Groundwater-surface water interactions in the Baiyangdian wetland, Xiong'an New Area and its impact on reed land
-
摘要:
查明地表水和地下水作用关系对湿地生态保护与修复具有重要意义。采用地表水和地下水位监测、氢氧稳定同位素分析、湖床沉积物温度示踪等方法,研究了白洋淀渗漏对周边浅层地下水的影响范围和深度,评价了地表水垂向渗漏速率,并探讨了芦苇分布面积和地表水位以及地下水位埋深的关系。结果表明:白洋淀渗漏受地质结构和水力梯度等因素影响,对浅层地下水垂向上影响深度为20 m,水平向上影响范围存在较大空间变异。周边浅层地下水的补给来源为大气降雨和地表水,其中地表水渗漏的补给比例为0~90.5%。淀区渗漏速率0.01~0.59 mm/d,和含水层埋深关系密切,埋深越小,越有利于地表水渗漏。1976-2020年,白洋淀芦苇分布面积和地表水位关系密切。当地表水位为6.3~6.8 m时,芦苇分布面积最大,在水位小于6.3 m条件下芦苇面积随着水位增高而增加,大于6.8 m条件下随着水位增高而减少。芦苇台地下水位埋深和地表水位显著相关,在2020年4-9月芦苇生长期,除雨季前期外多数时段台地地下水埋深均适宜芦苇发育,建议在雨季前期实施生态补水,通过降低台地地下水位埋深促进芦苇生长发育。研究结果可为白洋淀生态补水、渗漏防治和生态保护提供参考。
Abstract:It is of great significance to find out the interaction between surface water and groundwater for wetland ecological protection and restoration. A multiply tracers approach including water level monitoring, oxygen and hydrogen isotopes analysis and temperature tracing was used to identify the location, magnitude and depth of surface water leakage to shallow groundwater. As also, a brief study of relationship between reed land and water level and groundwater depth was conducted. The results show that the scope of leakage water is controlled by geological and hydrogeological conditions. The depth is about 20m and the length from lake shore varies spatially. The recharge sources of surrounding shallow groundwater are atmospheric rainfall and surface water, of which the recharge proportion of surface water leakage is 0-90.5%. The leakage rate is from 0.01 to 0.59 mm/d inside the wetland and has a strong relationship with the depth of the shallow aquifer. The less the burial depth, the more conducive to surface water leakage. There was a significant relationship between reed land and the average surface water level from 1976 to 2020. When the surface water level was between 6.3 to 6.8 m, the reed land was the largest. When the water level was less than 6.3 m, the reed land had a positive correlation with it, while the reed land area decreased as the water level was higher than 6.8 m. Groundwater depth had an obvious relationship with surface water level where reeds grew. During the growing season, it showed that groundwater depth was suitable for reeds growth most of the time. In order to prompt reed growth, it is suggested that artificial recharge should be conducted before monsoon season to lower groundwater depth. The conclusions can provide basic supports for water recharge, leakage resisting and eco-environment protecting in the Baiyangdian wetland.
-
-
表 1 地表水和地下水位相关性分析
Table 1. Relationship of groundwater and surface water
-
Chen Song, Gui Herong. 2019. The age and isotopic characteristics of groundwater in Taiyuan Formation limestone aquifer of the Huaibei coalfield[J]. Geology in China, 46(2): 337-345 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201902011.htm
Crosbie R S, Mcewan K L, Jolly I D, Holland K L, Lamontagne S, Moe K G. 2010. Salinization risk in semi-arid floodplain wetlands subjected to engineered wetting and drying cycles[J]. Hydrological Processes, 23(24): 3440-3452. http://www.cabdirect.org/abstracts/20103005630.html
Fan Wei, Zhang Guangxin, Li Ranran. 2012. Review of ground-surface water interactions in wetland[J]. Advances of Earth Science, 27(4): 413-423 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201204006.htm
Furi W, Razack M, Haile T, Abiye T A, Legesse D. 2011. The hydrogeology of Adama-Wonji basin and assessment of groundwater level changes in Wonji wetland, main ethiopian rift: Results from 2D tomography and electrical sounding methods[J]. Environmental Earth Science, 62(6): 1323-1335. doi: 10.1007/s12665-010-0619-y
Guan Bo, Su Yunzhao, Xia Jiangbao, Dong Hongfang, Lü Zhenbo, Yu Junbao. 2014. Ecological characteristics of phragmites australis vegetation at different water table levels and their relation to environmental factors in the Yellow River Delta[J]. Chinese Journal of Ecology, 33(10): 2633-2639 (in Chinese with English abstract). http://www.cqvip.com/QK/90811X/201410/662543095.html
Guo Xu, Bai Yaonan, Liu Hongwei, Tang Hui, Mao Jinjie. 2019. Geological influence and suitability evaluation of the construction of Sponge city: A case study of the Zhengzhou Airport Economy Zone[J]. Geological Survey and Research., 42(2): 123-128 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-QHWJ201902009.htm
Han Aiguo, Sun Yin, Han Kunli. 2006. Discussion on the relationship between wetlands restoration and groundwater resource in Beijing area[J]. Research of Water and Soil Conservation, 13(4): 61-63 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-STBY200604018.htm
Hatch C E, Fisher A T, Revenaugh J S, Constantz J, Ruehl C. 2006. Quantifying surface water-ground water interactions using time series analysis of streambed thermal records[J]. Water Resources Research, 42(10): W10410. http://onlinelibrary.wiley.com/doi/10.1029/2005WR004787
He Minxia, Zhang Bin, Wang Yidong, Wang Zhongliang. 2020. Stable hydrogen and oxygen isotopic characteristics of surface water and underground water in Baiyangdian Lake[J]. Journal of Tianjin Normal University(Natural Science Edition), 40(6): 62-67 (in Chinese with English abstract).
Huo Siyuan, Jin Menggui, Zhu Changkun, Cheng Xuhai. 2019. Estimating stable infiltration recharge by temperature tracer method[J]. Journal of Hydraulic Engineering, 50(6): 761-772 (in Chinese with English abstract).
Li Gang, Ma Baiheng, Zhou Yangxiao, Zhao Kai, You Bin, Li Muzi, Dong Huijun, Li Haitao. 2021. Research on vertical exchange between surface water and groundwater around banks of Baiyangdian Lake[J]. Hydrogeology & Engineering Geology, 48(4): 48-54 (in Chinese with English abstract). http://www.researchgate.net/publication/350809746_Research_on_vertical_exchange_between_surface_water_and_groundwater_around_banks_of_Baiyangdian_Lake_in_Chinese_with_English_abstract
Li Yinghua, Cui Baoshan, Yang Zhifeng. 2004. Influence of hydrological characteristics change of Baiyangdian on the ecological environment in wetland[J]. Journal of Natural Resources, 19(1): 62-68 (in Chinese with English abstract). http://europepmc.org/abstract/CBA/359482
Li Yunliang, Yao Jing, Tan Zhiqiang, Zhang Qi. 2019. Interactions between typical sub-lakes and groundwater in floodplains of Poyang Lake[J]. Journal of China Hydrology, 39(5): 1-7 (in Chinese with English abstract).
Lin Jingjing, Ma Rui, Sun Ziyong, Wei Wenhao, Wang Shuo. 2015. Laboratory investigation on the effect of the intraborehole flow in fully-screened well on the temperature change during tracing river and groundwater interaction[J]. Hydrogeology & Engineering Geology, 42(5): 14-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG201505004.htm
Liu Yu, Lu Chenming, Ma Rong. 2019. Discriminant analysis on iron ion provenance in groundwater, eastern Hebei Plain[J]. Geological Survey and Research., 42(2): 135-142 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-QHWJ201902012.htm
Ma Zhen, Xia Yubo, Li Haitao, Han Bo, Yu Xuezhong, Zhou Yalong, Wang Yushan, Guo Xu, Li Hongqiang, Pei Yanzhong. 2021. Analysis of natural resources and environment eco-geological conditions in the Xiong'an New Area[J]. Geology in China, 48(3): 677-696 (in Chinese with English abstract).
Min J H, Perkins D B, Jawitz J W. 2010. Wetland-Groundwater interactions in subtropical depressional wetlands[J]. Wetlands, 30(5): 997-1006. doi: 10.1007/s13157-010-0043-9
Paces J B, Wurster F C. 2014. Natural uranium and strontium isotope tracers of water sources and surface water-groundwater interactions in arid wetlands-Pahranagat Valley, Nevada, USA[J]. Journal of Hydrology, 517: 213-225. doi: 10.1016/j.jhydrol.2014.05.011
Schwerdtfeger J, Hartmann A, Weiler M. 2016. A tracer-based simulation approach to quantify seasonal dynamics of surface-groundwater interactions in the Pantanal wetland[J]. Hydrological Processes, 15(30): 2590-2602. http://www.researchgate.net/profile/Andreas_Hartmann7/publication/301796875_A_tracer-based_simulation_approach_to_quantify_seasonal_dynamics_of_surface-groundwater_interactions_in_the_Pantanal_wetland/links/5729a79c08ae2efbfdb7f926.pdf
Shang Haimin, Wang Wenke, Dai Zhenxue, Duan Lei, Zhao Yaqian, Zhang Jing. 2016. An ecology-oriented exploitation mode of groundwater resources in the northern Tianshan Mountains, China[J]. Journal of Hydrology, 543: 386-394. doi: 10.1016/j.jhydrol.2016.10.012
Wan Li, Cao Wengeng, Hu Fusheng, Liang Sihai, Jin Xiaomei. 2005. Eco-hydrology and eco-hydrogeology[J]. Geological Bulletin of China, 24(8): 700-703 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-bulletin-china_thesis/0201252291231.html
Wang Kailin, Li Haitao, Wu Aimin, Li Muzi, Zhou Yi, Li Wenpeng. 2018. An analysis of the evolution of Baiyangdian wetlands in Hebei province with artificial recharge[J]. Hydrogeology & Engineering Geology, 39(5): 549-558 (in Chinese with English abstract). http://www.researchgate.net/publication/331687020_An_Analysis_of_the_Evolution_of_Baiyangdian_Wetlands_in_Hebei_Province_with_Artificial_Recharge
Wang Wenke, Gong Chengcheng, Zhang Zaiyong, Chen Li. 2018. Research status and prospect of the subsurface hydrology and ecological effect in arid regions[J]. Advances in Earth Science, 33(7): 702-718 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXJZ201807004.htm
Wang Wenke, Li Junting, Feng Xizhou, Chen Xunhong, Yao Kejun. 2011. Evolution of stream-aquifer hydrologic connectedness during pumping-Experiment[J]. Journal of Hydrology, 402(3): 401-414. http://www.ingentaconnect.com/content/el/00221694/2011/00000402/00000003/art00021
Wang Yushan, Cheng Xuxue, Zhang Mengnan, Qi Xiaofan. 2018. The study on the spatial variation of groundwater inflows to river using 222Rn in the lower reaches of the Malian river[J]. Hydrogeology & Engineering Geology, 45(5): 34-40 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SWDG201805005.htm
Wang Yushan, Guo Yuan. 2015. Study on groundwater salinization mechanism in arid areas using regional deuterium excess[J]. Hydrogeology & Engineering Geology, 42(6): 29-35 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SWDG201506006.htm
Wu Bin, Wang Sai, Wang Wenxiang, An Yonghui. 2019. Impact of future climate change on water resources in the arid regions of Northwest China based on surface water-groundwater coupling model: A case study of the middle reaches of the Heihe River[J]. Geology in China, 46(2): 369-380 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201902014.htm
Yuan Ruiqiang, Song Xianfang, Wang Peng, Zhang Yinghua, Wang Shiqin, Tang Chagnyuan. 2012. Impacts of percolation in Baiyangdian Lake on groundwater[J]. Advances in Water Science, 23(6): 751-756 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKXJ201206003.htm
Xu Xiuli, Zhang Qi, Li Yunliang, Tan Zhiqiang, Wang Xiaolong. 2014. Reed population features and relationships between feature indicators and flooding depth, groundwater depth in an islet in Poyang lake[J]. Wetland Science, 12(6): 714-722 (in Chinese with English abstract). http://www.cqvip.com/QK/87210X/20146/663464403.html
Zeng Lei, Zhao Guizhang, Hu Wei, Huang Jinting. 2015. Spatial variation characteristics of temperature and moisture in shallow loess layer under freezing-thawing condition[J]. Geological Bulletin of China, 34(11): 2123-2131 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201511020.htm
Zhang Mengman, Wu Xiuqin. 2018. Changes in hydrological connectivity and spatial morphology of Baiyangdian wetland over the last 20 years[J]. Acta Ecologica Sinica, 38(12): 4205-4213 (in Chinese with English abstract). http://www.researchgate.net/publication/326844640_Changes_in_hydrological_connectivity_and_spatial_morphology_of_Baiyangdian_wetland_over_the_last_20_years
Zhang Min, Gong Zhaoning, Zhao Wenji, A Duo. 2016. Landscape pattern change and the driving forces in Baiyangdian wetland from 1984 to 2014[J]. Acta Ecologica Sinica, 36(15): 4780-4791 (in Chinese with English abstract). http://www.cqvip.com/QK/90772X/201615/669805221.html
Zhang Yuanyu, Cui Hanwen. 2009. The variety of wetland environment in Sanjiang Plain[J]. Ecology and Environmental Science, 18(4): 1374-1378 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-tryj200904033.htm
Zhang Yunlong, Wang Xuan, Liu Dan, Liao Zhenmei, Liu Qiang, Li Chunhui, Cai Yanpeng. 2020. Influences of groundwater depth on water transport and dissipation in spac system of phragmites australis in a semi-arid wetland[J]. Environmental Engineering, 38(10): 7-13 (in Chinese with English abstract).
Zhao Yong, Han Jingyan, Zhang Bing, Gong Jiaguo. 2020. Impact of transferred water on the hydrochemistry and water quality of surface water and groundwater in Baiyangdian Lake, North China[J]. Geoscience Frontiers, 12(3): 110-118. http://d.wanfangdata.com.cn/periodical/dxqy-e202103006
陈松, 桂和荣. 2019. 淮北煤田太原组灰岩水年龄及同位素地球化学特征[J]. 中国地质, 46(2): 337-345. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20190210&flag=1
范伟, 章光新, 李然然. 2012. 湿地地表水-地下水交互作用的研究综述[J]. 地球科学进展, 27(4): 413-423. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201204006.htm
管博, 栗云召, 夏江宝, 董洪芳, 吕振波, 于君宝. 2014. 黄河三角洲不同水位梯度下芦苇植被生态特征及其与环境因子相关关系[J]. 生态学杂志, 33(10): 2633-2639. https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201410008.htm
郭旭, 白耀楠, 刘宏伟, 唐辉, 苗晋杰. 2019. 海绵城市建设地质适宜性评价——以郑州航空港经济综合实验区为例[J]. 地质调查与研究, 42(2): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201902009.htm
韩爱果, 孙颖, 韩坤立. 2006, 浅谈北京地区湿地修复与地下水资源的关系[J]. 水土保持研究, 13(4): 61-63. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY200604018.htm
何明霞, 张兵, 王义东, 王中良. 2020. 白洋淀地表水和地下水的稳定氢氧同位素特征[J]. 天津师范大学学报(自然科学版), 40(6): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-TJSD202006010.htm
霍思远, 靳孟贵, 朱常坤, 程绪海. 2019. 运用温度示踪法确定稳定入渗补给速率[J]. 水利学报, 50(6): 761-772. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201906013.htm
李刚, 马佰衡, 周仰效, 赵凯, 尤冰, 李木子, 董会军, 李海涛. 2021. 白洋淀湖岸带地表水与地下水垂向交换研究[J]. 水文地质工程地质, 48(4): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202104007.htm
李英华, 崔宝山, 杨志峰. 2004. 白洋淀水文特征变化对湿地生态环境的影响[J]. 自然资源学报, 19(1): 62-68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX200401007.htm
李云良, 姚静, 谭志强, 张奇. 2019. 鄱阳湖洪泛区碟形湖域与地下水转化关系分析[J]. 水文, 39(5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SWZZ201905001.htm
林晶晶, 马瑞, 孙自永, 魏文浩, 王烁. 2015. 河水与地下水作用带内井中流对温度示踪结果影响的实验研究[J]. 水文地质工程地质, 42(5): 14-21.
刘裕, 陆晨明, 马荣. 2019. 冀东平原地下水中铁离子来源判别分析研究[J]. 地质调查与研究, 42(2): 135-142. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201902012.htm
马震, 夏雨波, 李海涛, 韩博, 余学中, 周亚龙, 王雨山, 郭旭, 李洪强, 裴艳东. 2021. 雄安新区自然资源与环境-生态地质条件分析[J]. 中国地质, 48(3): 677-696. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20210301&flag=1
万力, 曹文炳, 胡伏生, 梁四海, 金晓媚. 2005. 生态水文学与生态水文地质学[J]. 地质通报, 24(8): 700-703. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200508004.htm
王凯霖, 李海涛, 吴爱民, 李木子, 周艺, 李文鹏. 2018. 人工补水条件下白洋淀湿地演变研究[J]. 地球学报, 39(5): 549-558. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201805005.htm
王文科, 宫程程, 张在勇, 陈立. 2018. 旱区地下水文与生态效应研究现状与展望[J]. 地球科学进展, 33(7): 702-718. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201807004.htm
王雨山, 程旭学, 张梦南, 祁晓凡. 2018. 基于222Rn的马莲河下游地下水补给河水空间差异特征研究[J]. 水文地质工程地质, 45(5): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201805005.htm
王雨山, 郭媛. 2015. 干旱区地下水咸化机制的区域氘盈余解析[J]. 水文地质工程地质, 42(6): 29-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201506006.htm
吴斌, 王赛, 王文祥, 安永会. 2019. 基于地表水-地下水耦合模型的未来气候变化对西北干旱区水资源影响研究——以黑河中游为例[J]. 中国地质, 46(2): 369-380. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20190213&flag=1
袁瑞强, 宋献方, 王鹏, 张应华, 王仕琴, 唐常源. 2012. 白洋淀渗漏对周边地下水的影响[J]. 水科学进展, 23(6): 751-756. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201206003.htm
许秀丽, 张奇, 李云良, 谭志强, 王晓龙. 2014. 鄱阳湖洲滩芦苇种群特征及其与淹水深度和地下水埋深的关系[J]. 湿地科学, 12(6): 714-722. https://www.cnki.com.cn/Article/CJFDTOTAL-KXSD201406006.htm
曾磊, 赵贵章, 胡炜, 黄金廷. 2015. 冻融条件下浅层黄土中温度与水分的空间变化相关性[J]. 地质通报, 34(11): 2123-2131. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201511020.htm
张梦嫚, 吴秀芹. 2018. 近20年白洋淀湿地水文连通性及空间形态演变[J]. 生态学报, 38(12): 4205-4213. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201812011.htm
张敏, 宫兆宁, 赵文吉, 阿多. 2016. 近30年来白洋淀湿地景观格局变化及其驱动机制[J]. 生态学报, 36(15): 4780-4791. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201615023.htm
章远钰, 崔瀚文. 2009. 东北三江平原湿地环境变化[J]. 生态环境学报, 18(4): 1374-1378. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ200904033.htm
张云龙, 王烜, 刘丹, 廖珍梅, 刘强, 李春晖, 蔡宴朋. 2020. 半干旱区湿地地下水埋深对芦苇SPAC系统水分运移耗散的影响[J]. 环境工程, 38(10): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202010002.htm
-