Wang Xue, Huang Xiaolong, Ma Jinlong, Zhong Junwei, Yang Qijun. 2015. Hf-Nd isotopes of the Early Precambrian metamorphic complexes in the southern segment of the Trans-North China Orogen: Implications for crustal evolution[J]. Geotectonica et Metallogenia, 39(6): 1108-1118(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DGYK201506013.htm
Wang Y H, Zhang F F, Liu J J, Xue C Ji, Zhang Z C. 2018. Genesis of the Wurinitu W-Mo deposit, Inner Mongolia, northeast China: Constraints from geology, fluid inclusions and isotope systematics[J]. Ore Geology Reviews, 94: 367-382. doi: 10.1016/j.oregeorev.2018.01.031
Wood S A, Samson I M. 2000. The hydrothermal geochemistry of tungsten in granitoid environments: I. Relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl[J]. Economic Geology, 95(1): 143-182. doi: 10.2113/gsecongeo.95.1.143
Wu F Y, Liu X C, Ji W Q, Wang J M, Yang L. 2017. Highly fractionated granites: Recognition and research[J]. Science China Earth Sciences, 60(7): 1201-1219. doi: 10.1007/s11430-016-5139-1
Xu Keqin, Liu Yingjun, Yu Shoujun. 1959. Types of tungsten deposits of China and their distribution with relation to geotectonics[J]. Journal of Nanjing University (Natural Sciences), (2): 31-54(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-NJDZ195902003.htm
Xu Tai, Gao Haidong, Li Yuanzhi, Wei Xin. 2012. On the metallogenic characteristics of China's tungsten deposits[J]. China Tungsten Industry, 27(3): 1-5(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGWU201203002.htm
Yuan Shunda, Zhang Dongliang, Shuang Yan, Du Andao, Qu Wenjun. 2012. Re-Os dating of molybdenite from the Xintianling giant tungsten-molybdenum deposit in southern Hunan Province, China and its geological implications[J]. Acta Petrologica Sinica, 28(1): 27-38(in Chinese with English abstract).
Zartman R E, Doe B R. 1981. Plumbotectonics-the model[J]. Tectonophysics, 75(1/2): 135-162. http://www.sciencedirect.com/science/article/pii/0040195181902134
Zhai Yusheng. 2002. Some features of regional metallogeny of China[J]. Geology and Exploration, 38(5): 1-4(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKT200205000.htm
Zhang C, Santosh M, Luo Q, Jiang S, Liu L F, Liu D D. 2019. Impact of residual zircon on Nd-Hf isotope decoupling during sediment recycling in subduction zone[J]. Geoscience Frontiers, 10(1): 241-251. doi: 10.1016/j.gsf.2018.03.015
Zhang Dachun, Mu Zhiguo, Huang Fusheng, Chen Chengye, Zheng Shuhui. 1984. Stable isotope studied of the Yangchuling tungsten-molybdenum ore deposit, Jiangxi Province[J]. Mineral Deposits, 3(02): 56-65(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ198402005.htm
Zhang Jiajing, Chen Zhenghui, Wang Denghong, Chen Zhenyu, Liu Shanbao, Wang Chenghui. 2008. Geological characteristics and metallogenic epoch of the Xingluokeng tungsten deposit, Fujian Province[J]. Geotectonica et Metallogenia, 32(1): 92-97(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DGYK200801013.htm
Zhang Ligang. 1985. Hydrogen, oxygen, sulfur and carbon isotope geochemistry of the Lianhuashan porphyry type tungsten deposit[J]. Mineral Deposits, 4(1): 56-65(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ198501007.htm
Zhang W, Lentz D R, Thorne K G, Massawe R J R. 2020. Late Silurian-Early Devonian slab break-off beneath the Canadian Appalachians: Insights from the Nashwaak granite, west-central New Brunswick, Canada[J]. Lithos, 358/359: 105393. doi: 10.1016/j.lithos.2020.105393
Zhang W, Lentz D R, Thorne K G, McFarlane C. 2016. Geochemical characteristics of biotite from felsic intrusive rocks around the Sisson Brook W-Mo-Cu deposit, west-central New Brunswick: An indicator of halogen and oxygen fugacity of magmatic systems[J]. Ore Geology Reviews, 77: 82-96. doi: 10.1016/j.oregeorev.2016.02.004
Zhang Yuxue. 1982. Geological characteristics and origin of Yangchuling porphyry W-Mo deposit[J]. Geochimica, (2): 122-132(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHX198202001.htm
Zhao W W, Zhou M F, Li Y H M, Zhao Z, Gao J F. 2017. Genetic types, mineralization styles, and geodynamic settings of Mesozoic tungsten deposits in South China[J]. Journal of Asian Earth Sciences, 137: 109-140. doi: 10.1016/j.jseaes.2016.12.047
Zhou Jie. 2013. Origin of Tungsten-bearing Granites in the Eastern Jiangnan Orogen Belt[D]. Nanjing: Nanjing University, 1-95(in Chinese with English abstract).
Zhou Xiang, Yu Xinqi, Wang De'en, Zhang Dehui, Li Chunlin, Fu Jianzhen, Dong Hhuiming. 2011. Characteristics and geochronology of the W, Mo-bearing granodiorite porphyry in Dongyuan, Southern Anhui[J]. Geoscience, 25(2): 201-210(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201102003.htm
Zhu Bingquan. 1998. Theories and Application of Isotopic System in Geoscience: Crustal and Mantle Evolution in China continent[M]. Beijing: Science Press, 224-226(in Chinese).
Zhu Xinyou, Wang Jingbin, Wang Yanli, Cheng Xiyin, He Peng, Fu Qibin, Li Tingshun. 2013. Characteristics of greisen inclusions in alkali feldspar granite of Yaogangxian tungsten deposit[J]. Mineral Deposits, 32(3): 533-544(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201303006.htm
陈衍景, 李诺. 2009. 大陆内部浆控高温热液矿床成矿流体性质及其与岛弧区同类矿床的差异[J]. 岩石学报, 25(10): 2477-2508. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200910016.htm
杜玉雕, 余心起, 刘家军, 周翔, 傅建真. 2012. 皖南东源钨钼矿成矿流体特征和成矿物质来源[J]. 中国地质, 38(5): 1334-1346. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201105021.htm
丰成友, 黄凡, 曾载淋, 屈文俊, 丁明. 2011. 赣南九龙脑岩体及洪水寨云英岩型钨矿年代学[J]. 吉林大学学报(地球科学版), 41(1): 111-121. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201101015.htm
古菊云. 1988. 中国主要斑岩钨矿床特征[J]. 矿产与地质, 2(1): 15-23. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD198801002.htm
侯增谦, 杨志明, 王瑞, 郑远川. 2020. 再论中国大陆斑岩Cu-Mo-Au矿床成矿作用[J]. 地学前缘, 27(2): 20-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202002004.htm
蒋少涌, 赵葵东, 姜海, 苏慧敏, 熊索菲, 熊伊曲, 徐耀明, 章伟, 朱律运. 2020. 中国钨锡矿床时空分布规律、地质特征与成矿机制研究进展[J]. 科学通报, 65(33): 86-101. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033009.htm
李洪英, 杨磊, 陈剑锋. 2019. 湖南桃江县木瓜园钨矿床地质特征及含矿岩体成岩时代[J]. 吉林大学学报(地球科学版), 49(5): 1285-1300. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201905008.htm
李佳黛, 李晓峰. 2020. 矽卡岩型钨矿床成矿作用研究进展[J]. 矿床地质, 39(2): 256-272. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202002004.htm
李宪海, 王丹, 吴尚昆. 2014. 我国战略性矿产资源评价指标选择: 基于美国、欧盟等关键矿产名录的思考[J]. 中国矿业, 23(4): 30-33. doi: 10.3969/j.issn.1004-4051.2014.04.007
刘俊, 祝向平, 李文昌, 王保弟, 董宇, 杨富成, 杨后斌, 吴江华. 2019. 藏东拉荣斑岩钨钼矿床辉钼矿Re-Os定年及地质意义[J]. 地质学报, 93(7): 1708-1719. doi: 10.3969/j.issn.0001-5717.2019.07.011
毛景文, 吴胜华, 宋世伟, 戴盼, 谢桂青, 苏蔷薇, 刘鹏, 王先广, 余忠珍, 陈祥云, 唐维新. 2020. 江南世界级钨矿带: 地质特征、成矿规律和矿床模型[J]. 科学通报, 65(33): 102-118. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033010.htm
莫名浈. 1988. 阳储岭斑岩钨钼矿床蚀变分带特征及与成矿作用关系的初步研究[J]. 矿床地质, 7(3): 52-61. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198803007.htm
聂荣锋, 王旭东. 2007. 赣南钨矿研究进展[J]. 中国钨业, 22(3): 4-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWU200703000.htm
秦燕, 王登红, 吴礼彬, 王克友, 梅玉萍. 2010. 安徽东源钨矿含矿斑岩中的锆石SHRIMP U-Pb年龄及其地质意义[J]. 地质学报, 84(4): 479-484. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201004003.htm
陕亮, 庞迎春, 柯贤忠, 刘家军, 陈文辉, 牛志军, 徐德明, 龙文国, 王滨清. 2019. 湖南省东北部地区桃江县木瓜园钨多金属矿成岩成矿时代及其对区域成矿作用的启示[J]. 地质科技情报, 38(1): 100-112. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901011.htm
石洪召, 林方成, 张林奎. 2009. 钨矿床的时空分布及研究现状[J]. 沉积与特提斯地质, 29(4): 90-95. doi: 10.3969/j.issn.1009-3850.2009.04.016
谭运金. 1985. 莲花山斑岩钨矿床的成矿机理[J]. 中国科学(B辑), (6): 83-90. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198506010.htm
谭运金. 1999. 华南地区内生钨矿床的钨矿物成分特征及其控制因素[J]. 中国钨业, 14(5-6): 84-89. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWU1999Z1021.htm
王登红, 徐志刚, 盛继福, 朱明玉, 徐珏, 袁忠信, 白鸽, 屈文俊, 李华芹, 陈郑辉, 王成辉, 黄凡, 张长青, 王永磊, 应立娟, 李厚民, 高兰, 孙涛, 付勇, 李建康, 武广, 唐菊兴, 丰成友, 赵正, 张大权. 2014. 全国重要矿产和区域成矿规律研究进展综述[J]. 地质学报, 88(12): 2176-2191. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412003.htm
王莉娟, 王京彬, 王玉往, 王军升, 廖震. 2011. 不同构造环境中的斑岩铜, 钼, 钨等矿床成矿流体特征[J]. 矿产勘查, 2(6): 704-713. doi: 10.3969/j.issn.1674-7801.2011.06.009
王雪, 黄小龙, 马金龙, 钟军伟, 杨启军. 2015. 华北克拉通中部造山带南段早前寒武纪变质杂岩的Hf-Nd同位素特征及其地壳演化意义[J]. 大地构造与成矿学, 39(6): 1108-1118. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201506013.htm
徐克勤, 刘英俊, 俞受鋆. 1959. 中国钨矿的类型及其分布规律[J]. 南京大学学报(自然科学版), (2): 31-54. https://www.cnki.com.cn/Article/CJFDTOTAL-NJDZ195902002.htm
许泰, 高海东, 李元志, 魏欣. 2012. 中国钨矿床成矿特征探讨[J]. 中国钨业, 27(3): 1-5. doi: 10.3969/j.issn.1009-0622.2012.03.001
袁顺达, 张东亮, 双燕, 杜安道, 屈文俊. 2012. 湘南新田岭大型钨钼矿床辉钼矿Re-Os同位素测年及其地质意义[J]. 岩石学报, 28(1): 27-38. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201201005.htm
翟裕生. 2002. 中国区域成矿特征探讨[J]. 地质与勘探, 38(5): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200205000.htm
张大椿, 穆治国, 黄福生, 陈成业, 郑淑蕙. 1984. 江西阳储岭钨钼矿床稳定同位素组成特征的研究[J]. 矿床地质, 3(2): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198402005.htm
张家菁, 陈郑辉, 王登红, 陈振宇, 刘善宝, 王成辉. 2008. 福建行洛坑大型钨矿的地质特征, 成矿时代及其找矿意义[J]. 大地构造与成矿学, 32(1): 92-97. doi: 10.3969/j.issn.1001-1552.2008.01.012
张理刚. 1985. 莲花山斑岩型钨矿床的氢、氧、硫、碳和铅同位素地球化学[J]. 矿床地质, 4(1): 56-65. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198501007.htm
张玉学. 1982. 阳储岭斑岩钨钼矿床地质地球化学特征及其成因探讨[J]. 地球化学, (2): 122-132. doi: 10.3321/j.issn:0379-1726.1982.02.002
周洁. 2013. 江南造山带东段含钨花岗岩成因研究[D]. 博士学位论文. 南京: 南京大学, 1-95.
周翔, 余心起, 王德恩, 张德会, 李春麟, 傅建真, 董会明. 2011. 皖南东源含W、Mo花岗闪长斑岩及成岩成矿年代学研究[J]. 现代地质, 25 (2): 201-210. doi: 10.3969/j.issn.1000-8527.2011.02.002
朱炳泉. 1998. 地球科学中同位素体系理论与应用——兼论中国大陆壳幔演化[M]. 北京: 科学出版社, 224-226.
祝新友, 王京彬, 王艳丽, 程细音, 何鹏, 傅其斌, 李顺庭. 2013. 黑钨矿矿床中云英岩包体及岩浆液态分异成矿研究——以湖南瑶岗仙钨矿为例[J]. 矿床地质, 32(3): 533-544. doi: 10.3969/j.issn.0258-7106.2013.03.006
-