中国地质调查局 中国地质科学院主办
科学出版社出版

延安晚更新世黄土颗粒微观各向异性特征及其成因分析

洪勃, 李喜安, 王力, 孙建强, 简涛, 孟杰. 2021. 延安晚更新世黄土颗粒微观各向异性特征及其成因分析[J]. 中国地质, 48(3): 900-910. doi: 10.12029/gc20210317
引用本文: 洪勃, 李喜安, 王力, 孙建强, 简涛, 孟杰. 2021. 延安晚更新世黄土颗粒微观各向异性特征及其成因分析[J]. 中国地质, 48(3): 900-910. doi: 10.12029/gc20210317
HONG Bo, LI Xi'an, WANG Li, SUN Jianqiang, JIAN Tao, MENG Jie. 2021. Microscopic anisotropy and genesis of Late Pleistocene loess particles in Yan'an[J]. Geology in China, 48(3): 900-910. doi: 10.12029/gc20210317
Citation: HONG Bo, LI Xi'an, WANG Li, SUN Jianqiang, JIAN Tao, MENG Jie. 2021. Microscopic anisotropy and genesis of Late Pleistocene loess particles in Yan'an[J]. Geology in China, 48(3): 900-910. doi: 10.12029/gc20210317

延安晚更新世黄土颗粒微观各向异性特征及其成因分析

  • 基金项目:
    国家自然科学基金面上项目(41572264,41877225)、中央高校基本科研业务费专项资金—长安大学优秀博士学位论文培育资助项目(300102268717)联合资助
详细信息
    作者简介: 洪勃, 男, 1987年生, 博士, 工程师, 主要从事地质灾害调查及防灾减灾研究; E-mail: hongbo@chd.edu.cn/hongbo@chd.edu.cn
    通讯作者: 李喜安, 男, 1968年生, 博士, 教授, 主要从事黄土工程地质方面的研究和教学; E-mail: dclixa@chd.edu.cn
  • 中图分类号: P642.13+1;P534.63+1

Microscopic anisotropy and genesis of Late Pleistocene loess particles in Yan'an

  • Fund Project: Funded by the National Natural Science Foundation of China (No.41572264, 41877225) and the Fundamental Research Funds for the Central Universities, CHD (No. 300102268717)
More Information
    Author Bio: HONG Bo, male, born in 1987, Ph.D, engaged in geo-hazards investigation and disaster prevention and mitigation research; E-mail: hongbo@chd.edu.cn/382492004@qq.com .
    Corresponding author: LI Xi'an, male, born in 1968, Ph.D, professor, engaged in the research and teaching of loess engineering geology; E-mail: dclixa@chd.edu.cn
  • 土颗粒的形状及其空间方位的择优取向是导致宏观土体各向异性的重要原因之一。以具有明显各向异性的晚更新世马兰黄土为研究对象,借助Quanta FEG型电子显微镜扫描照片所包含的相关信息,揭示其微结构在水平向和垂直向上的差异,并对该微观结构的各向异性成因进行了分析。发现:(1)水平向和垂直向切片中颗粒的圆形度R0具有正态分布特征,无论垂直向还是水平向土壤颗粒均以次圆形、圆形和非常圆颗粒为主。(2)水平方向切片中颗粒的方位角具有一定的WN-ES的优势方向,而垂直向切片中土颗粒的长轴有与地面平行的优势取向,且埋深越深这种趋势越明显。(3)水平切片中土颗粒的各向同性性质更为显著,而垂直向切片中颗粒的各向异性性质更为突出,且随埋深的增加,各向异性增强。(4)水平向和垂直向切片中颗粒总的概率分布基本表现为随机分布,粉粒在数量上占绝对优势是导致这种无序分布的重要原因,相对于粉粒而言细砂则可在一定程度上体现其排列具有方向性。分析表明,颗粒的方位角和各向异性率对黄土微观各向异性具有较好的指示作用。同时,颗粒的方向性对黄土高原的古气候也具有重要研究意义。

  • 加载中
  • 图 1  黄土高原盛行风向及研究区域位置(据Zhang et al., 2010修改)

    Figure 1. 

    图 2  颗分曲线

    Figure 2. 

    图 3  SEM后处理图片

    Figure 3. 

    图 4  不同埋深水平方向、垂直方向颗粒圆形度统计图

    Figure 4. 

    图 5  不同埋深水平方向、垂直方向土颗粒定向角玫瑰花图

    Figure 5. 

    图 6  各向异性率

    Figure 6. 

    图 7  概率熵

    Figure 7. 

    图 8  剖面粒径指标(a),马兰黄土的埋深、绝对年龄以及沉积速率(b)(李虎侯, 1986)

    Figure 8. 

    图 9  土颗粒转动、变形类型概念模型

    Figure 9. 

    表 1  试验土样的基本情况

    Table 1.  Basic properties of the soil samples

    下载: 导出CSV

    表 2  颗粒圆度分类

    Table 2.  Classification chart for particle shapes

    下载: 导出CSV
  • Al-Rousan T, Masad E, Tutumluer E, Pan T. 2007. Evaluation of image analysis techniques for quantifying aggregate shape characteristics[J]. Construction and Building Materials, 21(5): 978-990. doi: 10.1016/j.conbuildmat.2006.03.005

    Alshibli K A, Alsaleh M I. 2004. Characterizing surface roughness and shape of sands using digital microscopy[J]. Journal of Computing in Civil Engineering, 18(1): 36-45. doi: 10.1061/(ASCE)0887-3801(2004)18:1(36)

    Arasan S, Akbulut S, Hasiloglu A S. 2011. The relationship between the fractal dimension and shape properties of particles[J]. KSCE Journal of Civil Engineering, 15(7): 1219. doi: 10.1007/s12205-011-1310-x

    Cho G C, Dodds J, Santamarina J C. 2006. Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 132(5): 591-602. doi: 10.1061/(ASCE)1090-0241(2006)132:5(591)

    Cox E P. 1927. A method of assigning numerical and percentage values to the degree of roundness of sand grains[J]. Journal of Paleontology, 1(3): 179-183.

    Ding Zhongli, Yu Zhiwei. 1995. Forcing mechanisms of paleomonsoons over East Asia[J]. Quaternary Sciences, (1): 63-74(in Chinese with English abstract). http://www.researchgate.net/publication/303166522_Forcing_mechanisms_of_paleomonsoons_over_east_Asia

    Hong Bo, Li Xi'an, Wang Li, Li Lincui. 2019. Permeability anisotropy and microstructure of Yan'an Q3 loess[J]. Journal of Jilin University (Earth Science Edition), 49(5): 1389-1397(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ201905016.htm

    Hong B, Li X A, Wang L, Li L C. 2019. Temporal variation in the permeability anisotropy behavior of the Malan loess in northern Shaanxi Province, China: An experimental study[J]. Environmental Earth Sciences, 78(15): 447. doi: 10.1007/s12665-019-8449-z

    Jing Cairui. 1980. Climatic conditions, times and genesis of Chinese Loess Formation[J]. Acta Geographica Sinica, (1): 83-86(in Chinese with English abstract).

    Krumbein W C. 1941. Measurement and geologic significance of shape and roundness of sedimentary paticles[J]. Journal of Sedimentary Petrology, 11: 64-72. http://ci.nii.ac.jp/naid/30003287741

    Lagroix F, Banerjee S K. 2002. Paleowind directions from the magnetic fabric of loess profiles in central Alaska[J]. Earth and Planetary Science Letters, 195(1): 99-112. http://www.sciencedirect.com/science/article/pii/S0012821X01005647?via%3Dihub

    Li Huhou. 1986. The age of Malan loess-II. TL dating of Luochuan section[J]. Chinese Science Bulletin, (5): 372-375. http://www.cqvip.com/QK/86894X/198622/74888487495756545050484948.html

    Li Jiangang, Liu Xiaoyan, Yuan Sihua, Chen Shizhe, Li Ying, Zhao Zhenhong, Jiang Jiyi. 2020. Grain-size characteristics and paleoclimate response of terrace sediments in Sandaohe River of Yili Basin[J]. Northwestern Geology, 53(4): 11-19(in Chinese with English abstract).

    Li X, Hong B, Wang L, Li L, Sun J. 2020. Microanisotropy and preferred orientation of grains and aggregates (POGA) of the Malan loess in Yan'an, China: A profile study[J]. Bulletin of Engineering Geology and the Environment, 79: 1893-1907. doi: 10.1007/s10064-019-01674-0

    Lu Huayu, An Zhisheng. 1998. Paleoclimatic significance of grain size of loess-palaeosol deposit in Chinese Loess Plateau[J]. Science in China (Series D), 28(3): 278-283(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG199806008.htm

    Manne A, Devarakonda N S. 2016. Influence of particle shape and size on the dynamic soil properties[J]. Japanese Geotechnical Society Special Publication, 2(24): 897-902. doi: 10.3208/jgssp.IND-08

    Matalucci R V, Shelton J W, Abdel-Hady M. 1969. Grain orientation in Vicksburg Loess[J]. Journal of Sedimentary Research, 39(3): 969-979. doi: 10.1306/74D71D70-2B21-11D7-8648000102C1865D

    Meade R M. 1965. Mechanics of aquifer system. Removal of water and rearrangement of particles during the compaction of clayey sediments-review: Meade Robert M[J]. 1964. U S Geol. Surv. Prof. Paper 497-B: 1-22. Deep Sea Research and Oceanographic Abstracts, 12(6): 1060.

    Nouguier-Lehon C, Cambou B, Vincens E. 2003. Influence of particle shape and angularity on the behaviour of granular materials: A numerical analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 27(14): 1207-1226. doi: 10.1002/nag.314

    Pang Jiangli. 1999. Palaeo-monsoon evolution in time and space on the loess plateau since the Late Pleistocene[J]. Journal of Desert Research, 19(1): 73-77. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGSS901.015.htm

    Powers M C. 1953. A new roundness scale for sedimentary particles[J]. Journal of Sedimentary Petrology, 23(2): 117-119. http://ci.nii.ac.jp/naid/30003287954

    Russell R D, Taylor R E. 1937. Roundness and shape of Mississippi River sands[J]. The Journal of Geology, 45(3): 25-267. http://www.onacademic.com/detail/journal_1000036889502710_49d2.html

    Santamarina J C. 2003. Soil behavior at the microscale: Particle forces[J]. Geotechnical Special Publication, 1-32. http://www.researchgate.net/publication/264869037_Soil_Behavior_at_the_Microscale_Particle_Forces

    Shao Shengjun, Xu Ping, Wang Qiang, Dai Yafeng. 2014. True triaxial tests on anisotropic strength characteristics of loess[J]. Chinese Journal of Geotechnical Engineering, 36(9): 1614-1623(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC201409010.htm

    Shi B, Li S, Tolkachev M. 1995. Quantitative approach on SEM images of microstructure of clay soils[J]. Science in China(Ser. B), 38(6): 41-748. http://www.cnki.com.cn/Article/CJFDTotal-JBXG199506011.htm

    Shi B, Murakami Y, Wu Z. 1998. Orientation of aggregates of fine-grained soil: Quantification and application[J]. Engineering Geology, 50(1): 9-70. http://www.sciencedirect.com/science/article/pii/S0013795297000823

    Sun Donghuai, An Zhisheng, Liu Tungsheng, Wu Xihao. 1996. Evolution of Summer Monsoon at the Loess Plateau during the 150 ka[J]. Science in China (Series D), 26(5): 417-422(in Chinese). http://qikan.cqvip.com/Qikan/Article/Detail?id=4001138926

    Sun Jimin. 2004. Provenance, forming mechanism and transport of loess in China[J]. Quaternary Sciences, (2): 175-183(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200402006.htm

    Sun Jimin, Ding Zhongli, Liu Tungsheng, Yuan Baoyin, Guo Zhengtang. 1995. A study of loess and paleosoil magnetic fabrics on the preliminary application of Reconstruction of the Winter Wind Direction[J]. Chinese Science Bulletin, 40(21): 1976-1978(in Chinese). doi: 10.1360/csb1995-40-21-1976

    Tang Y Q, Zhou J, Hong J, Yang P, Wang J X. 2012. Quantitative analysis of the microstructure of Shanghai muddy clay before and after freezing[J]. Bulletin of Engineering Geology and the Environment, 71(2): 9-316. doi: 10.1007/s10064-011-0380-9

    Tovey N K. 1980. A digital computer technique for orientation analysis of micrographs of soil fabric[J]. Journal of Microscopy, 120(3): 303-315. doi: 10.1111/j.1365-2818.1980.tb04150.x

    Tian Xu, Hu Bangqi, Wang Feifei, Huang Wei, Ding Xue, Song Weiyu, Xu Fangjian. 2020. Clay mineral provenance and its response topaleochimate in the central Okinawa Trough since the last Deglaciation (19 ka)[J]. Geology in China, 47(5): 1501-1511(in Chinese with English abstract).

    Tovey N K. 1989. Image Analysis for Quantitative Assessments of the Fabric of Soils and Sediments[R]. Science and Engineering Research Council: Civil Engineering Reports, 5.

    Wang B, Shi B, Inyang H I. 2008. GIS-based quantitative analysis of orientation anisotropy of contaminant barrier particles using standard deviational ellipse[J]. Soil and Sediment Contamination: An International Journal, 17(4): 437-447. doi: 10.1080/15320380802146784

    Wang Jianli, Fang Xiaomin, Zhang Yutian, Cao Jixiu. 1995. The anisotropy of loess magnetic sus-ceptibility in the northeastern fringe of Qinghai-Xizang (Tibetan) Plateau as an indicator of palaeowind direction[J]. Journal of Lanzhou University (Natural Sciences), 31(4): 155-159(in Chinese with English abstract).

    Xie Yuanyun, Zhang Xuqiang, He Kui, Li Chang'an. 2002. Grain-size distribution and material source analysis of loess on the northeastern margin of the Qinghai-Tibet Plateau[J]. Geology in China, 29(3): 317-321(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200203014.htm

    Xu Shanchang, Liang Qingguo, Li Shuaishuai, Zhang Tangjie, Zhang Rong. 2015. Experimental study on Anisotropic characteristics of undisturbed Q3 Loess from Dingxi, Gansu[J]. Journal of Geomechanics, 21(3): 378-385(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201503008.htm

    Yoshimine M, Yu B, Iwatate T, Liu F, Che A. 2005. Mechanical anisotropy of undisturbed loess soil[C]//New Developments of Geotechnical Engineering in Soft Ground-Proceedings of Sino-Japanese Symposium on Geotechnical Engieering, Shanghai, China, 150-157.

    Yuan Fang, Xie Yuanyun, Chi Yunping. 2018. Material characteristics of dust fallouts during the duststorm weather in Harbin: Constraint on the provenance[J]. Geology in China, 45(6): 1177-1187(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201806009.htm

    Zhang H, Chen Q, Chen J, Wang J. 2017. Application of a modified structural clay model considering anisotropy to embankment behavior[J]. Geomechanics and Engineering, 13(1): 79-97. http://www.researchgate.net/publication/318777421_Application_of_a_modified_structural_clay_model_considering_anisotropy_to_embankment_behavior

    Zhang R, Kravchinsky V A, Zhu R, Yue L. 2010. Paleomonsoon route reconstruction along a W-E transect in the Chinese Loess Plateau using the anisotropy of magnetic susceptibility: Summer monsoon model[J]. Earth and Planetary Science Letters, 299(3/4): 436-446.

    Zhang Xiaoye. 2001. Source distributions, emission, transport, deposition od Asian dust and loess accumulation[J]. Quaternary Sciences, 211(1): 29-40(in Chinese with English abstract). http://www.researchgate.net/publication/281360063_Source_distributions_emission_transport_deposition_of_Asian_dust_and_loess_accumulation

    Zhang Yufen, Li Chang'an, Xiong Deqiang, Zhou Yao, Sun Xilin. 2013. Oxide geochemical characteristics and paleoclimate records of "Wushan loess"[J]. Geology in China, 40(1): 352-360(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geology-in-china_thesis/0201252103681.html

    丁仲礼, 余志伟. 1995. 第四纪时期东亚季风变化的动力机制[J]. 第四纪研究, (1): 63-74. doi: 10.3321/j.issn:1001-7410.1995.01.007

    洪勃, 李喜安, 王力, 李林翠. 2019. 延安Q3原状黄土渗透各向异性及微结构分析[J]. 吉林大学学报(地球科学版), 49(5): 1389-1397. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201905016.htm

    景才瑞. 1980. 中国黄土形成的气候条件、时代与成因[J]. 地理学报, (1): 83-86. doi: 10.3321/j.issn:0375-5444.1980.01.009

    李虎侯. 1986. 马兰黄土的形成年龄Ⅱ. 洛川剖面的热释光研究[J]. 科学通报, (5): 372-375. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198605013.htm

    李建刚, 刘晓燕, 袁四化, 陈诗哲, 李瑛, 赵振宏, 姜纪沂. 2020. 伊犁盆地三道河河流阶地沉积物粒度特征及其古气候响应[J]. 西北地质, 53(4): 11-19.

    鹿化煜, 安芷生. 1998. 黄土高原黄土粒度组成的古气候意义[J]. 中国科学(D辑: 地球科学), 28(3): 278-283. doi: 10.3321/j.issn:1006-9267.1998.03.002

    庞奖励. 1999. 晚更新世以来黄土高原地区古季风的时空演化[J]. 中国沙漠, (1): 73-77. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS901.015.htm

    邵生俊, 许萍, 王强, 代亚锋. 2014. 黄土各向异性强度特性的真三轴试验研究[J]. 岩土工程学报, 36(9): 1614-1623. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409010.htm

    孙东怀, 安芷生, 刘东生, 吴锡浩. 1996. 最近150ka黄土高原夏季风气候格局的演化[J]. 中国科学(D辑: 地球科学), (5): 417-422. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199605005.htm

    孙继敏. 2004. 中国黄土的物质来源及其粉尘的产生机制与搬运过程[J]. 第四纪研究, (2): 175-183. doi: 10.3321/j.issn:1001-7410.2004.02.007

    孙继敏, 丁仲礼, 刘东生, 袁宝印, 郭正堂. 1995. 黄土与古土壤磁组构测定在重建冬季风风向上的初步应用[J]. 科学通报, 40(21): 1976-1978. doi: 10.3321/j.issn:0023-074X.1995.21.015

    田旭, 胡邦琦, 王飞飞, 黄威, 丁雪, 宋维宇, 徐方建. 2020. 末次冰消期(1.9万年)以来冲绳海槽中部黏土矿物来源及其环境响应[J]. 中国地质, 47(5): 1501-1511. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202005017.htm

    王建力, 方小敏, 张宇田, 曹继秀. 1995. 青藏高原东北边缘黄土磁化率各向异性揭示古风向的初步研究[J]. 兰州大学学报, (4): 155-159. doi: 10.3321/j.issn:0455-2059.1995.04.029

    谢远云, 张序强, 何葵, 李长安. 2002. 青藏高原东北缘黄土粒度组成及物质来源分析[J]. 中国地质, 29(3): 317-321. doi: 10.3969/j.issn.1000-3657.2002.03.015

    徐善常, 梁庆国, 李帅帅, 张堂杰, 张荣. 2015. 甘肃定西原状Q3黄土各向异性试验研究[J]. 地质力学学报, 21(3): 378-385. doi: 10.3969/j.issn.1006-6616.2015.03.008

    袁方, 谢远云, 迟云平. 2018. 哈尔滨尘暴天气沉降物的物质组成及其对物源的限制[J]. 中国地质, 45(6): 1177-1187. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201806009.htm

    张小曳. 2001. 亚洲粉尘的源区分布、释放、输送、沉降与黄土堆积[J]. 第四纪研究, 211(1): 29-40. doi: 10.3321/j.issn:1001-7410.2001.01.004

    张玉芬, 李长安, 熊德强, 周耀, 孙习林. 2013. "巫山黄土"氧化物地球化学特征与古气候记录[J]. 中国地质, 40(1): 352-360. doi: 10.3969/j.issn.1000-3657.2013.01.025

  • 加载中

(9)

(2)

计量
  • 文章访问数:  1466
  • PDF下载数:  10
  • 施引文献:  0
出版历程
收稿日期:  2018-09-14
修回日期:  2019-09-01
刊出日期:  2021-06-25

目录