中国地质调查局 中国地质科学院主办
科学出版社出版

南京市浅层地温场研究——基于分布式光纤测温技术

李济琛, 陈明珠, 汤强, 刘春, 梁立唯, PeterBayer. 2021. 南京市浅层地温场研究——基于分布式光纤测温技术[J]. 中国地质, 48(3): 939-947. doi: 10.12029/gc20210320
引用本文: 李济琛, 陈明珠, 汤强, 刘春, 梁立唯, PeterBayer. 2021. 南京市浅层地温场研究——基于分布式光纤测温技术[J]. 中国地质, 48(3): 939-947. doi: 10.12029/gc20210320
LI Jichen, CHEN Mingzhu, TANG Qiang, LIU Chun, LIANG Liwei, Peter Bayer. 2021. Study on shallow geothermal field in Nanjing: Based on distributed optical fiber temperature measurement system[J]. Geology in China, 48(3): 939-947. doi: 10.12029/gc20210320
Citation: LI Jichen, CHEN Mingzhu, TANG Qiang, LIU Chun, LIANG Liwei, Peter Bayer. 2021. Study on shallow geothermal field in Nanjing: Based on distributed optical fiber temperature measurement system[J]. Geology in China, 48(3): 939-947. doi: 10.12029/gc20210320

南京市浅层地温场研究——基于分布式光纤测温技术

  • 基金项目:
    国家自然科学基金项目(41761134089,41977218)、江苏省自然科学基金青年项目(BK20170393)联合资助
详细信息
    作者简介: 李济琛, 男, 1996年生, 硕士生, 主要从事浅层地热能研究; E-mail: ljc_nju@smail.nju.edu.cn
    通讯作者: 刘春, 男, 1984年生, 副教授, 硕士生导师, 长期从事计算工程地质科研工作; E-mail: chunliu@nju.edu.cn
  • 中图分类号: P314;TK521

Study on shallow geothermal field in Nanjing: Based on distributed optical fiber temperature measurement system

  • Fund Project: Funded by National Natural Science Foundation of China(No.41761134089, No.41977218) and Jiangsu Natural Science Foundation Youth Project(No. BK20170393)
More Information
    Author Bio: LI Jichen, male, born in 1996, master candidate, engaged in the study of shallow geothermal; Email: ljc_nju@smail.nju.edu.cn .
    Corresponding author: LIU Chun, male, born in 1984, associate professor, majoring in computational engineering geology
  • 浅层地热能作为新型能源受到了国际国内的广泛关注,常规的电阻式温度传感器受电磁干扰,不适合长期在野外复杂环境中使用。本文应用抗干扰能力强的分布式光纤测温技术,对南京市19个百米深钻孔进行地温测量,获得了2018年冬季与2019年春季南京市浅层地下温度分布。综合南京市水文和地质条件,得出结论:浅层地温的变化相对于气温的变化存在着滞后现象;对于同一地点的浅层地温,地下水的流动会使得地温在不同季节出现差异;构造条件显著影响着南京市浅层地温分布。本项研究结果为南京市浅层地热能的利用分区与进一步开发提供参考。

  • 加载中
  • 图 1  研究区钻孔分布

    Figure 1. 

    图 2  室内测试装置示意图(a)及铠装光纤实物图(b)

    Figure 2. 

    图 3  室内测试及其降噪处理

    Figure 3. 

    图 4  野外钻孔布线图

    Figure 4. 

    图 5  钻孔sg43地温原始数据与处理后数据

    Figure 5. 

    图 6  南京市地温曲线特征

    Figure 6. 

    图 7  春、冬季节变化下的南京市地温曲线

    Figure 7. 

    图 8  南京市30~100 m地温梯度

    Figure 8. 

    图 9  sg39、sg44地温曲线与地层柱状图(2019年春测)

    Figure 9. 

    图 10  2018年冬季与2019年春季地表 30 m以下温度差值(据温忠辉等,2009修改)

    Figure 10. 

  • Bayer P, Attard G, Blum P, Menberg K. 2019. The geothermal potential of cities[J]. Renewable and Sustainable Energy Reviews, 106: 17-30. doi: 10.1016/j.rser.2019.02.019

    E Jian, Chen Mingzhu, Yang Lumei, Wang Xiao, Gong Hongwei, Li Man. 2015. Exploitation and utilization of shallow geothermal energy in Nanjing[J]. Journal of Geology, 39(2): 339-342(in Chinese with English abstract).

    Epting J, Huggenberger P. 2013. Unraveling the heat island effect observed in urban groundwater bodies——Definition of a potential natural state[J]. Journal of Hydrology, 501: 193-204. doi: 10.1016/j.jhydrol.2013.08.002

    Hong Zenglin, Zhang Yinlong, Zhou Yang. 2019. Research on the modes of occurrence and application of geothermal resources in the middle and deep layers of the piedmont area in southern Guanzhong basin[J]. Geology in China, 46(5): 1224-1235(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201905023.htm

    Jin Xu, Chen Xiaodong, Guan Yanwu. 2004. The correction of the influence of climatic change upon geotemperature measurement at shallow layer[J]. Acta Geoscientica Sinica, 25(5): 579-582(in Chinese with English abstract). http://www.oalib.com/paper/1559468

    Luan Guangzhong, Qiu Hanxue. 1998. The type of low-medium temperature geothermal system of convection type——The genesis analysis of Tangshan geothermal system in Nanjing[J]. Journal of Ocean University of Qindao, 28(1): 160-164(in Chinese with English abstract).

    Pollack H N, Huang S. 2000. Climate reconstruction from subsurface temperatures[J]. Annual Review of Earth and Planetary Sciences, 28(1): 339-365. doi: 10.1146/annurev.earth.28.1.339

    Taniguchi M, Shimada J, Tanaka T, Kayane I, Sakura Y, Shimano Y, Dapaah Siakwan S, Kawashima S. 1999. Disturbances of temperature-depth profiles due to surface climate change and subsurface water flow: 1. An effect of linear increase in surface temperature caused by global warming and urbanization in the Tokyo metropolitan area, Japan[J]. Water Resources Research, 35(5): 1507-1517. doi: 10.1029/1999WR900009

    Wang Baojun, Shi Bin, Jiang Hongtao, Zhao Lizheng. 2009. Characteristics of ground temperature variations in superficial soil layers for Nanjing in recent 30 years[J]. Geological Journal of China Universities, 15(2): 199-205(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200902009.htm

    Wang Guiling, Zhang Wei, Lin Wenjing, Liu Feng, Zhu Xi, Liu Yanguang, Li Jun. 2017. Research on formation mode and development potential of geothermal resources in Beijing-Tianjin-Hebei region[J]. Geology in China, 44(6): 1074-1085(in Chinese with English abstract). http://www.researchgate.net/publication/324014114_Research_on_formation_mode_and_development_potential_of_geothermal_resources_in_Beijing-Tianjin-Hebei_region

    Wang Haibo, Huang Shaopeng, Ren Yongfei, He Liangliang, Xiao Bo. 2014. Preliminary analysis of the subsurface temperature and air temperature changes in Xi'an, China[J]. Chinese Journal of Geology, 49(3): 874-887(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKX201403015.htm

    Wang Wanli, Wang Guiling, Zhu Xi, Liu Zhiming. 2017. Characteristics and potential of shallow geothermal resources in provincial capital cities of China[J]. Geology in China, 44(6): 1062-1073(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201706003.htm

    Wang Xinjuan, Luan Yingbo, Lu Ming, Li Zhiping. 2010. Study of distribution law of shallow geothermal energy resources in Beijing plain area[J]. Site Investigation Science and Technology, (3): 48-53(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KCKX201003014.htm

    Wei Wanshun, Zheng Guisen, Luan Yingbo. 2010. Characteristics and influencing factors of the shallow geothermal field in Beijing plain area[J]. Geology in China, 37(6): 1733-1739(in Chinese with English abstract). http://www.cqvip.com/QK/90050X/201006/36458041.html

    Wen Zhonghui, Wang Binbin, Lu Chengpeng, Yan Lingxiang, Hua Hua. 2009. Development and utilization division of groundwater resources in Nanjing city[J]. Journal of Jilin University(Earth Science Edition), 39(1): 107-113(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200901016.htm

    Zhang Guitao, Zhang Hongguang. 2005. Signal processing of distributed optical sensor system based on Raman-scattering[J]. Journal of Qindao University(Engineering & Technology Edition), 20(3): 71-75(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QDDX200503014.htm

    Zhang Qing, Hao Wenjie, Hao Shuli, Li Shengtao, Wang Xinjie, Jiang Fan. 2018. Research of deep-hole temperature measurement technology base on Raman scattering[J]. Progress in Geophysics, 33(4): 1438-1443(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWJ201804015.htm

    Zhang Wei, Wang Guiling, Liu Feng, Xing Linxiao, Li Man. 2019. Characteristics of geothermal resources in sedimentary basins[J]. Geology in China, 46(2): 255-268(in Chinese with English abstract).

    Zhou Yang, Mu Genxu, Zhang Hui, Wang Ke, Liu Jianqiang, Zhang Yage. 2017. Geothermal Field Division and its geological influencing factors in Guanzhong Basin[J]. Geology in China, 44(5): 1017-1026(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201705014.htm

    鄂建, 陈明珠, 杨露梅, 汪霄, 龚红卫, 李曼. 2015. 南京浅层地温能开发利用现状研究[J]. 地质学刊, 39(2): 339-342. doi: 10.3969/j.issn.1674-3636.2015.02.339

    洪增林, 张银龙, 周阳. 2019. 关中盆地南部山前中深层地热资源赋存特征及应用[J]. 中国地质, 46(5): 1224-1235. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201905023.htm

    金旭, 陈晓冬, 管彦武. 2004. 气候变化对浅层地温测量影响的改正[J]. 地球学报, 25(5): 579-582. doi: 10.3321/j.issn:1006-3021.2004.05.016

    栾光忠, 邱汉学. 1998. 中低温对流型地热系统的典型成因——南京汤山地热系统的分析[J]. 青岛海洋大学学报, 28(1): 160-164. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY801.026.htm

    栾英波, 郑桂森, 卫万顺. 2013. 浅层地温能资源开发利用发展综述[J]. 地质与勘探, 49(2): 379-383. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201302025.htm

    王宝军, 施斌, 姜洪涛, 赵理政. 2009. 近30年南京市浅层地温场变化规律研究[J]. 高校地质学报, 15(2): 199-205. doi: 10.3969/j.issn.1006-7493.2009.02.008

    王贵玲, 张薇, 蔺文静, 刘峰, 朱喜, 刘彦广, 李郡. 2017. 京津冀地区地热资源成藏模式与潜力研究[J]. 中国地质, 44(6): 1074-1085. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201706004.htm

    王海波, 黄少鹏, 任永飞, 何亮亮, 肖波. 2014. 西安城市地温与气温变化初步分析[J]. 地质科学, 49(3): 874-887. doi: 10.3969/j.issn.0563-5020.2014.03.014

    王婉丽, 王贵玲, 朱喜, 刘志明. 2017. 中国省会城市浅层地热能开发利用条件及潜力评价[J]. 中国地质, 44(6): 1062-1073. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201706003.htm

    王新娟, 栾英波, 路明, 李志萍. 2010. 北京平原区浅层地温能分布规律研究[J]. 勘察科学技术, (3): 48-53. doi: 10.3969/j.issn.1001-3946.2010.03.013

    卫万顺, 郑桂森, 栾英波. 2010. 北京平原区浅层地温场特征及其影响因素研究[J]. 中国地质, 37(6): 1733-1739. doi: 10.3969/j.issn.1000-3657.2010.06.019

    温忠辉, 王彬彬, 鲁程鹏, 颜陵翔, 华骅. 2009. 南京市地下水资源开发利用分区[J]. 吉林大学学报(地球科学版), 39(1): 107-113. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200901016.htm

    张桂涛, 张红光. 2005. 喇曼散射分布式光纤传感器系统的信号处理[J]. 青岛大学学报(工程技术版), 20(3): 71-75. doi: 10.3969/j.issn.1006-9798.2005.03.015

    张青, 郝文杰, 蒿书利, 李胜涛, 王新杰, 蒋凡. 2018. 基于拉曼散射的深孔测温技术研究[J]. 地球物理学进展, 33(4): 1438-1443. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201804015.htm

    张薇, 王贵玲, 刘峰, 邢林啸, 李曼. 2019. 中国沉积盆地型地热资源特征[J]. 中国地质, 46(2): 255-268. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902005.htm

    周阳, 穆根胥, 张卉, 王克, 刘建强, 张亚鸽. 2017. 关中盆地地温场划分及其地质影响因素[J]. 中国地质, 44(5): 1017-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201705014.htm

  • 加载中

(10)

计量
  • 文章访问数:  1773
  • PDF下载数:  24
  • 施引文献:  0
出版历程
收稿日期:  2019-09-25
修回日期:  2020-01-05
刊出日期:  2021-06-25

目录