-
摘要:
土颗粒的形状及其空间方位的择优取向是导致宏观土体各向异性的重要原因之一。以具有明显各向异性的晚更新世马兰黄土为研究对象,借助Quanta FEG型电子显微镜扫描照片所包含的相关信息,揭示其微结构在水平向和垂直向上的差异,并对该微观结构的各向异性成因进行了分析。发现:(1)水平向和垂直向切片中颗粒的圆形度R0具有正态分布特征,无论垂直向还是水平向土壤颗粒均以次圆形、圆形和非常圆颗粒为主。(2)水平方向切片中颗粒的方位角具有一定的WN-ES的优势方向,而垂直向切片中土颗粒的长轴有与地面平行的优势取向,且埋深越深这种趋势越明显。(3)水平切片中土颗粒的各向同性性质更为显著,而垂直向切片中颗粒的各向异性性质更为突出,且随埋深的增加,各向异性增强。(4)水平向和垂直向切片中颗粒总的概率分布基本表现为随机分布,粉粒在数量上占绝对优势是导致这种无序分布的重要原因,相对于粉粒而言细砂则可在一定程度上体现其排列具有方向性。分析表明,颗粒的方位角和各向异性率对黄土微观各向异性具有较好的指示作用。同时,颗粒的方向性对黄土高原的古气候也具有重要研究意义。
Abstract:The shape and dominant spatial orientation of soil particles are the important cause of macroscopic soil anisotropy. Based on Quanta FEG scanning electron micrograph,the late Pleistocene Malan loess with obvious anisotropy was studied to reveal the difference of the microstructure in the horizontal and vertical directions and the anisotropic cause of the microstructure. The results show that the roundness R0 of the particles in the horizontal and vertical slices has normal distribution characteristics. Subcircular,circular and very circular particles are the main types of soil particles in both vertical and horizontal directions. The azimuth of the particles in the horizontal slice has a certain dominant direction of WN-ES,while the long axis of the soil particles in the vertical slice has the dominant orientation parallel to the ground,and the deeper the buried depth is,the more obvious the trend is. The isotropic nature of the soil particles in the horizontal section is more significant,while the anisotropic properties of the particles in the vertical section are more prominent,and the anisotropy increases with the buried depth. The total probability distribution of particles in horizontal and vertical slices is basically disordered. The quantitative advantage of the particles is a major reason for this disordered distribution. Compared with the fine particles,fine sand,to some extent,has the preference of a certain orientation in alignment. The analysis shows that the azimuth and anisotropy of the particles have a good indication to microscopic anisotropy of the loess. At the same time,the direction of particles also is of significance for the study of paleoclimate of the Loess Plateau.
-
Key words:
- loess /
- microscopic anisotropy /
- roundness /
- azimuth distribution /
- anisotropy index /
- probability entropy /
- geotechnical engineering /
- Yanan /
- Shaanxi Province
-
图 1 黄土高原盛行风向及研究区域位置(据Zhang et al., 2010修改)
Figure 1.
图 8 剖面粒径指标(a),马兰黄土的埋深、绝对年龄以及沉积速率(b)(李虎侯, 1986)
Figure 8.
表 1 试验土样的基本情况
Table 1. Basic properties of the soil samples
表 2 颗粒圆度分类
Table 2. Classification chart for particle shapes
-
Al-Rousan T, Masad E, Tutumluer E, Pan T. 2007. Evaluation of image analysis techniques for quantifying aggregate shape characteristics[J]. Construction and Building Materials, 21(5): 978-990. doi: 10.1016/j.conbuildmat.2006.03.005
Alshibli K A, Alsaleh M I. 2004. Characterizing surface roughness and shape of sands using digital microscopy[J]. Journal of Computing in Civil Engineering, 18(1): 36-45. doi: 10.1061/(ASCE)0887-3801(2004)18:1(36)
Arasan S, Akbulut S, Hasiloglu A S. 2011. The relationship between the fractal dimension and shape properties of particles[J]. KSCE Journal of Civil Engineering, 15(7): 1219. doi: 10.1007/s12205-011-1310-x
Cho G C, Dodds J, Santamarina J C. 2006. Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 132(5): 591-602. doi: 10.1061/(ASCE)1090-0241(2006)132:5(591)
Cox E P. 1927. A method of assigning numerical and percentage values to the degree of roundness of sand grains[J]. Journal of Paleontology, 1(3): 179-183.
Ding Zhongli, Yu Zhiwei. 1995. Forcing mechanisms of paleomonsoons over East Asia[J]. Quaternary Sciences, (1): 63-74(in Chinese with English abstract). http://www.researchgate.net/publication/303166522_Forcing_mechanisms_of_paleomonsoons_over_east_Asia
Hong Bo, Li Xi'an, Wang Li, Li Lincui. 2019. Permeability anisotropy and microstructure of Yan'an Q3 loess[J]. Journal of Jilin University (Earth Science Edition), 49(5): 1389-1397(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ201905016.htm
Hong B, Li X A, Wang L, Li L C. 2019. Temporal variation in the permeability anisotropy behavior of the Malan loess in northern Shaanxi Province, China: An experimental study[J]. Environmental Earth Sciences, 78(15): 447. doi: 10.1007/s12665-019-8449-z
Jing Cairui. 1980. Climatic conditions, times and genesis of Chinese Loess Formation[J]. Acta Geographica Sinica, (1): 83-86(in Chinese with English abstract).
Krumbein W C. 1941. Measurement and geologic significance of shape and roundness of sedimentary paticles[J]. Journal of Sedimentary Petrology, 11: 64-72. http://ci.nii.ac.jp/naid/30003287741
Lagroix F, Banerjee S K. 2002. Paleowind directions from the magnetic fabric of loess profiles in central Alaska[J]. Earth and Planetary Science Letters, 195(1): 99-112. http://www.sciencedirect.com/science/article/pii/S0012821X01005647?via%3Dihub
Li Huhou. 1986. The age of Malan loess-II. TL dating of Luochuan section[J]. Chinese Science Bulletin, (5): 372-375. http://www.cqvip.com/QK/86894X/198622/74888487495756545050484948.html
Li Jiangang, Liu Xiaoyan, Yuan Sihua, Chen Shizhe, Li Ying, Zhao Zhenhong, Jiang Jiyi. 2020. Grain-size characteristics and paleoclimate response of terrace sediments in Sandaohe River of Yili Basin[J]. Northwestern Geology, 53(4): 11-19(in Chinese with English abstract).
Li X, Hong B, Wang L, Li L, Sun J. 2020. Microanisotropy and preferred orientation of grains and aggregates (POGA) of the Malan loess in Yan'an, China: A profile study[J]. Bulletin of Engineering Geology and the Environment, 79: 1893-1907. doi: 10.1007/s10064-019-01674-0
Lu Huayu, An Zhisheng. 1998. Paleoclimatic significance of grain size of loess-palaeosol deposit in Chinese Loess Plateau[J]. Science in China (Series D), 28(3): 278-283(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG199806008.htm
Manne A, Devarakonda N S. 2016. Influence of particle shape and size on the dynamic soil properties[J]. Japanese Geotechnical Society Special Publication, 2(24): 897-902. doi: 10.3208/jgssp.IND-08
Matalucci R V, Shelton J W, Abdel-Hady M. 1969. Grain orientation in Vicksburg Loess[J]. Journal of Sedimentary Research, 39(3): 969-979. doi: 10.1306/74D71D70-2B21-11D7-8648000102C1865D
Meade R M. 1965. Mechanics of aquifer system. Removal of water and rearrangement of particles during the compaction of clayey sediments-review: Meade Robert M[J]. 1964. U S Geol. Surv. Prof. Paper 497-B: 1-22. Deep Sea Research and Oceanographic Abstracts, 12(6): 1060.
Nouguier-Lehon C, Cambou B, Vincens E. 2003. Influence of particle shape and angularity on the behaviour of granular materials: A numerical analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 27(14): 1207-1226. doi: 10.1002/nag.314
Pang Jiangli. 1999. Palaeo-monsoon evolution in time and space on the loess plateau since the Late Pleistocene[J]. Journal of Desert Research, 19(1): 73-77. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGSS901.015.htm
Powers M C. 1953. A new roundness scale for sedimentary particles[J]. Journal of Sedimentary Petrology, 23(2): 117-119. http://ci.nii.ac.jp/naid/30003287954
Russell R D, Taylor R E. 1937. Roundness and shape of Mississippi River sands[J]. The Journal of Geology, 45(3): 25-267. http://www.onacademic.com/detail/journal_1000036889502710_49d2.html
Santamarina J C. 2003. Soil behavior at the microscale: Particle forces[J]. Geotechnical Special Publication, 1-32. http://www.researchgate.net/publication/264869037_Soil_Behavior_at_the_Microscale_Particle_Forces
Shao Shengjun, Xu Ping, Wang Qiang, Dai Yafeng. 2014. True triaxial tests on anisotropic strength characteristics of loess[J]. Chinese Journal of Geotechnical Engineering, 36(9): 1614-1623(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC201409010.htm
Shi B, Li S, Tolkachev M. 1995. Quantitative approach on SEM images of microstructure of clay soils[J]. Science in China(Ser. B), 38(6): 41-748. http://www.cnki.com.cn/Article/CJFDTotal-JBXG199506011.htm
Shi B, Murakami Y, Wu Z. 1998. Orientation of aggregates of fine-grained soil: Quantification and application[J]. Engineering Geology, 50(1): 9-70. http://www.sciencedirect.com/science/article/pii/S0013795297000823
Sun Donghuai, An Zhisheng, Liu Tungsheng, Wu Xihao. 1996. Evolution of Summer Monsoon at the Loess Plateau during the 150 ka[J]. Science in China (Series D), 26(5): 417-422(in Chinese). http://qikan.cqvip.com/Qikan/Article/Detail?id=4001138926
Sun Jimin. 2004. Provenance, forming mechanism and transport of loess in China[J]. Quaternary Sciences, (2): 175-183(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ200402006.htm
Sun Jimin, Ding Zhongli, Liu Tungsheng, Yuan Baoyin, Guo Zhengtang. 1995. A study of loess and paleosoil magnetic fabrics on the preliminary application of Reconstruction of the Winter Wind Direction[J]. Chinese Science Bulletin, 40(21): 1976-1978(in Chinese). doi: 10.1360/csb1995-40-21-1976
Tang Y Q, Zhou J, Hong J, Yang P, Wang J X. 2012. Quantitative analysis of the microstructure of Shanghai muddy clay before and after freezing[J]. Bulletin of Engineering Geology and the Environment, 71(2): 9-316. doi: 10.1007/s10064-011-0380-9
Tovey N K. 1980. A digital computer technique for orientation analysis of micrographs of soil fabric[J]. Journal of Microscopy, 120(3): 303-315. doi: 10.1111/j.1365-2818.1980.tb04150.x
Tian Xu, Hu Bangqi, Wang Feifei, Huang Wei, Ding Xue, Song Weiyu, Xu Fangjian. 2020. Clay mineral provenance and its response topaleochimate in the central Okinawa Trough since the last Deglaciation (19 ka)[J]. Geology in China, 47(5): 1501-1511(in Chinese with English abstract).
Tovey N K. 1989. Image Analysis for Quantitative Assessments of the Fabric of Soils and Sediments[R]. Science and Engineering Research Council: Civil Engineering Reports, 5.
Wang B, Shi B, Inyang H I. 2008. GIS-based quantitative analysis of orientation anisotropy of contaminant barrier particles using standard deviational ellipse[J]. Soil and Sediment Contamination: An International Journal, 17(4): 437-447. doi: 10.1080/15320380802146784
Wang Jianli, Fang Xiaomin, Zhang Yutian, Cao Jixiu. 1995. The anisotropy of loess magnetic sus-ceptibility in the northeastern fringe of Qinghai-Xizang (Tibetan) Plateau as an indicator of palaeowind direction[J]. Journal of Lanzhou University (Natural Sciences), 31(4): 155-159(in Chinese with English abstract).
Xie Yuanyun, Zhang Xuqiang, He Kui, Li Chang'an. 2002. Grain-size distribution and material source analysis of loess on the northeastern margin of the Qinghai-Tibet Plateau[J]. Geology in China, 29(3): 317-321(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200203014.htm
Xu Shanchang, Liang Qingguo, Li Shuaishuai, Zhang Tangjie, Zhang Rong. 2015. Experimental study on Anisotropic characteristics of undisturbed Q3 Loess from Dingxi, Gansu[J]. Journal of Geomechanics, 21(3): 378-385(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLX201503008.htm
Yoshimine M, Yu B, Iwatate T, Liu F, Che A. 2005. Mechanical anisotropy of undisturbed loess soil[C]//New Developments of Geotechnical Engineering in Soft Ground-Proceedings of Sino-Japanese Symposium on Geotechnical Engieering, Shanghai, China, 150-157.
Yuan Fang, Xie Yuanyun, Chi Yunping. 2018. Material characteristics of dust fallouts during the duststorm weather in Harbin: Constraint on the provenance[J]. Geology in China, 45(6): 1177-1187(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201806009.htm
Zhang H, Chen Q, Chen J, Wang J. 2017. Application of a modified structural clay model considering anisotropy to embankment behavior[J]. Geomechanics and Engineering, 13(1): 79-97. http://www.researchgate.net/publication/318777421_Application_of_a_modified_structural_clay_model_considering_anisotropy_to_embankment_behavior
Zhang R, Kravchinsky V A, Zhu R, Yue L. 2010. Paleomonsoon route reconstruction along a W-E transect in the Chinese Loess Plateau using the anisotropy of magnetic susceptibility: Summer monsoon model[J]. Earth and Planetary Science Letters, 299(3/4): 436-446.
Zhang Xiaoye. 2001. Source distributions, emission, transport, deposition od Asian dust and loess accumulation[J]. Quaternary Sciences, 211(1): 29-40(in Chinese with English abstract). http://www.researchgate.net/publication/281360063_Source_distributions_emission_transport_deposition_of_Asian_dust_and_loess_accumulation
Zhang Yufen, Li Chang'an, Xiong Deqiang, Zhou Yao, Sun Xilin. 2013. Oxide geochemical characteristics and paleoclimate records of "Wushan loess"[J]. Geology in China, 40(1): 352-360(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geology-in-china_thesis/0201252103681.html
丁仲礼, 余志伟. 1995. 第四纪时期东亚季风变化的动力机制[J]. 第四纪研究, (1): 63-74. doi: 10.3321/j.issn:1001-7410.1995.01.007
洪勃, 李喜安, 王力, 李林翠. 2019. 延安Q3原状黄土渗透各向异性及微结构分析[J]. 吉林大学学报(地球科学版), 49(5): 1389-1397. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201905016.htm
景才瑞. 1980. 中国黄土形成的气候条件、时代与成因[J]. 地理学报, (1): 83-86. doi: 10.3321/j.issn:0375-5444.1980.01.009
李虎侯. 1986. 马兰黄土的形成年龄Ⅱ. 洛川剖面的热释光研究[J]. 科学通报, (5): 372-375. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198605013.htm
李建刚, 刘晓燕, 袁四化, 陈诗哲, 李瑛, 赵振宏, 姜纪沂. 2020. 伊犁盆地三道河河流阶地沉积物粒度特征及其古气候响应[J]. 西北地质, 53(4): 11-19.
鹿化煜, 安芷生. 1998. 黄土高原黄土粒度组成的古气候意义[J]. 中国科学(D辑: 地球科学), 28(3): 278-283. doi: 10.3321/j.issn:1006-9267.1998.03.002
庞奖励. 1999. 晚更新世以来黄土高原地区古季风的时空演化[J]. 中国沙漠, (1): 73-77. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS901.015.htm
邵生俊, 许萍, 王强, 代亚锋. 2014. 黄土各向异性强度特性的真三轴试验研究[J]. 岩土工程学报, 36(9): 1614-1623. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201409010.htm
孙东怀, 安芷生, 刘东生, 吴锡浩. 1996. 最近150ka黄土高原夏季风气候格局的演化[J]. 中国科学(D辑: 地球科学), (5): 417-422. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199605005.htm
孙继敏. 2004. 中国黄土的物质来源及其粉尘的产生机制与搬运过程[J]. 第四纪研究, (2): 175-183. doi: 10.3321/j.issn:1001-7410.2004.02.007
孙继敏, 丁仲礼, 刘东生, 袁宝印, 郭正堂. 1995. 黄土与古土壤磁组构测定在重建冬季风风向上的初步应用[J]. 科学通报, 40(21): 1976-1978. doi: 10.3321/j.issn:0023-074X.1995.21.015
田旭, 胡邦琦, 王飞飞, 黄威, 丁雪, 宋维宇, 徐方建. 2020. 末次冰消期(1.9万年)以来冲绳海槽中部黏土矿物来源及其环境响应[J]. 中国地质, 47(5): 1501-1511. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202005017.htm
王建力, 方小敏, 张宇田, 曹继秀. 1995. 青藏高原东北边缘黄土磁化率各向异性揭示古风向的初步研究[J]. 兰州大学学报, (4): 155-159. doi: 10.3321/j.issn:0455-2059.1995.04.029
谢远云, 张序强, 何葵, 李长安. 2002. 青藏高原东北缘黄土粒度组成及物质来源分析[J]. 中国地质, 29(3): 317-321. doi: 10.3969/j.issn.1000-3657.2002.03.015
徐善常, 梁庆国, 李帅帅, 张堂杰, 张荣. 2015. 甘肃定西原状Q3黄土各向异性试验研究[J]. 地质力学学报, 21(3): 378-385. doi: 10.3969/j.issn.1006-6616.2015.03.008
袁方, 谢远云, 迟云平. 2018. 哈尔滨尘暴天气沉降物的物质组成及其对物源的限制[J]. 中国地质, 45(6): 1177-1187. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201806009.htm
张小曳. 2001. 亚洲粉尘的源区分布、释放、输送、沉降与黄土堆积[J]. 第四纪研究, 211(1): 29-40. doi: 10.3321/j.issn:1001-7410.2001.01.004
张玉芬, 李长安, 熊德强, 周耀, 孙习林. 2013. "巫山黄土"氧化物地球化学特征与古气候记录[J]. 中国地质, 40(1): 352-360. doi: 10.3969/j.issn.1000-3657.2013.01.025