Recongnition of A-type granite and its implication for magmatism and mineralization in Tangge skarn-type Cu-polymetallic deposit, Tibet
-
摘要:
研究目的 唐格矽卡岩型铜多金属矿区位于南冈底斯陆缘火山-岩浆弧西段,矿区内铜多金属成矿与石英斑岩体成岩作用关系密切,但对矿区内发育的石英斑岩体研究较少,对于进一步理解矿床成因与指导找矿勘查有一定制约。
研究方法 本文首次报道了矿区内石英斑岩岩石地球化学、锆石U-Pb年龄及Hf同位素结果。
研究结果 石英斑岩表现出富硅(SiO2=73.97%~76.85%)、富铝(Al2O3=13.03%~14.06%)、高钾(K2O=2.2%~4.68%),高FeOT(0.97%~1.80%)、FeOT/MgO(3.57~8.22)、A/CNK(1.14~4.24)特征; 稀土元素总量高(∑REE=478.59×10-6~532.71×10-6)、稀土配分曲线呈明显的右倾型或“海鸥型”; 富集Rb、Th、U、K、Pb大离子亲石元素(LILE),亏损高场强元素(HFSE)Nb、Ta、Ti、P及大离子亲石元素Ba、Sr等元素; Rb含量低(69.64×10-6~249×10-6,小于270×10-6),10000Ga/Al=2.54~2.71,显示出后碰撞铝质A型花岗岩的地球化学特征。LA-ICP-MS锆石U-Pb年龄为(78.0±0.9)Ma,表明其形成时代为晚白垩世。石英斑岩中锆石的εHf(t)均为正值(1.5~5.3,均值3.6),显示了较均一的Hf同位素组成; Hf同位素二阶段模式年龄T2DM=1052~806 Ma,均值912 Ma(<1.0 Ga),指示岩浆主要来源于新生长英质下地壳的部分熔融。
结论 结合区域地质资料,认为唐格铝质A型花岗岩是形成于印度大陆向北俯冲于欧亚大陆引起的碰撞后伸展构造环境。唐格石英斑岩中Cu、Pb、Zn、Au背景含量较高,说明铝质A型花岗岩为唐格矽卡岩型铜多金属矿提供了一定的成矿物质。冈底斯带自东向西在69~89 Ma至少存在一次与晚白垩世岩浆作用有关的铜多金属成矿作用,其唐格矽卡岩型铜多金属矿是冈底斯带中段南部在燕山晚期造山后岩浆活动的成矿响应。
Abstract:This paper is the result of mineral exploration engineering.
Objective The mineralization of Tangge skarn-type Cu-polymetallic ore district, located in the western part of the Gangdese volcano-magmatic arc, is closely related to the diagenesis of quartz porphyry in the mining area. There is little research on the quartz porphyry developed in the mining area, which restricts the further understanding of the genesis of the deposit and the guidance of prospecting and exploration.
Methods We firstly reports zircon U-Pb age and Hf isotope, and petrogeochemistry of quartz porphyry in the Tangge ore district.
Results The quartz porphyry is characterized by high silicon (SiO2=73.97%-76.85%), aluminum (Al2O3=13.03%-14.06%), potassium (K2O=2.2%-4.68%), FeOT(0.97%-1.80%) contents, and high FeOT/MgO ratios (3.57-8.22) and A/CNK= values(1.14-4.24). The quartz porphyry have high REE (∑REE=478.59×10-6-532.71×10-6) and its chondrite-normalized REE distribution patterns diagram show obvious right-leaning or "gull" type. They are enriched in Rb, Th, U, K and Pb, depleted in Nb, Ta, Ti, P, Ba and Sr. The low contents of Rb (69.64×10-6-249.00×10-6, less than 270×10-6) and high 10000×Ga/Al ratios (2.54-2.71), indicate that the quartz poyphyry are post-collisional and aluminous A-type granite. LA-ICP-MS zircon dating for quartz porphyry yields a weighted mean age of (78.0±0.9) Ma, suggesting that they formed in the Late Cretaceous. Their zircons have positive εHf(t) values (+1.5–+5.3, averages of +3.6), showing a relatively homogeneous Hf isotopic composition. Two-stage Hf model ages (T2DM=1052-806 Ma, averages of 912 Ma, less than 1.0 Ga), indicate that they were mainly generated by partial melting of the juvenile felsic lower crust.
Conclusions Combined with previous research, we proposed that the Tangge quartz porphyry were formed in the post-collisional extensional tectonic environment, which was resulted from the northward subduction of the Indian contient to the Eurasian continent. Tangge quartz porphyry has relatively high background content of Cu, Pb, Zn and Au, which suggest that genetical relationship between the aluminous A-type granitic magmatism and Tangge skarn-type Cu mineralization. It is inferred that Gangdese Belt at least develops a period of Cu polymetallic mineralization related to Late Cretaceous magmatism during 69-89 Ma, however, Tangge skarn-type Cu polymetallic deposits response to magmatism in the middle segment of the Southern Gangdese Belt during late Yanshanian.
-
Key words:
- Copper polymetallic deposit /
- skarn /
- aluminous A-type granite /
- zircon U–Pb age /
- geochemistry /
- Hf isotope /
- mineral exploration engineering /
- Tangge /
- Tibet
-
-
图 4 唐格石英斑岩体TAS图(a)(底图据Le Maitre, 2002)、SiO2-K2O图(b)(底图据Peccerillo and Taylor, 1976)、A/CNK-A/NK图(c)(底图据Maniar and Piccoli, 1989)
Figure 4.
图 5 唐格石英斑岩体稀土元素球粒陨石标准化配分模式图(a)、原始地幔标准化微量元素蛛网图(b) (原始地幔值和球粒陨石值据Sun et al., 1989); 图中样品代号见表 4
Figure 5.
图 6 唐格石英斑岩体K2O-Na2O图(a, 底图据Collins et al., 1982)、10000Ga/Al-K2O-MgO图(b, 底图据Whalen et al., 1987)、La-La/Sm图(c, 底图据赵亚云,2016)、A/MF-C/MF图(d, 底图据Alther et al., 2000)
Figure 6.
图 8 唐格石英斑岩体10000Ga/Al-R1(a, 底图据洪大卫等,1995)、Y-Nb-Ce(b, 底图据Eby, 1990)、SiO2-Al2O3(c)和SiO2-FeOT/(MgO+ FeOT) 构造环境判别图(d, 底图据Maninar and Piccoli, 1989)
Figure 8.
表 1 唐格石英斑岩锆石LA-ICP-MS锆石U-Pb同位素分析结果
Table 1. LA-ICP-MS U-Pb data of zircon from the quartz porphyry in Tangge ore district
表 2 唐格石英斑岩锆石Lu-Hf同位素数据
Table 2. In situ Lu-Hf isotopic data of zircons from the quartz porphyry in Tangge ore district
表 3 唐格石英斑岩体主量元素分析结果(%)及特征参数
Table 3. Major elements composition and characteristic parameters of the quartz porphyry pluton in Tangge ore district
表 4 唐格石英斑岩体微量和稀土元素分析结果及特征参数
Table 4. Trace and rare earth elements analysis of results and characteristic parameters of the quartz porphyry pluton in Tangge ore district
表 5 冈底斯成矿带白垩世成岩时代及成矿特征
Table 5. The Cretaceous diagenetic age and metallogenic characteristics in Gangdese metallogenic belt
-
Alther R, Holl A, Hegner E. 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides: Northern Vosges(France) and Northern Schwarzwald(Germany)[J]. Lithos, 50: 51-73. doi: 10.1016/S0024-4937(99)00052-3
Belousova E A, Griffin W L, Suzanne Y O R, Fisher N I. 2002. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contrib. Mineral. Petrol., 143: 602-622. doi: 10.1007/s00410-002-0364-7
Bonin B. 2007. A-type granites and related rocks: evolution of a concept, problems and prospects[J]. Lithos, 97, 1-29. doi: 10.1016/j.lithos.2006.12.007
Chappell B W, White A J R. 1974. Two contrasting granite types[J]. Pacific Geol., 8: 173-174.
Chen Daogong, Zhi Xiachen, Yang Haitao. 2009. Geochemistry[J]. Hefei: China University of Science and Technology Press, 1-445(in Chinese).
Collins W J, Beams S D, White A J R, Chappell B W. 1982. Nature and origin of A-type granite with particular reference to Southeast Australia[J]. Contrib. Mineral. Petrol., 80(2): 189-200. doi: 10.1007/BF00374895
Ding Li, Zhao Yuanyi, Yang Yongqiang, Cui Yubin, Lü Lina. 2012. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of ore-bearing granite in skarn-type iron polymetall ic deposits of Duoba area, Baingoin County, Tibet, and their significance[J]. Acta Petrologica et Mineralogica, 31(4): 479-496(in Chinese with English abstract).
Ding Pengfei, Wei Qirong, Wang Cheng, Zhang Xiaoqiang, Sun Ji, Bu Tao, Liu Xiaonian, Wang Jingyuan, Gao Manxin. 2014. Chronology, geochemical characteristics and tectonic settings of the late Yanshanian granitoids in Zexue area, Tibet[J]. Geological Science and Technology Information, 33(4): 37-47(in Chinese with English abstract).
Eby G N. 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their pertogenesis[J]. Lithos, 26: 115-134. doi: 10.1016/0024-4937(90)90043-Z
Eby G N. 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications[J]. Geology, 20: 641-644.
Frost C D, Frost B R, Chamberlain K R, Edwards B R. 1999. Petrogenesis of the 1.43 Ga Sherman batholith, SE Wyoming, USA: A reduced Rapakivi-type anorogenic granite[J]. J. Petrol., 40(12): 1771-1802. doi: 10.1093/petroj/40.12.1771
Gao Jiahao, Zeng Lingsen, Guo Chunli, Li Qiuli, Wang Yaying. 2017. Late Cretaceous tectonics and magmatism in Gangdese batholith, Southern Tibet: A record from the mafic-dioritic dike swarms within the Baidui Complex, Lhasa[J]. Acta Petrologica Sinica, 33(8): 2412-2436(in Chinese with English abstract).
Gao Shunbao, Zheng Youye, Xie Mingcheng, Zhang Zong, Yan Xuexin, Wu Bin, Luo Junjie. 2011. Geodynamic setting and mineralizational implication of the Xueru intrusion in Ban'ge, Tibet[J]. Earth Science——Journal of China University of Geosciences, 36(4): 729-739(in Chinese with English abstract).
Gao Yiming, Chen Yuchuan, Tang Juxing, Luo Maochen, Leng Qiufeng, Wang Liqiang, Yang Hairui, Pu Buciren. 2012. A study of diagenetic and metallogenic geochronology of the Dagbo Cu(Mo) deposit in Quxur County of Tibet and its geological implications[J]. Acta Geoscientica Sinica, 33(4): 613-623(in Chinese with English abstract).
Griffin W L, Wang X, Jackson S E, Pearson N J, O'Reilly S Y, Xu X S and Zhou X M. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 61(3/4): 237-269.
Gong Xuejing, Zeng Jianhui, Cao Dianhua. 2019. Sr-Nd and zircon Hf-O isotopic constraints on the petrogenesis of the ore- bearing granitic porphyry at Lengshuikeng, Jiangxi Province[J]. Geology in China, 46(4): 818-831(in Chinese with English abstract).
Guan Junlei, Geng Quanru, Wang Guozhi, Peng Zhimin, Zhang Zhang, Kou Fude, Cong Feng, Li Na. 2014. Geochemical, zircon U-Pb dating and Hf isotope compositions studies of the granite in Ritu County-Lameila Pass area, North Gangdse, Tibet[J]. Acta Petrologica Sinica, 30(6): 1666-1684(in Chinese with English abstract).
Guan Qi, Zhu Dicheng, Zhao Zhidan, Zhang Liangliang, Liu Min, Li Xiaowei, Yu Feng, Mo Xuanxue. 2010. Late Cretaceous adakites in the eastern segment of the Gangdese Belt, southern Tibet: Products of Neo-Tethyan ridge subduction? [J] Acta Petrologica Sinica, 26(7): 2165-2179(in Chinese with English abstract).
He Li, Ma Rongze, Song Chunyan. 2009. Geochemical characteristics and tectonic environment of the Late Cretaceous intrusive rocks in Cuoqin, Tibet[J]. Geological Science and Technology Information, 28(5): 31-39(in Chinese with English abstract).
He Zhonghua, Yang Deming, Wang Tianwu. 2006. The determination of early Cretaceous post-collision granitoids in Sangba area of Gangdese tectonic belt and its tectonic significance[J]. Acta Petrologica et Mineralogica, 25(3): 185-193(in Chinese with English abstract).
Hong Dawei, Wang Shiguang, Han Baofu, Jin Manyuan. 1995. Tectonic environment classification and identification of alkaline granits[J]. Science in China(Series B), 25(4): 418-427(in Chinese with English abstract).
Hou Zengqian, Qu Xiaoming, Wang Shuxian, Gao Yongfeng, Du Andao, Huang Wei. 2003. Porphyry copper belt molybdenite Re-Os age: Duration of mineralization and dynamics backgroud application in Gangdese, Tibetan Plateau[J]. Science in China(Series D), 33(7): 610-618(in Chinese with English abstract).
Hou Z Q, Yang Z M, Qu X M, Meng X J, Li Z Q, Beaudoin G, Rui Z Y, Gao Y F, Zaw Khin. 2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen[J]. Ore Geology Reviews, 39: 25-51.
Hu Peiyuan, Li Cai, Wu Yanwang, Xie Chaoming, Wang Ming, Li Jiao. 2016. A back-arc extensional environment of the Early Carboniferous Paleo-Tethys Ocean in Tibetan Plateau: Evidences from A-type granites[J]. Acta Petrologica Sinica, 32(4): 1219-1231(in Chinese with English abstract).
Huang H Q, Li H, Li W X, Li Z X. 2011. Formation of high δ18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, Southern China[J]. Geology, 39(10): 903-906. doi: 10.1130/G32080.1
Huang Mingda, Cui Xiaozhuang, Cheng Aiguo, Ren Guangming, He Huzhuang, Cheng Fenglin, Zhang Hengli, Zhang Jianqiang, Ren Fei. 2019. Late Paleoproterozic A type granitic rocks in the northern Yangtze block: Evidence for breakup of the Columbia supercontinent[J]. Acta Geologica Sinica, 93(3): 565-584(in Chinese with English abstract).
Huang Y, Ren M H, Liang W, Li G M, Kelly Heilbronn, Dai Z W, Wang Y Y, Zhang L. 2020. Origin of the Oligocene Tuolangla porphyry-skarn Cu-W-Mo deposit in Lhasa terrane, southern Tibet, China Geology, 3(3): 369-384. doi: 10.31035/cg2020047.
Iizuka T, Yamaguchi T, Itano K, Hibiya Y, Suzuki K. 2017. What Hf isotopes in zircon tell us about crust-mantle evolution[J]. Lithos, 274/275: 304-327. doi: 10.1016/j.lithos.2017.01.006
Ji W Q, Wu F Y, Chung S L. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet[J]. Chemical Geology, 262(3): 229-245.
Jiang Biao, Gong Qingjie, Zhang Jing, Ma Nan. 2012. Late Cretaceous aluminium A-type granites and its geological significance of Dasongpo Sn deposit, Tengchong, West Yunnan[J]. Acta Petrologica Sinica, 28(5): 1477-1492(in Chinese with English abstract).
Jiang Junhua, Wang Ruijiang, Qu Xiaoming, Xin Hongbo, Wang Zhenzhong. 2011. Crustal extension of the Bangong Co arc zone, western Tibetan plateau, after the closure of the Tethys oceanic basin[J]. Earth Science——Journal of China University of Geosciences, 36(6): 1021-1032(in Chinese with English abstract).
Jiang N, Zhang S Q, Zhou W G, Liu Y S. 2009. Origin of a Mesozoic granite with A-type characteristics from the North China craton: Highly fractionated from I-type magmas? [J]. Contrib. Mineral. Petrol., 158(1): 113-130. doi: 10.1007/s00410-008-0373-2
King P L, White A J R, Chappell B W. 1997. Characterization and origin of aluminous Atype granites of the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 36: 371-391.
Li Xiaosai, Zhao Yuanyi, Wang Jiangpeng, Xu Hong. 2013. Geochemical characteristics, chronology and significance of Gengnai skarn-type iron polymetallic deposit, Tibet[J]. Acta Geologica Sinica, 87(11): 1679-1693(in Chinese with English abstract).
Liu Changshi, Chen Xiaoming, Chen Peirong, Wang Rucheng, Hu Huan. 2003. Subdivision, discrimination criteria and genesis for A-type rock suites[J]. Geological Journal of China Universities, 9(4): 573-591 (in Chinese with English abstract).
Liu Jianbin, Na Xiaohong, Zhang Zhong, Wang Liming. 2012. Dating and geochemistry of the Late Cretaceous granitoids near Menba area in Gangdise Belt and their tectonic setting[J]. Global Geology, 31(4): 638-647(in Chinese with English abstract).
Liu Y S, Hu Z C, Gao S. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Ecology, 257: 34-43.
Le Maitre R W. 2002. Igneous rocks: A classification and glossary of terms: Recommendations of the International Union of Geological Sciences, Sub-commission on the Systematics of Igneous Rocks[M]. Cambridge University Press.
Loiselle M, Wines D. 1979. Characteristics and origin of anorogenic granites[M]. Geological Society of America Abstracts with Program: 468.
Ludwig K R. 2003. User's Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, Special Publication, 4: 1-71.
Maniar P D, Piccoli P M. 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Yang J H, Wu F Y, Chung S L, Wilde S A, Chu M F. 2006. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 89(1/2): 89-106.
Pan Guitang, Mo Xuanxue, Hou Zengqian, Zhu Dicheng, Wang Liquan, Li Guangming, Zhao Zhidan, Geng Quanru, Liao Zhongli. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution[J]. Acta Petrologica Sinica, 22(3): 521-533(in Chinese with English abstract).
Peccerillo A, Taylor S R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1): 63-81. doi: 10.1007/BF00384745
Qin Song, Sun Chuanmin, Zhang Jianbo, Zhang Wei, Ding Daiguo, and Ni Maciren. 2018. LA-ICP-MS zircon U-Pb dating, geochemical characteristics and geological significance of Early Cretaceous granites in the Serirong area of North-Central Gangdese, Tibet[J]. Geochimica, 47(2): 182-195(in Chinese with English abstract).
Qin Kezhang, Xia Daixiang, Duo Ji, Li Guangming, Jiang Guangwu, Xiao Bo, Zhao Junxing. 2014. Porphyry-skarn type Cu-Mo ore deposits in Qulong, Tibet[M]. Beijing: Science Press, 1-316(in Chinese).
Qiu Chanjuan, Xiao Jingru, Wei Yongfeng, Luo Wei, Yang Yamin, Xiao Yuanfu. 2018. LA-ICP-MS zircon U-Pb dating and geochemical analysis of the Late Cretaceous diorite in the Bieruozecuo area, Northwest margin of the Gangdese Belt, Tibet, and their geological significanes[J]. Acta Geologica Sinica, 92(11): 2215-2226(in Chinese with English abstract).
Qu Xiaoming, Hou Zengqian, Huang Wei. 2001. Gangdise porphyry copper deposit belt: The second "Yulong" copper deposit belt in Tibet? [J]. Mineral Deposits, 20(4): 355-366(in Chinese with English abstract).
Qu Xiaoming, Xin Hongbo, Du Dedao, Chen Hua. 2012. Ages of post-collisional A-type granite and constraints on the closure of the oceanic basin in the middle segment of the Bangonghu-Nujiang suture, the Tibetan plateau[J]. Geochimica, 41(1): 1-14(in Chinese with English abstract).
Shi Changyi, Yan Mingcai, Chi Qinghua. 2008. China Granite Chemical Element Abundance[M]. Beijing: Geological Publishing House, 1-124(in Chinese).
Shen Yahui. 2016. Fluid Inclusion Studies of the Tangge Cu-Pb-Zn Polymetallic Skarn Deposits, Tibet[D]. Beijing: China University of Geosciences, 1-65(in Chinese with English abstract).
Skjerlie K P, Johnston A D. 1993. Fluid-absent melting behavour of a F-rich tonalitic gneiss at mid-crustal pressure: Implications for the generation of anorogenic granites[J]. J. Petrol., 34(4): 785-815. doi: 10.1093/petrology/34.4.785
Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. London: Geological Society Special Publication, 313-345.
Sun Y, Ma C Q, Liu Y Y, She Z B. 2011. Geochronological and geochemical constraints on the petrogenesis of Late Triassic aluminous A-type granites in southeast China[J]. Journal of Asian Earth Sciences, 42(6): 1117-1131. doi: 10.1016/j.jseaes.2011.06.007
Tang J X, Yang H H, Song Y, Wang L Q, Liu Z B, Li B L, Lin B, Peng B, Wang G H, Zeng Q G, Wang Q, Chen W, Wang N, Li Z J, Li Y B, Li Y B, Li H F, Lei C Y. 2021. The copper polymetallic deposits and resource potential in the Tibet Plateau[J]. China Geology, (4): 1-16. doi:10.31035/cg2021016.
Tian Kan, Zheng Youye, Gao Shunbao, Jiang Junsheng, Xu Jing, Zhang Yongchao. 2019. Petrogenesis and geological implications of Late Cretaceous intrusion from the Bangbule Pb-Zn-Cu deposit, western Gangdese, Tibet[J]. Earth Science, 44(6): 1905-1922(in Chinese with English abstract).
Wang Jiangpeng, Zhao Yuanyi, Cui Yubin, Lü Lina, Xu Hong. 2012. LA-ICP-MS zircon U-Pb dating of important skarn type iron (copper) polymetallic deposits in Baingoin County of Tibet and geochemical characteristics of granites[J]. Geological Bulletin of China, 31(9): 1435-1450(in Chinese with English abstract).
Wang Liyuan, Zheng Youye, Gao Shunbao, Li Weiliang, Xue Zhaolong. 2014. The Upper Cretaceous magmatism from Gangzai pluton in Middle-Gangdese, Jiwa, Tibet and its tectonic significance[J]. Journal of Central South University (Science and Technology), 45(8): 2740-2751(in Chinese with English abstract).
Wang Qiang, Zhao Zhenhua, Xiong Xiaolin. 2000. The ascertainment of Late-Yanshanian A-type granite in Tongbai-Dabie orogenic belt[J]. Acta Petrologica et Mineralogica, 19(4): 297-306 (in Chinese with English abstract).
Weaver B L. 1991. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints[J]. Earth and Planetary Science Letters, 104: 381-397. doi: 10.1016/0012-821X(91)90217-6
Wen D R, Chung SL, Song B, IizukaY, YangH J, Ji J, Liu D, Gallet S. 2008. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications[J]. Lithos, 105: 1-11. doi: 10.1016/j.lithos.2008.02.005
Whalen J B, Currie K L, Chappell B W. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis[J]. Contrib. Mineral. Petrol., 95: 407-419. doi: 10.1007/BF00402202
Wu Fuyuan, Li Xianhua, Zheng Yongfei, Gao Shan. 2007. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract).
Wu F Y, Sun D Y, Li H M, Jahn B M, Wilde S. 2002. A type granites in northeastern China: Age and geochemical constraints on their petrogenesis[J]. Chemical Geology, 187: 143-173. doi: 10.1016/S0009-2541(02)00018-9
Xie Long, Dun Du, Zhu Lidong, Ni Maciren, Yang Wenguang, Tao Gang, Li Chao, He Bi, He Yuan. 2015. Zircon U-Pb geochronology, geochemistry and geological significance of the Zhaduding A-type granites in Northern Gangdise, Tibet[J]. Geology in China, 42(5): 1214-1227(in Chinese with English abstract).
Yang H H, Wang Q, Li Y B, Lin B, Song Y, Wang Y Y, He W, Li H W, Li S, Li J L, Liu C C, Feng S B, Xin T, Fu X L, Liang X J, Zhang Q, Wang B Q, Li Y. 2022. Geology and mineralization of the Tiegelongnan giant porphyry-epithermal Cu (Au, Ag) deposit (10 Mt) in western Tibet, China: A review[J]. China Geology, 5(1): 137-160. doi:10.31035/cg2022001.
Yang J H, Wu F Y, Chung S L, Simon A. Wilde, Chu M F. 2006 A hybrid origin for the Qianshan A-type granite, northeast China: geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 89(1) : 89-106.
Yao Xiaofeng, Tang Juxing, Li Zhijun, Deng Shilin, Ding Shuai, Hu Zhenghua, Zhang Zhi. 2012. Magma origin of two plutons from Gaerqiong Copper-gold deposit and it's geological significance, Western Bangonghu-Nujiang Metallogenic Belt, Tibet: Implication from Hf isotope characteristics[J]. Journal of Jilin University(Earth Science Edition), 42(2): 188-197(in Chinese with English abstract).
Yao Xiaofeng, Tang Juxing, Li Zhijun, Deng Shilin, Ding Shuai, Hu Zhenghua, Zhang Zhi. 2013. The redefinition of the ore-forming porphyry's age in Gaerqiong skarn-type gold-copper deposit, Western Bangong lake-Nujiang river metallogenic belt, Xizang(Tibet) [J]. Geological Review, 59(1): 193-200(in Chinese with English abstract).
Yu Hongxia, Chen Jianlin, Xu Jifeng, Wang Baodi, Wu Jianbin, Liang Huaying. 2011. Geochemistry and origin of Late Cretaceous (~90 Ma) ore-bearing porphyry of Balazha in Mid-Northern Lhasa Terrane, Tibet[J]. Acta Petrologica Sinica, 27(7): 2011-2022(in Chinese with English abstract).
Yu Yushuai, Yang Zhusen, Dai Pingyun, Gao Yuan, Liu Yingchao, Xiu Di. 2015. Geochronology and genesis of the magmatism in the Ri'a copper polymetallic deposit of the Nixiong orefield, Coqen, Tibet[J]. Geology in China, 42(1): 118-133(in Chinese with English abstract).
Zeng Lingsen, Gao Li'e, Guo Chunli, Hou Kejun, Wang Qian. 2017. Early Cretaceous forearc extension of the Gangdese continental arc, Southern Tibet[J]. Acta Petrologica Sinica, 33(8): 2377-2394(in Chinese with English abstract).
Zhang Le. 2015. Geochronology and Geochemistry of the Yongzhu Granitoids in Middle-North Gangdese, Tibet[D]. A Dissertation Submitted to Jilin University for Master's Degree. 1-84(in Chinese with English abstract).
Zhang Lei, Lü Xinbiao, Liu Ge, Chen Jun, Chen Chao, Gao Qi, Liu Hong. 2013. Characteristics and genesis of continental back-arc A-type granites in the eastern segment of the Inner Mongolia-Da Hinggan Mountains orogenic belt[J]. Geology in China, 40(3): 869-884(in Chinese with English abstract).
Zhang Lixue, Wang Qing, Zhu Dicheng, Lia Lili, Wu Xingyuan, Liu Sheng'ao, Hu Zhaochu, Zhao Tianpei. 2013. Mapping the Lhasa Terrane through zircon Hf isotopes: Constraints on the nature of the crust and metallogenic potential[J]. Acta Petrologica Sinica, 29(11): 3681-3688(in Chinese with English abstract)
Zhang Linkui, Li Guangming, Cao Huawen, Zhang Zhi, Fu Jiangang, Xia Xiangbiao, Dong Suiliang, Liang Wei, Huang Yong. 2019. Zircon geochronology and Hf isotope compositions of the granitic gneiss from Cuonadong in South Tibet and its insights for the evolution of the Proto-Tethys[J]. Geology in China, 46(6): 1312-1335(in Chinese with English abstract).
Zhang Zeming, Ding Huixia, Dong Xin, Tian Zuolin. 2019. Formation and evolution of the Gangdese magmatic arc, southern Tibet[J]. Acta Peologica Sinica, 35(2): 275-294(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.02.01
Zhang Z M, Zhao G C, Santosh M, Wang J L, Dong X, Shen K. 2010. Late Cretaceous chamockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: Evidence for Neo-Tethyan mid-ocean ridge subduction? [J]. Gondwana Research, 17: 615-631. doi: 10.1016/j.gr.2009.10.007
Zhao Yayun. 2016. Petrology, geochemistry characteristics and geological significance of Paleozoic granites in Middle Longshou Moutains, Gansu Province[D]. Nanchang: East China University of Technology, 1-79(in Chinese with English abstract).
Zhao Yayun, Liu Xiaofeng, Liu Yuanchao, Liu Bo, Fu Hailong, Lü Jinliang, Zhang Changyun. 2017. Copper metallogenic favourable condition analysis of Cimabanshuo, Zhunuo copper mining area outer, in Tibet[J]. Gansu Geology, 26(4): 28-36(in Chinese with English abstract).
Zhao Yayun, Liu Xiaofeng, Liu Yuanchao, Ci Qiong, Xiao Lanbin, Li Li, Zhang Xiaoqiang. 2018. Zircon U-Pb ages and geochemical characteristics of Youqiumi porphyry pluton in Cimabanshuo area, in Tibet[J]. Earth Science, 43(12): 4551-4565(in Chinese with English abstract).
Zhao Yayun, Yang Chunsi, Lü Jinliang, Liu Xiaofeng, Liu Bo, Zheng Changyun, Liu Yuanchao, Li Li, Fu Hailong. 2019. Its significance and geochemical characteristics, zircon U-Pb age of the Linzizong Group Volcanic rocks in Luobuzhen Orefield, Tibet[J]. Geoscience, 33(1): 73-85(in Chinese with English abstract).
Zhao Yayun, Liu Xiaofeng, Liu Yuanchao, Ci Qiong, Zheng Changyun, Yang Chunsi, Li Li, Fu Hailong. 2020. Petrogenesis and metallogenic implication of ore-bearing rock mass of copper polymetallic ore occurrence in Duorenze-Sangaka Areas, Angren County, Tibet[J]. Journal of Jilin University(Earth Science Edition), 50(5): 1323-1339 (in Chinese with English abstract).
Zhao Yayun, Liu Yuanchao, Ci Qiong, Liu Xiaofeng, Gong Fuzhi, Li Jun. 2021. Geochemical characteristics and ore-bearing potential of porphyry pluton in Beimulang Ore District, Angren County in Tibet[J]. Gansu Geology, 30(4): 38-55 (in Chinese with English abstract).
Zhao Yuanyi, Cui Yubin, Lü Lina, Shi Denghua. 2011. Chronology, geochemical characteristics and the significance of Shesuo copper polymetallic deposit, Tibet[J]. Acta Petrologica Sinica, 27(7): 2132-2142(in Chinese with English abstract).
Zhu Dicheng, Pan Guitang, Mo Xuanxue, Wang Liquan, Liao Zhongli, Zhao Zhidan, Dong Guocheng, Zhou Changyong. 2006. Late Jurassic-Early Cretaceous geodynamic setting in middle-northern Gangdese: New insights from volcanic rocks[J]. Acta Petrologica Sinica, 22(3): 534-546(in Chinese with English abstract).
Zhu D C, Wang Q, Cawood P A, Zhao Z D, Mo X X. 2017. Raising the Gangdese Mountaina in southern Tibet[J]. Journal of Geophysical Research: Solid Earth, 122(1): 214-223. doi: 10.1002/2016JB013508
陈道公, 支霞臣, 杨海涛. 2009. 地球化学[M]. 合肥: 中国科学技术大学出版社, ,1-445.
定立, 赵元艺, 杨永强, 崔玉斌, 吕立娜. 2012. 西藏班戈县多巴区矽卡岩型铁多金属矿床含矿花岗岩LA-ICP-MS锆石U-Pb定年、地球化学及意义[J]. 岩石矿物学杂志, 31(4): 479-496. doi: 10.3969/j.issn.1000-6524.2012.04.002
丁鹏飞, 魏启荣, 王程, 张小强, 孙骥, 卜涛, 刘小念, 王敬元, 高满新. 2014. 西藏则学地区俄穷瓦二长岩体的年代学、岩石地球化学特征及构造环境分析[J]. 地质科技情报, 33(4): 37-47. doi: 10.3969/j.issn.1009-6248.2014.04.005
高家昊, 曾令森, 郭春丽, 李秋立, 王亚莹. 2017. 藏南冈底斯岩基晚白垩世构造岩浆作用: 以拉萨白堆复合岩体中—基性岩脉群为例[J]. 岩石学报, 33(8) : 2412-2436 https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201708006.htm
高顺宝, 郑有业, 谢名臣, 张众, 闫学欣, 武斌, 罗俊杰. 2011. 西藏班戈地区雪如岩体的形成环境及成矿意义[J]. 地球科学——中国地质大学学报, 36(4): 729-739. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201104011.htm
高一鸣, 陈毓川, 唐菊兴, 罗茂澄, 冷秋锋, 王立强, 杨海锐, 普布次仁. 2012. 西藏曲水县达布斑岩铜(钼)矿床成岩成矿年代学研究[J]. 地球学报, 33(4): 613-623. doi: 10.3975/cagsb.2012.04.21
龚雪婧, 曾建辉, 曹殿华. 2019. 江西冷水坑矿床含矿花岗斑岩的Sr-Nd及锆石Hf-O同位素研究[J]. 中国地质, 46(4): 818-831. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20190412&flag=1
关俊雷, 耿全如, 王国芝, 彭智敏, 张璋, 寇福德, 丛峰, 李娜. 2014. 北冈底斯带日土县-拉梅拉山口花岗岩体的岩石地球化学特征、锆石U-Pb测年及Hf同位素组成[J]. 岩石学报, 30(6): 1666-1684. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406010.htm
管琪, 朱弟成, 赵志丹, 张亮亮, 刘敏, 李小伟, 于枫, 莫宣学. 2010. 西藏南部冈底斯带东段晚白垩世埃达克岩: 新特提斯洋脊俯冲的产物? [J]. 岩石学报, 26(7): 2165-2179. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007019.htm
何利, 马润则, 宋春彦. 2009. 西藏措勤晚白垩世侵入岩地球化学特征及构造环境[J]. 地质科技情报, 28(5): 31-39. doi: 10.3969/j.issn.1000-7849.2009.05.004
和钟铧, 杨德明, 王天武. 2006. 冈底斯带桑巴区早白垩世后碰撞花岗岩类的确定及构造意义[J]. 岩石矿物学杂志, 25(3): 185-193. doi: 10.3969/j.issn.1000-6524.2006.03.003
侯增谦, 曲晓明, 王淑贤, 高永丰, 杜安道, 黄卫. 2003. 西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄: 成矿作用时限与动力学背景应用[J]. 中国科学(D辑), 33(7): 610-618. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200307000.htm
洪大卫, 王式洸, 韩宝福, 靳满元. 1995. 碱性花岗岩的构造环境分类及其鉴别标志[J]. 中国科学(B辑), 25(4): 418-427. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199504012.htm
胡陪远, 李才, 吴彦旺, 解超明, 王明, 李娇. 2016. 青藏高原古特提斯洋早石炭世弧后拉张: 来自A型花岗岩的证据[J]. 岩石学报, 32(4): 1219-1231. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201604020.htm
黄明达, 崔晓庄, 程爱国, 任光明, 何虎庄, 陈风霖, 张恒利, 张建强, 任飞. 2019. 扬子北缘晚古元古代A型花岗质岩石: Columbia超大陆裂解的证据[J]. 地质学报, 93(3): 565-584. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201903004.htm
江彪, 龚庆杰, 张静, 马楠. 2012. 滇西腾冲大松坡锡矿区晚白垩世铝质A型花岗岩的发现及其地质意义[J]. 岩石学报, 28(5): 1477-1492. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205013.htm
江军华, 王瑞江, 曲晓明, 辛洪波, 王振中. 2011. 青藏高原西部班公湖岛弧带特提斯洋盆闭合后的地壳伸展作用[J]. 地球科学: 中国地质大学学报, 36(6): 1021-1032. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201106008.htm
李小赛, 赵元艺, 王江朋, 许虹. 2013. 西藏更乃矽卡岩型铁多金属矿床地球化学特征年代学及意义[J]. 地质学报, 87(11): 1679-1693. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201311004.htm
刘昌实, 陈小明, 陈培荣, 王汝成, 胡欢. 2003. A型岩套的分类、判别标志和成因[J]. 高校地质学报, 9(4): 573-591. doi: 10.3969/j.issn.1006-7493.2003.04.011
刘建兵, 那晓红, 张忠, 王立明. 2012. 冈底斯带门巴区晚白垩世花岗岩年代学、地球化学及构造背景[J]. 世界地质, 31(4): 638-647. doi: 10.3969/j.issn.1004-5589.2012.04.003
潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm
秦克章, 夏代祥, 多吉, 李光明, 蒋光武, 肖波, 赵俊兴. 2014. 西藏驱龙斑岩-夕卡岩铜钼矿床[M]. 北京: 科学出版社, 1-316.
秦松, 孙传敏, 张剑波, 张伟, 丁代国, 尼玛次仁. 2018. 冈底斯带中北部色日绒地区早白垩世花岗岩的LA-ICP-MS锆石U-Pb年龄、地球化学特征及其地质意义[J]. 地球化学, 47(2): 182-195. doi: 10.3969/j.issn.0379-1726.2018.02.007
邱婵媛, 肖倩茹, 魏永峰, 罗巍, 杨亚民, 肖渊甫. 2018. 冈底斯带西北缘别若则错地区晚白垩世闪长岩LA-ICP-MS锆石U-Pb测年、地球化学及地质意义[J]. 地质学报, 92(11): 2215-2226. doi: 10.3969/j.issn.0001-5717.2018.11.003
曲晓明, 侯增谦, 黄卫. 2001. 冈底斯斑岩铜矿(化)带: 西藏第二条"玉龙"铜矿带? [J]. 矿床地质, 20(4): 355-366. doi: 10.3969/j.issn.0258-7106.2001.04.009
曲晓明, 辛洪波, 杜德道, 陈华. 2012. 西藏班公湖—怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束[J]. 地球化学, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201201002.htm
史长义, 鄢明才, 迟清华. 2008. 中国花岗岩类化学元素丰度[M]. 北京: 地质出版社, 1-124.
申亚辉. 2016. 西藏唐格矽卡岩铜铅锌多金属矿床流体包裹体研究[D]. 北京: 中国地质大学(北京), 1-65.
田坎, 郑有业, 高顺宝, 姜军胜, 徐净, 张永超. 2019. 西藏冈底斯西段帮布勒Pb-Zn-Cu矿床晚白垩世岩浆岩成因及意义[J]. 地球科学, 44(6): 1905-1922. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201906012.htm
王力圆, 郑有业, 高顺宝, 李伟良, 薛兆龙. 2014. 西藏吉瓦地区中冈底斯带岗在岩体晚白垩世的岩浆作用及构造意义[J]. 中南大学学报(自然科学版)2, 45(8): 2740-2751. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201408027.htm
王江朋, 赵元艺, 崔玉斌, 吕立娜, 许虹. 2012. 西藏班戈地区重要矽卡岩型铁(铜)多金属矿床LA-ICP-MS锆石U-Pb测年与花岗岩地球化学特征[J]. 地质通报, 31(9): 1435-1450. doi: 10.3969/j.issn.1671-2552.2012.09.008
王强, 赵振华, 熊小林. 2000. 桐柏—大别造山带燕山晚期A型花岗岩的厘定[J]. 岩石矿物学杂志, 19(4): 297-306. doi: 10.3969/j.issn.1000-6524.2000.04.002
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
解龙, 顿都, 朱利东, 尼玛次仁, 杨文光, 陶刚, 李超, 何碧, 和源. 2015. 西藏北冈底斯扎独顶A型花岗岩锆石U-Pb年代学、地球化学及其地质意义[J]. 中国地质, 42(5): 1214-1227. doi: 10.3969/j.issn.1000-3657.2015.05.004 http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20150504&flag=1
姚晓峰, 唐菊兴, 李志军, 邓世林, 丁帅, 胡正华, 张志. 2012. 班怒带西段尕尔穷铜金矿两套侵入岩源区及其地质意义——来自Hf同位素特征的指示[J]. 吉林大学学报(地球科学版), 42(2): 188-197. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S2022.htm
姚晓峰, 唐菊兴, 李志军, 邓世林, 丁帅, 胡正华, 张志. 2013. 班公湖—怒江带西段尕尔穷矽卡岩型铜金矿含矿母岩成岩时代的重新厘定及其地质意义[J]. 地质论评, 59(1): 193-200. doi: 10.3969/j.issn.0371-5736.2013.01.021
余红霞, 陈建林, 许继峰, 王保弟, 邬建斌, 梁华英. 2011. 拉萨地块中北部晚白垩世(约90 Ma)拔拉扎含矿斑岩地球化学特征及其成因[J]. 岩石学报, 27(7): 2011-2022. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107011.htm
于玉帅, 杨竹森, 戴平云, 田世洪, 高原, 刘英超, 修迪. 2015. 西藏措勤尼雄矿田日阿铜多金属矿床岩浆活动时代及成因[J]. 中国地质, 42(1): 118-133. doi: 10.3969/j.issn.1000-3657.2015.01.010 http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20150109&flag=1
曾令森, 高利娥, 郭春丽, 侯可军, 王倩. 2017. 西藏南部冈底斯大陆弧早白垩纪弧前伸展作用[J]. 岩石学报, 33(8): 2377-2394. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201708004.htm
张乐. 2015. 西藏冈底斯中北部永珠地区花岗岩类年代学与地球化学[D]. 吉林大学硕士学位论文, 1-84.
张磊, 吕新彪, 刘阁, 陈俊, 陈超, 高奇, 刘洪. 2013. 兴蒙造山带东段大陆弧后A型花岗岩特征与成因[J]. 中国地质, 40(3): 869-884. doi: 10.3969/j.issn.1000-3657.2013.03.018 http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20130318&flag=1
张立雪, 王青, 朱弟成, 贾黎黎, 吴兴源, 刘盛遨, 胡兆初, 赵天培. 2013. 拉萨地体锆石Hf同位素填图: 对地壳性质和成矿潜力的约束[J]. 岩石学报, 29(11): 3681-3688. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311003.htm
张林奎, 李光明, 曹华文, 张志, 付建刚, 夏祥标, 董随亮, 梁维, 黄勇. 2019. 藏南错那洞花岗质片麻岩锆石年龄、Hf同位素及其对原特提斯洋演化的启示[J]. 中国地质, 46(6): 1312-1335. http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20190606&flag=1
张泽明, 丁慧霞, 董昕, 田作林. 2019. 冈底斯岩浆弧的形成与演化[J]. 岩石学报, 35(2): 275-294. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201902001.htm
赵亚云. 2016. 龙首山中段古生代花岗岩岩石学、地球化学特征及地质意义[D]. 南昌: 东华理工大学, 1-79.
赵亚云, 刘晓峰, 刘远超, 刘波, 付海龙, 吕金梁, 郑常云. 2017. 西藏朱诺矿区外围次玛班硕地区铜成矿有利条件分析[J]. 甘肃地质, 26(4): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ201704005.htm
赵亚云, 刘晓峰, 刘远超, 次琼, 肖兰斌, 李莉, 张小强. 2018. 西藏次玛班硕地区由秋米斑岩体锆石U-Pb年龄、地球化学特征[J]. 地球科学, 43(12): 4551-4565. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201812022.htm
赵亚云, 杨春四, 吕金梁, 刘晓峰, 刘波, 郑常云, 刘远超, 李莉, 付海龙. 2019. 西藏罗布真矿区林子宗群火山岩锆石U-Pb年龄、地球化学特征及意义[J]. 现代地质, 33(1): 73-85. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201901008.htm
赵亚云, 刘晓峰, 刘远超, 次琼, 郑常云, 杨春四, 李莉, 付海龙. 2020. 西藏昂仁县多仁则—桑阿卡地区铜多金属矿点含矿岩体成因及成矿意义[J]. 吉林大学学报(地球科学版), 50(5): 1323-1339. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202005005.htm
赵亚云, 刘远超, 次琼, 刘晓峰, 龚福志, 李军. 2021. 西藏昂仁县北姆朗矿区斑岩体地球化学特征及含矿性分析[J]. 甘肃地质, 30(4): 38-55. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ202104012.htm
赵元艺, 崔玉斌, 吕立娜, 石登华. 2011. 西藏舍索矽卡岩型铜多金属矿床年代学与地球化学特征及意义[J]. 岩石学报, 27(7): 2132-2142. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201107021.htm
朱弟成, 潘桂堂, 莫宣学, 王立全, 廖忠礼, 赵志丹, 董国臣, 周长勇. 2006. 冈底斯中北部晚侏罗世—早白垩世地球动力学环境: 火山岩约束[J]. 岩石学报, 22(3): 534-546. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603002.htm
-